/* * PXA2xx SPI DMA engine support. * * Copyright (C) 2013, Intel Corporation * Author: Mika Westerberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "spi-pxa2xx.h" static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, bool error) { struct spi_message *msg = drv_data->cur_msg; /* * It is possible that one CPU is handling ROR interrupt and other * just gets DMA completion. Calling pump_transfers() twice for the * same transfer leads to problems thus we prevent concurrent calls * by using ->dma_running. */ if (atomic_dec_and_test(&drv_data->dma_running)) { /* * If the other CPU is still handling the ROR interrupt we * might not know about the error yet. So we re-check the * ROR bit here before we clear the status register. */ if (!error) { u32 status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; error = status & SSSR_ROR; } /* Clear status & disable interrupts */ pxa2xx_spi_write(drv_data, SSCR1, pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->dma_cr1); write_SSSR_CS(drv_data, drv_data->clear_sr); if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, 0); if (!error) { msg->actual_length += drv_data->len; msg->state = pxa2xx_spi_next_transfer(drv_data); } else { /* In case we got an error we disable the SSP now */ pxa2xx_spi_write(drv_data, SSCR0, pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); msg->state = ERROR_STATE; } tasklet_schedule(&drv_data->pump_transfers); } } static void pxa2xx_spi_dma_callback(void *data) { pxa2xx_spi_dma_transfer_complete(data, false); } static struct dma_async_tx_descriptor * pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, enum dma_transfer_direction dir) { struct chip_data *chip = drv_data->cur_chip; struct spi_transfer *xfer = drv_data->cur_transfer; enum dma_slave_buswidth width; struct dma_slave_config cfg; struct dma_chan *chan; struct sg_table *sgt; int ret; switch (drv_data->n_bytes) { case 1: width = DMA_SLAVE_BUSWIDTH_1_BYTE; break; case 2: width = DMA_SLAVE_BUSWIDTH_2_BYTES; break; default: width = DMA_SLAVE_BUSWIDTH_4_BYTES; break; } memset(&cfg, 0, sizeof(cfg)); cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) { cfg.dst_addr = drv_data->ssdr_physical; cfg.dst_addr_width = width; cfg.dst_maxburst = chip->dma_burst_size; sgt = &xfer->tx_sg; chan = drv_data->master->dma_tx; } else { cfg.src_addr = drv_data->ssdr_physical; cfg.src_addr_width = width; cfg.src_maxburst = chip->dma_burst_size; sgt = &xfer->rx_sg; chan = drv_data->master->dma_rx; } ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); return NULL; } return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) { u32 status; status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr; if (status & SSSR_ROR) { dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); dmaengine_terminate_async(drv_data->master->dma_rx); dmaengine_terminate_async(drv_data->master->dma_tx); pxa2xx_spi_dma_transfer_complete(drv_data, true); return IRQ_HANDLED; } return IRQ_NONE; } int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) { struct dma_async_tx_descriptor *tx_desc, *rx_desc; int err; tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); if (!tx_desc) { dev_err(&drv_data->pdev->dev, "failed to get DMA TX descriptor\n"); err = -EBUSY; goto err_tx; } rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); if (!rx_desc) { dev_err(&drv_data->pdev->dev, "failed to get DMA RX descriptor\n"); err = -EBUSY; goto err_rx; } /* We are ready when RX completes */ rx_desc->callback = pxa2xx_spi_dma_callback; rx_desc->callback_param = drv_data; dmaengine_submit(rx_desc); dmaengine_submit(tx_desc); return 0; err_rx: dmaengine_terminate_async(drv_data->master->dma_tx); err_tx: return err; } void pxa2xx_spi_dma_start(struct driver_data *drv_data) { dma_async_issue_pending(drv_data->master->dma_rx); dma_async_issue_pending(drv_data->master->dma_tx); atomic_set(&drv_data->dma_running, 1); } int pxa2xx_spi_dma_setup(struct driver_data *drv_data) { struct pxa2xx_spi_master *pdata = drv_data->master_info; struct device *dev = &drv_data->pdev->dev; struct spi_master *master = drv_data->master; dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); master->dma_tx = dma_request_slave_channel_compat(mask, pdata->dma_filter, pdata->tx_param, dev, "tx"); if (!master->dma_tx) return -ENODEV; master->dma_rx = dma_request_slave_channel_compat(mask, pdata->dma_filter, pdata->rx_param, dev, "rx"); if (!master->dma_rx) { dma_release_channel(master->dma_tx); master->dma_tx = NULL; return -ENODEV; } return 0; } void pxa2xx_spi_dma_release(struct driver_data *drv_data) { struct spi_master *master = drv_data->master; if (master->dma_rx) { dmaengine_terminate_sync(master->dma_rx); dma_release_channel(master->dma_rx); master->dma_rx = NULL; } if (master->dma_tx) { dmaengine_terminate_sync(master->dma_tx); dma_release_channel(master->dma_tx); master->dma_tx = NULL; } } int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi, u8 bits_per_word, u32 *burst_code, u32 *threshold) { struct pxa2xx_spi_chip *chip_info = spi->controller_data; /* * If the DMA burst size is given in chip_info we use that, * otherwise we use the default. Also we use the default FIFO * thresholds for now. */ *burst_code = chip_info ? chip_info->dma_burst_size : 1; *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); return 0; }