#include #include #include #include #include #include #include #include /* * Mbcache is a simple key-value store. Keys need not be unique, however * key-value pairs are expected to be unique (we use this fact in * mb2_cache_entry_delete_block()). * * Ext2 and ext4 use this cache for deduplication of extended attribute blocks. * They use hash of a block contents as a key and block number as a value. * That's why keys need not be unique (different xattr blocks may end up having * the same hash). However block number always uniquely identifies a cache * entry. * * We provide functions for creation and removal of entries, search by key, * and a special "delete entry with given key-value pair" operation. Fixed * size hash table is used for fast key lookups. */ struct mb2_cache { /* Hash table of entries */ struct hlist_bl_head *c_hash; /* log2 of hash table size */ int c_bucket_bits; /* Maximum entries in cache to avoid degrading hash too much */ int c_max_entries; /* Protects c_list, c_entry_count */ spinlock_t c_list_lock; struct list_head c_list; /* Number of entries in cache */ unsigned long c_entry_count; struct shrinker c_shrink; /* Work for shrinking when the cache has too many entries */ struct work_struct c_shrink_work; }; static struct kmem_cache *mb2_entry_cache; static unsigned long mb2_cache_shrink(struct mb2_cache *cache, unsigned int nr_to_scan); static inline bool mb2_cache_entry_referenced(struct mb2_cache_entry *entry) { return entry->_e_hash_list_head & 1; } static inline void mb2_cache_entry_set_referenced(struct mb2_cache_entry *entry) { entry->_e_hash_list_head |= 1; } static inline void mb2_cache_entry_clear_referenced( struct mb2_cache_entry *entry) { entry->_e_hash_list_head &= ~1; } static inline struct hlist_bl_head *mb2_cache_entry_head( struct mb2_cache_entry *entry) { return (struct hlist_bl_head *) (entry->_e_hash_list_head & ~1); } /* * Number of entries to reclaim synchronously when there are too many entries * in cache */ #define SYNC_SHRINK_BATCH 64 /* * mb2_cache_entry_create - create entry in cache * @cache - cache where the entry should be created * @mask - gfp mask with which the entry should be allocated * @key - key of the entry * @block - block that contains data * * Creates entry in @cache with key @key and records that data is stored in * block @block. The function returns -EBUSY if entry with the same key * and for the same block already exists in cache. Otherwise 0 is returned. */ int mb2_cache_entry_create(struct mb2_cache *cache, gfp_t mask, u32 key, sector_t block) { struct mb2_cache_entry *entry, *dup; struct hlist_bl_node *dup_node; struct hlist_bl_head *head; /* Schedule background reclaim if there are too many entries */ if (cache->c_entry_count >= cache->c_max_entries) schedule_work(&cache->c_shrink_work); /* Do some sync reclaim if background reclaim cannot keep up */ if (cache->c_entry_count >= 2*cache->c_max_entries) mb2_cache_shrink(cache, SYNC_SHRINK_BATCH); entry = kmem_cache_alloc(mb2_entry_cache, mask); if (!entry) return -ENOMEM; INIT_LIST_HEAD(&entry->e_list); /* One ref for hash, one ref returned */ atomic_set(&entry->e_refcnt, 1); entry->e_key = key; entry->e_block = block; head = &cache->c_hash[hash_32(key, cache->c_bucket_bits)]; entry->_e_hash_list_head = (unsigned long)head; hlist_bl_lock(head); hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) { if (dup->e_key == key && dup->e_block == block) { hlist_bl_unlock(head); kmem_cache_free(mb2_entry_cache, entry); return -EBUSY; } } hlist_bl_add_head(&entry->e_hash_list, head); hlist_bl_unlock(head); spin_lock(&cache->c_list_lock); list_add_tail(&entry->e_list, &cache->c_list); /* Grab ref for LRU list */ atomic_inc(&entry->e_refcnt); cache->c_entry_count++; spin_unlock(&cache->c_list_lock); return 0; } EXPORT_SYMBOL(mb2_cache_entry_create); void __mb2_cache_entry_free(struct mb2_cache_entry *entry) { kmem_cache_free(mb2_entry_cache, entry); } EXPORT_SYMBOL(__mb2_cache_entry_free); static struct mb2_cache_entry *__entry_find(struct mb2_cache *cache, struct mb2_cache_entry *entry, u32 