#ifndef _LINUX_PIPE_FS_I_H #define _LINUX_PIPE_FS_I_H #define PIPEFS_MAGIC 0x50495045 #define PIPE_DEF_BUFFERS 16 #define PIPE_BUF_FLAG_LRU 0x01 /* page is on the LRU */ #define PIPE_BUF_FLAG_ATOMIC 0x02 /* was atomically mapped */ #define PIPE_BUF_FLAG_GIFT 0x04 /* page is a gift */ /** * struct pipe_buffer - a linux kernel pipe buffer * @page: the page containing the data for the pipe buffer * @offset: offset of data inside the @page * @len: length of data inside the @page * @ops: operations associated with this buffer. See @pipe_buf_operations. * @flags: pipe buffer flags. See above. * @private: private data owned by the ops. **/ struct pipe_buffer { struct page *page; unsigned int offset, len; const struct pipe_buf_operations *ops; unsigned int flags; unsigned long private; }; /** * struct pipe_inode_info - a linux kernel pipe * @wait: reader/writer wait point in case of empty/full pipe * @nrbufs: the number of non-empty pipe buffers in this pipe * @curbuf: the current pipe buffer entry * @tmp_page: cached released page * @readers: number of current readers of this pipe * @writers: number of current writers of this pipe * @waiting_writers: number of writers blocked waiting for room * @r_counter: reader counter * @w_counter: writer counter * @fasync_readers: reader side fasync * @fasync_writers: writer side fasync * @inode: inode this pipe is attached to * @bufs: the circular array of pipe buffers **/ struct pipe_inode_info { wait_queue_head_t wait; unsigned int nrbufs, curbuf, buffers; unsigned int readers; unsigned int writers; unsigned int waiting_writers; unsigned int r_counter; unsigned int w_counter; struct page *tmp_page; struct fasync_struct *fasync_readers; struct fasync_struct *fasync_writers; struct inode *inode; struct pipe_buffer *bufs; }; /* * Note on the nesting of these functions: * * ->confirm() * ->steal() * ... * ->map() * ... * ->unmap() * * That is, ->map() must be called on a confirmed buffer, * same goes for ->steal(). See below for the meaning of each * operation. Also see kerneldoc in fs/pipe.c for the pipe * and generic variants of these hooks. */ struct pipe_buf_operations { /* * This is set to 1, if the generic pipe read/write may coalesce * data into an existing buffer. If this is set to 0, a new pipe * page segment is always used for new data. */ int can_merge; /* * ->map() returns a virtual address mapping of the pipe buffer. * The last integer flag reflects whether this should be an atomic * mapping or not. The atomic map is faster, however you can't take * page faults before calling ->unmap() again. So if you need to eg * access user data through copy_to/from_user(), then you must get * a non-atomic map. ->map() uses the KM_USER0 atomic slot for * atomic maps, so you can't map more than one pipe_buffer at once * and you have to be careful if mapping another page as source * or destination for a copy (IOW, it has to use something else * than KM_USER0). */ void * (*map)(struct pipe_inode_info *, struct pipe_buffer *, int); /* * Undoes ->map(), finishes the virtual mapping of the pipe buffer. */ void (*unmap)(struct pipe_inode_info *, struct pipe_buffer *, void *); /* * ->confirm() verifies that the data in the pipe buffer is there * and that the contents are good. If the pages in the pipe belong * to a file system, we may need to wait for IO completion in this * hook. Returns 0 for good, or a negative error value in case of * error. */ int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *); /* * When the contents of this pipe buffer has been completely * consumed by a reader, ->release() is called. */ void (*release)(struct pipe_inode_info *, struct pipe_buffer *); /* * Attempt to take ownership of the pipe buffer and its contents. * ->steal() returns 0 for success, in which case the contents * of the pipe (the buf->page) is locked and now completely owned * by the caller. The page may then be transferred to a different * mapping, the most often used case is insertion into different * file address space cache. */ int (*steal)(struct pipe_inode_info *, struct pipe_buffer *); /* * Get a reference to the pipe buffer. */ void (*get)(struct pipe_inode_info *, struct pipe_buffer *); }; /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual memory allocation, whereas PIPE_BUF makes atomicity guarantees. */ #define PIPE_SIZE PAGE_SIZE /* Pipe lock and unlock operations */ void pipe_lock(struct pipe_inode_info *); void pipe_unlock(struct pipe_inode_info *); void pipe_double_lock(struct pipe_inode_info *, struct pipe_inode_info *); extern unsigned int pipe_max_size, pipe_min_size; int pipe_proc_fn(struct ctl_table *, int, void __user *, size_t *, loff_t *); /* Drop the inode semaphore and wait for a pipe event, atomically */ void pipe_wait(struct pipe_inode_info *pipe); struct pipe_inode_info * alloc_pipe_info(struct inode * inode); void free_pipe_info(struct inode * inode); void __free_pipe_info(struct pipe_inode_info *); /* Generic pipe buffer ops functions */ void *generic_pipe_buf_map(struct pipe_inode_info *, struct pipe_buffer *, int); void generic_pipe_buf_unmap(struct pipe_inode_info *, struct pipe_buffer *, void *); void generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *); int generic_pipe_buf_confirm(struct pipe_inode_info *, struct pipe_buffer *); int generic_pipe_buf_steal(struct pipe_inode_info *, struct pipe_buffer *); void generic_pipe_buf_release(struct pipe_inode_info *, struct pipe_buffer *); /* for F_SETPIPE_SZ and F_GETPIPE_SZ */ long pipe_fcntl(struct file *, unsigned int, unsigned long arg); /* * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same * location, so checking ->i_pipe is not enough to verify that this is a * pipe. */ static inline struct pipe_inode_info *get_pipe_info(struct file *file) { struct inode *i = file->f_path.dentry->d_inode; return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL; } #endif