// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PIPE_PARANOIA /* for now */ /* covers iovec and kvec alike */ #define iterate_iovec(i, n, base, len, off, __p, STEP) { \ size_t off = 0; \ size_t skip = i->iov_offset; \ do { \ len = min(n, __p->iov_len - skip); \ if (likely(len)) { \ base = __p->iov_base + skip; \ len -= (STEP); \ off += len; \ skip += len; \ n -= len; \ if (skip < __p->iov_len) \ break; \ } \ __p++; \ skip = 0; \ } while (n); \ i->iov_offset = skip; \ n = off; \ } #define iterate_bvec(i, n, base, len, off, p, STEP) { \ size_t off = 0; \ unsigned skip = i->iov_offset; \ while (n) { \ unsigned offset = p->bv_offset + skip; \ unsigned left; \ void *kaddr = kmap_local_page(p->bv_page + \ offset / PAGE_SIZE); \ base = kaddr + offset % PAGE_SIZE; \ len = min(min(n, (size_t)(p->bv_len - skip)), \ (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \ left = (STEP); \ kunmap_local(kaddr); \ len -= left; \ off += len; \ skip += len; \ if (skip == p->bv_len) { \ skip = 0; \ p++; \ } \ n -= len; \ if (left) \ break; \ } \ i->iov_offset = skip; \ n = off; \ } #define iterate_xarray(i, n, base, len, __off, STEP) { \ __label__ __out; \ size_t __off = 0; \ struct folio *folio; \ loff_t start = i->xarray_start + i->iov_offset; \ pgoff_t index = start / PAGE_SIZE; \ XA_STATE(xas, i->xarray, index); \ \ len = PAGE_SIZE - offset_in_page(start); \ rcu_read_lock(); \ xas_for_each(&xas, folio, ULONG_MAX) { \ unsigned left; \ size_t offset; \ if (xas_retry(&xas, folio)) \ continue; \ if (WARN_ON(xa_is_value(folio))) \ break; \ if (WARN_ON(folio_test_hugetlb(folio))) \ break; \ offset = offset_in_folio(folio, start + __off); \ while (offset < folio_size(folio)) { \ base = kmap_local_folio(folio, offset); \ len = min(n, len); \ left = (STEP); \ kunmap_local(base); \ len -= left; \ __off += len; \ n -= len; \ if (left || n == 0) \ goto __out; \ offset += len; \ len = PAGE_SIZE; \ } \ } \ __out: \ rcu_read_unlock(); \ i->iov_offset += __off; \ n = __off; \ } #define __iterate_and_advance(i, n, base, len, off, I, K) { \ if (unlikely(i->count < n)) \ n = i->count; \ if (likely(n)) { \ if (likely(iter_is_iovec(i))) { \ const struct iovec *iov = i->iov; \ void __user *base; \ size_t len; \ iterate_iovec(i, n, base, len, off, \ iov, (I)) \ i->nr_segs -= iov - i->iov; \ i->iov = iov; \ } else if (iov_iter_is_bvec(i)) { \ const struct bio_vec *bvec = i->bvec; \ void *base; \ size_t len; \ iterate_bvec(i, n, base, len, off, \ bvec, (K)) \ i->nr_segs -= bvec - i->bvec; \ i->bvec = bvec; \ } else if (iov_iter_is_kvec(i)) { \ const struct kvec *kvec = i->kvec; \ void *base; \ size_t len; \ iterate_iovec(i, n, base, len, off, \ kvec, (K)) \ i->nr_segs -= kvec - i->kvec; \ i->kvec = kvec; \ } else if (iov_iter_is_xarray(i)) { \ void *base; \ size_t len; \ iterate_xarray(i, n, base, len, off, \ (K)) \ } \ i->count -= n; \ } \ } #define iterate_and_advance(i, n, base, len, off, I, K) \ __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0)) static int copyout(void __user *to, const void *from, size_t n) { if (should_fail_usercopy()) return n; if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } static int copyin(void *to, const void __user *from, size_t n) { if (should_fail_usercopy()) return n; if (access_ok(from, n)) { instrument_copy_from_user(to, from, n); n = raw_copy_from_user(to, from, n); } return n; } static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *from; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) { kaddr = kmap_atomic(page); from = kaddr + offset; /* first chunk, usually the only one */ left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = from - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); from = kaddr + offset; left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *to; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) { kaddr = kmap_atomic(page); to = kaddr + offset; /* first chunk, usually the only one */ left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = to - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); to = kaddr + offset; left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } #ifdef PIPE_PARANOIA static bool sanity(const struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_head = pipe->head; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int p_occupancy = pipe_occupancy(p_head, p_tail); unsigned int i_head = i->head; unsigned int idx; if (i->iov_offset) { struct pipe_buffer *p; if (unlikely(p_occupancy == 0)) goto Bad; // pipe must be non-empty if (unlikely(i_head != p_head - 1)) goto Bad; // must be at the last buffer... p = &pipe->bufs[i_head & p_mask]; if (unlikely(p->offset + p->len != i->iov_offset)) goto Bad; // ... at the end of segment } else { if (i_head != p_head) goto Bad; // must be right after the last buffer } return true; Bad: printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset); printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n", p_head, p_tail, pipe->ring_size); for (idx = 0; idx < pipe->ring_size; idx++) printk(KERN_ERR "[%p %p %d %d]\n", pipe->bufs[idx].ops, pipe->bufs[idx].page, pipe->bufs[idx].offset, pipe->bufs[idx].len); WARN_ON(1); return false; } #else #define sanity(i) true #endif static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; struct pipe_buffer *buf; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; if (!sanity(i)) return 0; off = i->iov_offset; buf = &pipe->bufs[i_head & p_mask]; if (off) { if (offset == off && buf->page == page) { /* merge with the last one */ buf->len += bytes; i->iov_offset += bytes; goto out; } i_head++; buf = &pipe->bufs[i_head & p_mask]; } if (pipe_full(i_head, p_tail, pipe->max_usage)) return 0; buf->ops = &page_cache_pipe_buf_ops; buf->flags = 0; get_page(page); buf->page = page; buf->offset = offset; buf->len = bytes; pipe->head = i_head + 1; i->iov_offset = offset + bytes; i->head = i_head; out: i->count -= bytes; return bytes; } /* * fault_in_iov_iter_readable - fault in iov iterator for reading * @i: iterator * @size: maximum length * * Fault in one or more iovecs of the given iov_iter, to a maximum length of * @size. For each iovec, fault in each page that constitutes the iovec. * * Returns the number of bytes not faulted in (like copy_to_user() and * copy_from_user()). * * Always returns 0 for non-userspace iterators. */ size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size) { if (iter_is_iovec(i)) { size_t count = min(size, iov_iter_count(i)); const struct iovec *p; size_t skip; size -= count; for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) { size_t len = min(count, p->iov_len - skip); size_t ret; if (unlikely(!len)) continue; ret = fault_in_readable(p->iov_base + skip, len); count -= len - ret; if (ret) break; } return count + size; } return 0; } EXPORT_SYMBOL(fault_in_iov_iter_readable); /* * fault_in_iov_iter_writeable - fault in iov iterator for writing * @i: iterator * @size: maximum length * * Faults in the iterator using get_user_pages(), i.e., without triggering * hardware page faults. This is primarily useful when we already know that * some or all of the pages in @i aren't in memory. * * Returns the number of bytes not faulted in, like copy_to_user() and * copy_from_user(). * * Always returns 0 for non-user-space iterators. */ size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size) { if (iter_is_iovec(i)) { size_t count = min(size, iov_iter_count(i)); const struct iovec *p; size_t skip; size -= count; for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) { size_t len = min(count, p->iov_len - skip); size_t ret; if (unlikely(!len)) continue; ret = fault_in_safe_writeable(p->iov_base + skip, len); count -= len - ret; if (ret) break; } return count + size; } return 0; } EXPORT_SYMBOL(fault_in_iov_iter_writeable); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter) { .iter_type = ITER_IOVEC, .nofault = false, .data_source = direction, .iov = iov, .nr_segs = nr_segs, .iov_offset = 0, .count = count }; } EXPORT_SYMBOL(iov_iter_init); static inline bool allocated(struct pipe_buffer *buf) { return buf->ops == &default_pipe_buf_ops; } static inline void data_start(const struct iov_iter *i, unsigned int *iter_headp, size_t *offp) { unsigned int p_mask = i->pipe->ring_size - 1; unsigned int iter_head = i->head; size_t off = i->iov_offset; if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) || off == PAGE_SIZE)) { iter_head++; off = 0; } *iter_headp = iter_head; *offp = off; } static size_t push_pipe(struct iov_iter *i, size_t size, int *iter_headp, size_t *offp) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int iter_head; size_t off; ssize_t left; if (unlikely(size > i->count)) size = i->count; if (unlikely(!size)) return 0; left = size; data_start(i, &iter_head, &off); *iter_headp = iter_head; *offp = off; if (off) { left -= PAGE_SIZE - off; if (left <= 0) { pipe->bufs[iter_head & p_mask].len += size; return size; } pipe->bufs[iter_head & p_mask].len = PAGE_SIZE; iter_head++; } while (!pipe_full(iter_head, p_tail, pipe->max_usage)) { struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask]; struct page *page = alloc_page(GFP_USER); if (!page) break; buf->ops = &default_pipe_buf_ops; buf->flags = 0; buf->page = page; buf->offset = 0; buf->len = min_t(ssize_t, left, PAGE_SIZE); left -= buf->len; iter_head++; pipe->head = iter_head; if (left == 0) return size; } return size - left; } static size_t copy_pipe_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk); i->head = i_head; i->iov_offset = off + chunk; n -= chunk; addr += chunk; off = 0; i_head++; } while (n); i->count -= bytes; return bytes; } static __wsum csum_and_memcpy(void *to, const void *from, size_t len, __wsum sum, size_t off) { __wsum next = csum_partial_copy_nocheck(from, to, len); return csum_block_add(sum, next, off); } static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, struct iov_iter *i, __wsum *sump) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; __wsum sum = *sump; size_t off = 0; unsigned int i_head; size_t r; if (!sanity(i)) return 0; bytes = push_pipe(i, bytes, &i_head, &r); while (bytes) { size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r); char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page); sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off); kunmap_local(p); i->head = i_head; i->iov_offset = r + chunk; bytes -= chunk; off += chunk; r = 0; i_head++; } *sump = sum; i->count -= off; return off; } size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return copy_pipe_to_iter(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, base, len, off, copyout(base, addr + off, len), memcpy(base, addr + off, len) ) return bytes; } EXPORT_SYMBOL(_copy_to_iter); #ifdef CONFIG_ARCH_HAS_COPY_MC static int copyout_mc(void __user *to, const void *from, size_t n) { if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = copy_mc_to_user((__force void *) to, from, n); } return n; } static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off, xfer = 0; if (!sanity(i)) return 0; n = push_pipe(i, bytes, &i_head, &off); while (n) { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page); unsigned long rem; rem = copy_mc_to_kernel(p + off, addr + xfer, chunk); chunk -= rem; kunmap_local(p); i->head = i_head; i->iov_offset = off + chunk; xfer += chunk; if (rem) break; n -= chunk; off = 0; i_head++; } i->count -= xfer; return xfer; } /** * _copy_mc_to_iter - copy to iter with source memory error exception handling * @addr: source kernel address * @bytes: total transfer length * @i: destination iterator * * The pmem driver deploys this for the dax operation * (dax_copy_to_iter()) for dax reads (bypass page-cache and the * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes * successfully copied. * * The main differences between this and typical _copy_to_iter(). * * * Typical tail/residue handling after a fault retries the copy * byte-by-byte until the fault happens again. Re-triggering machine * checks is potentially fatal so the implementation uses source * alignment and poison alignment assumptions to avoid re-triggering * hardware exceptions. * * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. * Compare to copy_to_iter() where only ITER_IOVEC attempts might return * a short copy. * * Return: number of bytes copied (may be %0) */ size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return copy_mc_pipe_to_iter(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); __iterate_and_advance(i, bytes, base, len, off, copyout_mc(base, addr + off, len), copy_mc_to_kernel(base, addr + off, len) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_mc_to_iter); #endif /* CONFIG_ARCH_HAS_COPY_MC */ size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, base, len, off, copyin(addr + off, base, len), memcpy(addr + off, base, len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, base, len, off, __copy_from_user_inatomic_nocache(addr + off, base, len), memcpy(addr + off, base, len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter_nocache); #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /** * _copy_from_iter_flushcache - write destination through cpu cache * @addr: destination kernel address * @bytes: total transfer length * @i: source iterator * * The pmem driver arranges for filesystem-dax to use this facility via * dax_copy_from_iter() for ensuring that writes to persistent memory * are flushed through the CPU cache. It is differentiated from * _copy_from_iter_nocache() in that guarantees all data is flushed for * all iterator types. The _copy_from_iter_nocache() only attempts to * bypass the cache for the ITER_IOVEC case, and on some archs may use * instructions that strand dirty-data in the cache. * * Return: number of bytes copied (may be %0) */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, base, len, off, __copy_from_user_flushcache(addr + off, base, len), memcpy_flushcache(addr + off, base, len) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); #endif static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) { struct page *head; size_t v = n + offset; /* * The general case needs to access the page order in order * to compute the page size. * However, we mostly deal with order-0 pages and thus can * avoid a possible cache line miss for requests that fit all * page orders. */ if (n <= v && v <= PAGE_SIZE) return true; head = compound_head(page); v += (page - head) << PAGE_SHIFT; if (likely(n <= v && v <= (page_size(head)))) return true; WARN_ON(1); return false; } static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (likely(iter_is_iovec(i))) return copy_page_to_iter_iovec(page, offset, bytes, i); if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) { void *kaddr = kmap_local_page(page); size_t wanted = _copy_to_iter(kaddr + offset, bytes, i); kunmap_local(kaddr); return wanted; } if (iov_iter_is_pipe(i)) return copy_page_to_iter_pipe(page, offset, bytes, i); if (unlikely(iov_iter_is_discard(i))) { if (unlikely(i->count < bytes)) bytes = i->count; i->count -= bytes; return bytes; } WARN_ON(1); return 0; } size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t res = 0; if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; page += offset / PAGE_SIZE; // first subpage offset %= PAGE_SIZE; while (1) { size_t n = __copy_page_to_iter(page, offset, min(bytes, (size_t)PAGE_SIZE - offset), i); res += n; bytes -= n; if (!bytes || !n) break; offset += n; if (offset == PAGE_SIZE) { page++; offset = 0; } } return res; } EXPORT_SYMBOL(copy_page_to_iter); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; if (likely(iter_is_iovec(i))) return copy_page_from_iter_iovec(page, offset, bytes, i); if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) { void *kaddr = kmap_local_page(page); size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); kunmap_local(kaddr); return wanted; } WARN_ON(1); return 0; } EXPORT_SYMBOL(copy_page_from_iter); static size_t pipe_zero(size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page); memset(p + off, 0, chunk); kunmap_local(p); i->head = i_head; i->iov_offset = off + chunk; n -= chunk; off = 0; i_head++; } while (n); i->count -= bytes; return bytes; } size_t iov_iter_zero(size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return pipe_zero(bytes, i); iterate_and_advance(i, bytes, base, len, count, clear_user(base, len), memset(base, 0, len) ) return bytes; } EXPORT_SYMBOL(iov_iter_zero); size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes, struct iov_iter *i) { char *kaddr = kmap_atomic(page), *p = kaddr + offset; if (unlikely(!page_copy_sane(page, offset, bytes))) { kunmap_atomic(kaddr); return 0; } if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { kunmap_atomic(kaddr); WARN_ON(1); return 0; } iterate_and_advance(i, bytes, base, len, off, copyin(p + off, base, len), memcpy(p + off, base, len) ) kunmap_atomic(kaddr); return bytes; } EXPORT_SYMBOL(copy_page_from_iter_atomic); static inline void pipe_truncate(struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_tail = pipe->tail; unsigned int p_head = pipe->head; unsigned int p_mask = pipe->ring_size - 1; if (!pipe_empty(p_head, p_tail)) { struct pipe_buffer *buf; unsigned int i_head = i->head; size_t off = i->iov_offset; if (off) { buf = &pipe->bufs[i_head & p_mask]; buf->len = off - buf->offset; i_head++; } while (p_head != i_head) { p_head--; pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]); } pipe->head = p_head; } } static void pipe_advance(struct iov_iter *i, size_t size) { struct pipe_inode_info *pipe = i->pipe; if (size) { struct pipe_buffer *buf; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off = i->iov_offset, left = size; if (off) /* make it relative to the beginning of buffer */ left += off - pipe->bufs[i_head & p_mask].offset; while (1) { buf = &pipe->bufs[i_head & p_mask]; if (left <= buf->len) break; left -= buf->len; i_head++; } i->head = i_head; i->iov_offset = buf->offset + left; } i->count -= size; /* ... and discard everything past that point */ pipe_truncate(i); } static void iov_iter_bvec_advance(struct iov_iter *i, size_t size) { struct bvec_iter bi; bi.bi_size = i->count; bi.bi_bvec_done = i->iov_offset; bi.bi_idx = 0; bvec_iter_advance(i->bvec, &bi, size); i->bvec += bi.bi_idx; i->nr_segs -= bi.bi_idx; i->count = bi.bi_size; i->iov_offset = bi.bi_bvec_done; } static void iov_iter_iovec_advance(struct iov_iter *i, size_t size) { const struct iovec *iov, *end; if (!i->count) return; i->count -= size; size += i->iov_offset; // from beginning of current segment for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) { if (likely(size < iov->iov_len)) break; size -= iov->iov_len; } i->iov_offset = size; i->nr_segs -= iov - i->iov; i->iov = iov; } void iov_iter_advance(struct iov_iter *i, size_t size) { if (unlikely(i->count < size)) size = i->count; if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) { /* iovec and kvec have identical layouts */ iov_iter_iovec_advance(i, size); } else if (iov_iter_is_bvec(i)) { iov_iter_bvec_advance(i, size); } else if (iov_iter_is_pipe(i)) { pipe_advance(i, size); } else if (unlikely(iov_iter_is_xarray(i))) { i->iov_offset += size; i->count -= size; } else if (iov_iter_is_discard(i)) { i->count -= size; } } EXPORT_SYMBOL(iov_iter_advance); void iov_iter_revert(struct iov_iter *i, size_t unroll) { if (!unroll) return; if (WARN_ON(unroll > MAX_RW_COUNT)) return; i->count += unroll; if (unlikely(iov_iter_is_pipe(i))) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off = i->iov_offset; while (1) { struct pipe_buffer *b = &pipe->bufs[i_head & p_mask]; size_t n = off - b->offset; if (unroll < n) { off -= unroll; break; } unroll -= n; if (!unroll && i_head == i->start_head) { off = 0; break; } i_head--; b = &pipe->bufs[i_head & p_mask]; off = b->offset + b->len; } i->iov_offset = off; i->head = i_head; pipe_truncate(i); return; } if (unlikely(iov_iter_is_discard(i))) return; if (unroll <= i->iov_offset) { i->iov_offset -= unroll; return; } unroll -= i->iov_offset; if (iov_iter_is_xarray(i)) { BUG(); /* We should never go beyond the start of the specified * range since we might then be straying into pages that * aren't pinned. */ } else if (iov_iter_is_bvec(i)) { const struct bio_vec *bvec = i->bvec; while (1) { size_t n = (--bvec)->bv_len; i->nr_segs++; if (unroll <= n) { i->bvec = bvec; i->iov_offset = n - unroll; return; } unroll -= n; } } else { /* same logics for iovec and kvec */ const struct iovec *iov = i->iov; while (1) { size_t n = (--iov)->iov_len; i->nr_segs++; if (unroll <= n) { i->iov = iov; i->iov_offset = n - unroll; return; } unroll -= n; } } } EXPORT_SYMBOL(iov_iter_revert); /* * Return the count of just the current iov_iter segment. */ size_t iov_iter_single_seg_count(const struct iov_iter *i) { if (i->nr_segs > 1) { if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) return min(i->count, i->iov->iov_len - i->iov_offset); if (iov_iter_is_bvec(i)) return min(i->count, i->bvec->bv_len - i->iov_offset); } return i->count; } EXPORT_SYMBOL(iov_iter_single_seg_count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter){ .iter_type = ITER_KVEC, .data_source = direction, .kvec = kvec, .nr_segs = nr_segs, .iov_offset = 0, .count = count }; } EXPORT_SYMBOL(iov_iter_kvec); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); *i = (struct iov_iter){ .iter_type = ITER_BVEC, .data_source = direction, .bvec = bvec, .nr_segs = nr_segs, .iov_offset = 0, .count = count }; } EXPORT_SYMBOL(iov_iter_bvec); void iov_iter_pipe(struct iov_iter *i, unsigned int direction, struct pipe_inode_info *pipe, size_t count) { BUG_ON(direction != READ); WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size)); *i = (struct iov_iter){ .iter_type = ITER_PIPE, .data_source = false, .pipe = pipe, .head = pipe->head, .start_head = pipe->head, .iov_offset = 0, .count = count }; } EXPORT_SYMBOL(iov_iter_pipe); /** * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray * @i: The iterator to initialise. * @direction: The direction of the transfer. * @xarray: The xarray to access. * @start: The start file position. * @count: The size of the I/O buffer in bytes. * * Set up an I/O iterator to either draw data out of the pages attached to an * inode or to inject data into those pages. The pages *must* be prevented * from evaporation, either by taking a ref on them or locking them by the * caller. */ void iov_iter_xarray(struct iov_iter *i, unsigned int direction, struct xarray *xarray, loff_t start, size_t count) { BUG_ON(direction & ~1); *i = (struct iov_iter) { .iter_type = ITER_XARRAY, .data_source = direction, .xarray = xarray, .xarray_start = start, .count = count, .iov_offset = 0 }; } EXPORT_SYMBOL(iov_iter_xarray); /** * iov_iter_discard - Initialise an I/O iterator that discards data * @i: The iterator to initialise. * @direction: The direction of the transfer. * @count: The size of the I/O buffer in bytes. * * Set up an I/O iterator that just discards everything that's written to it. * It's only available as a READ iterator. */ void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) { BUG_ON(direction != READ); *i = (struct iov_iter){ .iter_type = ITER_DISCARD, .data_source = false, .count = count, .iov_offset = 0 }; } EXPORT_SYMBOL(iov_iter_discard); static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i) { unsigned long res = 0; size_t size = i->count; size_t skip = i->iov_offset; unsigned k; for (k = 0; k < i->nr_segs; k++, skip = 0) { size_t len = i->iov[k].iov_len - skip; if (len) { res |= (unsigned long)i->iov[k].iov_base + skip; if (len > size) len = size; res |= len; size -= len; if (!size) break; } } return res; } static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i) { unsigned res = 0; size_t size = i->count; unsigned skip = i->iov_offset; unsigned k; for (k = 0; k < i->nr_segs; k++, skip = 0) { size_t len = i->bvec[k].bv_len - skip; res |= (unsigned long)i->bvec[k].bv_offset + skip; if (len > size) len = size; res |= len; size -= len; if (!size) break; } return res; } unsigned long iov_iter_alignment(const struct iov_iter *i) { /* iovec and kvec have identical layouts */ if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) return iov_iter_alignment_iovec(i); if (iov_iter_is_bvec(i)) return iov_iter_alignment_bvec(i); if (iov_iter_is_pipe(i)) { unsigned int p_mask = i->pipe->ring_size - 1; size_t size = i->count; if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask])) return size | i->iov_offset; return size; } if (iov_iter_is_xarray(i)) return (i->xarray_start + i->iov_offset) | i->count; return 0; } EXPORT_SYMBOL(iov_iter_alignment); unsigned long iov_iter_gap_alignment(const struct iov_iter *i) { unsigned long res = 0; unsigned long v = 0; size_t size = i->count; unsigned k; if (WARN_ON(!iter_is_iovec(i))) return ~0U; for (k = 0; k < i->nr_segs; k++) { if (i->iov[k].iov_len) { unsigned long base = (unsigned long)i->iov[k].iov_base; if (v) // if not the first one res |= base | v; // this start | previous end v = base + i->iov[k].iov_len; if (size <= i->iov[k].iov_len) break; size -= i->iov[k].iov_len; } } return res; } EXPORT_SYMBOL(iov_iter_gap_alignment); static inline ssize_t __pipe_get_pages(struct iov_iter *i, size_t maxsize, struct page **pages, int iter_head, size_t *start) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; ssize_t n = push_pipe(i, maxsize, &iter_head, start); if (!n) return -EFAULT; maxsize = n; n += *start; while (n > 0) { get_page(*pages++ = pipe->bufs[iter_head & p_mask].page); iter_head++; n -= PAGE_SIZE; } return maxsize; } static ssize_t pipe_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { unsigned int iter_head, npages; size_t capacity; if (!sanity(i)) return -EFAULT; data_start(i, &iter_head, start); /* Amount of free space: some of this one + all after this one */ npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); capacity = min(npages, maxpages) * PAGE_SIZE - *start; return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start); } static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa, pgoff_t index, unsigned int nr_pages) { XA_STATE(xas, xa, index); struct page *page; unsigned int ret = 0; rcu_read_lock(); for (page = xas_load(&xas); page; page = xas_next(&xas)) { if (xas_retry(&xas, page)) continue; /* Has the page moved or been split? */ if (unlikely(page != xas_reload(&xas))) { xas_reset(&xas); continue; } pages[ret] = find_subpage(page, xas.xa_index); get_page(pages[ret]); if (++ret == nr_pages) break; } rcu_read_unlock(); return ret; } static ssize_t iter_xarray_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *_start_offset) { unsigned nr, offset; pgoff_t index, count; size_t size = maxsize; loff_t pos; if (!size || !maxpages) return 0; pos = i->xarray_start + i->iov_offset; index = pos >> PAGE_SHIFT; offset = pos & ~PAGE_MASK; *_start_offset = offset; count = 1; if (size > PAGE_SIZE - offset) { size -= PAGE_SIZE - offset; count += size >> PAGE_SHIFT; size &= ~PAGE_MASK; if (size) count++; } if (count > maxpages) count = maxpages; nr = iter_xarray_populate_pages(pages, i->xarray, index, count); if (nr == 0) return 0; return min(nr * PAGE_SIZE - offset, maxsize); } /* must be done on non-empty ITER_IOVEC one */ static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size, size_t *start, size_t maxsize, unsigned maxpages) { size_t skip; long k; for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) { unsigned long addr = (unsigned long)i->iov[k].iov_base + skip; size_t len = i->iov[k].iov_len - skip; if (unlikely(!len)) continue; if (len > maxsize) len = maxsize; len += (*start = addr % PAGE_SIZE); if (len > maxpages * PAGE_SIZE) len = maxpages * PAGE_SIZE; *size = len; return addr & PAGE_MASK; } BUG(); // if it had been empty, we wouldn't get called } /* must be done on non-empty ITER_BVEC one */ static struct page *first_bvec_segment(const struct iov_iter *i, size_t *size, size_t *start, size_t maxsize, unsigned maxpages) { struct page *page; size_t skip = i->iov_offset, len; len = i->bvec->bv_len - skip; if (len > maxsize) len = maxsize; skip += i->bvec->bv_offset; page = i->bvec->bv_page + skip / PAGE_SIZE; len += (*start = skip % PAGE_SIZE); if (len > maxpages * PAGE_SIZE) len = maxpages * PAGE_SIZE; *size = len; return page; } ssize_t iov_iter_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { size_t len; int n, res; if (maxsize > i->count) maxsize = i->count; if (!maxsize) return 0; if (likely(iter_is_iovec(i))) { unsigned int gup_flags = 0; unsigned long addr; if (iov_iter_rw(i) != WRITE) gup_flags |= FOLL_WRITE; if (i->nofault) gup_flags |= FOLL_NOFAULT; addr = first_iovec_segment(i, &len, start, maxsize, maxpages); n = DIV_ROUND_UP(len, PAGE_SIZE); res = get_user_pages_fast(addr, n, gup_flags, pages); if (unlikely(res <= 0)) return res; return (res == n ? len : res * PAGE_SIZE) - *start; } if (iov_iter_is_bvec(i)) { struct page *page; page = first_bvec_segment(i, &len, start, maxsize, maxpages); n = DIV_ROUND_UP(len, PAGE_SIZE); while (n--) get_page(*pages++ = page++); return len - *start; } if (iov_iter_is_pipe(i)) return pipe_get_pages(i, pages, maxsize, maxpages, start); if (iov_iter_is_xarray(i)) return iter_xarray_get_pages(i, pages, maxsize, maxpages, start); return -EFAULT; } EXPORT_SYMBOL(iov_iter_get_pages); static struct page **get_pages_array(size_t n) { return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); } static ssize_t pipe_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; unsigned int iter_head, npages; ssize_t n; if (!sanity(i)) return -EFAULT; data_start(i, &iter_head, start); /* Amount of free space: some of this one + all after this one */ npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); n = npages * PAGE_SIZE - *start; if (maxsize > n) maxsize = n; else npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); p = get_pages_array(npages); if (!p) return -ENOMEM; n = __pipe_get_pages(i, maxsize, p, iter_head, start); if (n > 0) *pages = p; else kvfree(p); return n; } static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *_start_offset) { struct page **p; unsigned nr, offset; pgoff_t index, count; size_t size = maxsize; loff_t pos; if (!size) return 0; pos = i->xarray_start + i->iov_offset; index = pos >> PAGE_SHIFT; offset = pos & ~PAGE_MASK; *_start_offset = offset; count = 1; if (size > PAGE_SIZE - offset) { size -= PAGE_SIZE - offset; count += size >> PAGE_SHIFT; size &= ~PAGE_MASK; if (size) count++; } p = get_pages_array(count); if (!p) return -ENOMEM; *pages = p; nr = iter_xarray_populate_pages(p, i->xarray, index, count); if (nr == 0) return 0; return min(nr * PAGE_SIZE - offset, maxsize); } ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; size_t len; int n, res; if (maxsize > i->count) maxsize = i->count; if (!maxsize) return 0; if (likely(iter_is_iovec(i))) { unsigned int gup_flags = 0; unsigned long addr; if (iov_iter_rw(i) != WRITE) gup_flags |= FOLL_WRITE; if (i->nofault) gup_flags |= FOLL_NOFAULT; addr = first_iovec_segment(i, &len, start, maxsize, ~0U); n = DIV_ROUND_UP(len, PAGE_SIZE); p = get_pages_array(n); if (!p) return -ENOMEM; res = get_user_pages_fast(addr, n, gup_flags, p); if (unlikely(res <= 0)) { kvfree(p); *pages = NULL; return res; } *pages = p; return (res == n ? len : res * PAGE_SIZE) - *start; } if (iov_iter_is_bvec(i)) { struct page *page; page = first_bvec_segment(i, &len, start, maxsize, ~0U); n = DIV_ROUND_UP(len, PAGE_SIZE); *pages = p = get_pages_array(n); if (!p) return -ENOMEM; while (n--) get_page(*p++ = page++); return len - *start; } if (iov_iter_is_pipe(i)) return pipe_get_pages_alloc(i, pages, maxsize, start); if (iov_iter_is_xarray(i)) return iter_xarray_get_pages_alloc(i, pages, maxsize, start); return -EFAULT; } EXPORT_SYMBOL(iov_iter_get_pages_alloc); size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { __wsum sum, next; sum = *csum; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, base, len, off, ({ next = csum_and_copy_from_user(base, addr + off, len); sum = csum_block_add(sum, next, off); next ? 0 : len; }), ({ sum = csum_and_memcpy(addr + off, base, len, sum, off); }) ) *csum = sum; return bytes; } EXPORT_SYMBOL(csum_and_copy_from_iter); size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, struct iov_iter *i) { struct csum_state *csstate = _csstate; __wsum sum, next; if (unlikely(iov_iter_is_discard(i))) { WARN_ON(1); /* for now */ return 0; } sum = csum_shift(csstate->csum, csstate->off); if (unlikely(iov_iter_is_pipe(i))) bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum); else iterate_and_advance(i, bytes, base, len, off, ({ next = csum_and_copy_to_user(addr + off, base, len); sum = csum_block_add(sum, next, off); next ? 0 : len; }), ({ sum = csum_and_memcpy(base, addr + off, len, sum, off); }) ) csstate->csum = csum_shift(sum, csstate->off); csstate->off += bytes; return bytes; } EXPORT_SYMBOL(csum_and_copy_to_iter); size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, struct iov_iter *i) { #ifdef CONFIG_CRYPTO_HASH struct ahash_request *hash = hashp; struct scatterlist sg; size_t copied; copied = copy_to_iter(addr, bytes, i); sg_init_one(&sg, addr, copied); ahash_request_set_crypt(hash, &sg, NULL, copied); crypto_ahash_update(hash); return copied; #else return 0; #endif } EXPORT_SYMBOL(hash_and_copy_to_iter); static int iov_npages(const struct iov_iter *i, int maxpages) { size_t skip = i->iov_offset, size = i->count; const struct iovec *p; int npages = 0; for (p = i->iov; size; skip = 0, p++) { unsigned offs = offset_in_page(p->iov_base + skip); size_t len = min(p->iov_len - skip, size); if (len) { size -= len; npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); if (unlikely(npages > maxpages)) return maxpages; } } return npages; } static int bvec_npages(const struct iov_iter *i, int maxpages) { size_t skip = i->iov_offset, size = i->count; const struct bio_vec *p; int npages = 0; for (p = i->bvec; size; skip = 0, p++) { unsigned offs = (p->bv_offset + skip) % PAGE_SIZE; size_t len = min(p->bv_len - skip, size); size -= len; npages += DIV_ROUND_UP(offs + len, PAGE_SIZE); if (unlikely(npages > maxpages)) return maxpages; } return npages; } int iov_iter_npages(const struct iov_iter *i, int maxpages) { if (unlikely(!i->count)) return 0; /* iovec and kvec have identical layouts */ if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) return iov_npages(i, maxpages); if (iov_iter_is_bvec(i)) return bvec_npages(i, maxpages); if (iov_iter_is_pipe(i)) { unsigned int iter_head; int npages; size_t off; if (!sanity(i)) return 0; data_start(i, &iter_head, &off); /* some of this one + all after this one */ npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); return min(npages, maxpages); } if (iov_iter_is_xarray(i)) { unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE; int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE); return min(npages, maxpages); } return 0; } EXPORT_SYMBOL(iov_iter_npages); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) { *new = *old; if (unlikely(iov_iter_is_pipe(new))) { WARN_ON(1); return NULL; } if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new))) return NULL; if (iov_iter_is_bvec(new)) return new->bvec = kmemdup(new->bvec, new->nr_segs * sizeof(struct bio_vec), flags); else /* iovec and kvec have identical layout */ return new->iov = kmemdup(new->iov, new->nr_segs * sizeof(struct iovec), flags); } EXPORT_SYMBOL(dup_iter); static int copy_compat_iovec_from_user(struct iovec *iov, const struct iovec __user *uvec, unsigned long nr_segs) { const struct compat_iovec __user *uiov = (const struct compat_iovec __user *)uvec; int ret = -EFAULT, i; if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) return -EFAULT; for (i = 0; i < nr_segs; i++) { compat_uptr_t buf; compat_ssize_t len; unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); /* check for compat_size_t not fitting in compat_ssize_t .. */ if (len < 0) { ret = -EINVAL; goto uaccess_end; } iov[i].iov_base = compat_ptr(buf); iov[i].iov_len = len; } ret = 0; uaccess_end: user_access_end(); return ret; } static int copy_iovec_from_user(struct iovec *iov, const struct iovec __user *uvec, unsigned long nr_segs) { unsigned long seg; if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec))) return -EFAULT; for (seg = 0; seg < nr_segs; seg++) { if ((ssize_t)iov[seg].iov_len < 0) return -EINVAL; } return 0; } struct iovec *iovec_from_user(const struct iovec __user *uvec, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat) { struct iovec *iov = fast_iov; int ret; /* * SuS says "The readv() function *may* fail if the iovcnt argument was * less than or equal to 0, or greater than {IOV_MAX}. Linux has * traditionally returned zero for zero segments, so... */ if (nr_segs == 0) return iov; if (nr_segs > UIO_MAXIOV) return ERR_PTR(-EINVAL); if (nr_segs > fast_segs) { iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); if (!iov) return ERR_PTR(-ENOMEM); } if (compat) ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); else ret = copy_iovec_from_user(iov, uvec, nr_segs); if (ret) { if (iov != fast_iov) kfree(iov); return ERR_PTR(ret); } return iov; } ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat) { ssize_t total_len = 0; unsigned long seg; struct iovec *iov; iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); if (IS_ERR(iov)) { *iovp = NULL; return PTR_ERR(iov); } /* * According to the Single Unix Specification we should return EINVAL if * an element length is < 0 when cast to ssize_t or if the total length * would overflow the ssize_t return value of the system call. * * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the * overflow case. */ for (seg = 0; seg < nr_segs; seg++) { ssize_t len = (ssize_t)iov[seg].iov_len; if (!access_ok(iov[seg].iov_base, len)) { if (iov != *iovp) kfree(iov); *iovp = NULL; return -EFAULT; } if (len > MAX_RW_COUNT - total_len) { len = MAX_RW_COUNT - total_len; iov[seg].iov_len = len; } total_len += len; } iov_iter_init(i, type, iov, nr_segs, total_len); if (iov == *iovp) *iovp = NULL; else *iovp = iov; return total_len; } /** * import_iovec() - Copy an array of &struct iovec from userspace * into the kernel, check that it is valid, and initialize a new * &struct iov_iter iterator to access it. * * @type: One of %READ or %WRITE. * @uvec: Pointer to the userspace array. * @nr_segs: Number of elements in userspace array. * @fast_segs: Number of elements in @iov. * @iovp: (input and output parameter) Pointer to pointer to (usually small * on-stack) kernel array. * @i: Pointer to iterator that will be initialized on success. * * If the array pointed to by *@iov is large enough to hold all @nr_segs, * then this function places %NULL in *@iov on return. Otherwise, a new * array will be allocated and the result placed in *@iov. This means that * the caller may call kfree() on *@iov regardless of whether the small * on-stack array was used or not (and regardless of whether this function * returns an error or not). * * Return: Negative error code on error, bytes imported on success */ ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i) { return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, in_compat_syscall()); } EXPORT_SYMBOL(import_iovec); int import_single_range(int rw, void __user *buf, size_t len, struct iovec *iov, struct iov_iter *i) { if (len > MAX_RW_COUNT) len = MAX_RW_COUNT; if (unlikely(!access_ok(buf, len))) return -EFAULT; iov->iov_base = buf; iov->iov_len = len; iov_iter_init(i, rw, iov, 1, len); return 0; } EXPORT_SYMBOL(import_single_range); /** * iov_iter_restore() - Restore a &struct iov_iter to the same state as when * iov_iter_save_state() was called. * * @i: &struct iov_iter to restore * @state: state to restore from * * Used after iov_iter_save_state() to bring restore @i, if operations may * have advanced it. * * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC */ void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state) { if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) && !iov_iter_is_kvec(i)) return; i->iov_offset = state->iov_offset; i->count = state->count; /* * For the *vec iters, nr_segs + iov is constant - if we increment * the vec, then we also decrement the nr_segs count. Hence we don't * need to track both of these, just one is enough and we can deduct * the other from that. ITER_KVEC and ITER_IOVEC are the same struct * size, so we can just increment the iov pointer as they are unionzed. * ITER_BVEC _may_ be the same size on some archs, but on others it is * not. Be safe and handle it separately. */ BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec)); if (iov_iter_is_bvec(i)) i->bvec -= state->nr_segs - i->nr_segs; else i->iov -= state->nr_segs - i->nr_segs; i->nr_segs = state->nr_segs; }