key) { struct mb2_cache_entry *old_entry = entry; struct hlist_bl_node *node; struct hlist_bl_head *head; if (entry) head = mb2_cache_entry_head(entry); else head = &cache->c_hash[hash_32(key, cache->c_bucket_bits)]; hlist_bl_lock(head); if (entry && !hlist_bl_unhashed(&entry->e_hash_list)) node = entry->e_hash_list.next; else node = hlist_bl_first(head); while (node) { entry = hlist_bl_entry(node, struct mb2_cache_entry, e_hash_list); if (entry->e_key == key) { atomic_inc(&entry->e_refcnt); goto out; } node = node->next; } entry = NULL; out: hlist_bl_unlock(head); if (old_entry) mb2_cache_entry_put(cache, old_entry); return entry; } /* * mb2_cache_entry_find_first - find the first entry in cache with given key * @cache: cache where we should search * @key: key to look for * * Search in @cache for entry with key @key. Grabs reference to the first * entry found and returns the entry. */ struct mb2_cache_entry *mb2_cache_entry_find_first(struct mb2_cache *cache, u32 key) { return __entry_find(cache, NULL, key); } EXPORT_SYMBOL(mb2_cache_entry_find_first); /* * mb2_cache_entry_find_next - find next entry in cache with the same * @cache: cache where we should search * @entry: entry to start search from * * Finds next entry in the hash chain which has the same key as @entry. * If @entry is unhashed (which can happen when deletion of entry races * with the search), finds the first entry in the hash chain. The function * drops reference to @entry and returns with a reference to the found entry. */ struct mb2_cache_entry *mb2_cache_entry_find_next(struct mb2_cache *cache, struct mb2_cache_entry *entry) { return __entry_find(cache, entry, entry->e_key); } EXPORT_SYMBOL(mb2_cache_entry_find_next); /* mb2_cache_entry_delete_block - remove information about block from cache * @cache - cache we work with * @key - key of the entry to remove * @block - block containing data for @key * * Remove entry from cache @cache with key @key with data stored in @block. */ void mb2_cache_entry_delete_block(struct mb2_cache *cache, u32 key, sector_t block) { struct hlist_bl_node *node; struct hlist_bl_head *head; struct mb2_cache_entry *entry; head = &cache->c_hash[hash_32(key, cache->c_bucket_bits)]; hlist_bl_lock(head); hlist_bl_for_each_entry(entry, node, head, e_hash_list) { if (entry->e_key == key && entry->e_block == block) { /* We keep hash list reference to keep entry alive */ hlist_bl_del_init(&entry->e_hash_list); hlist_bl_unlock(head); spin_lock(&cache->c_list_lock); if (!list_empty(&entry->e_list)) { list_del_init(&entry->e_list); cache->c_entry_count--; atomic_dec(&entry->e_refcnt); } spin_unlock(&cache->c_list_lock); mb2_cache_entry_put(cache, entry); return; } } hlist_bl_unlock(head); } EXPORT_SYMBOL(mb2_cache_entry_delete_block); /* mb2_cache_entry_touch - cache entry got used * @cache - cache the entry belongs to * @entry - entry that got used * * Marks entry as used to give hit higher chances of surviving in cache. */ void mb2_cache_entry_touch(struct mb2_cache *cache, struct mb2_cache_entry *entry) { mb2_cache_entry_set_referenced(entry); } EXPORT_SYMBOL(mb2_cache_entry_touch); static unsigned long mb2_cache_count(struct shrinker *shrink, struct shrink_control *sc) { struct mb2_cache *cache = container_of(shrink, struct mb2_cache, c_shrink); return cache->c_entry_count; } /* Shrink number of entries in cache */ static unsigned long mb2_cache_shrink(struct mb2_cache *cache, unsigned int nr_to_scan) { struct mb2_cache_entry *entry; struct hlist_bl_head *head; unsigned int shrunk = 0; spin_lock(&cache->c_list_lock); while (nr_to_scan-- && !list_empty(&cache->c_list)) { entry = list_first_entry(&cache->c_list, struct mb2_cache_entry, e_list); if (mb2_cache_entry_referenced(entry)) { mb2_cache_entry_clear_referenced(entry); list_move_tail(&cache->c_list, &entry->e_list); continue; } list_del_init(&entry->e_list); cache->c_entry_count--; /* * We keep LRU list reference so that entry doesn't go away * from under us. */ spin_unlock(&cache->c_list_lock); head = mb2_cache_entry_head(entry); hlist_bl_lock(head); if (!hlist_bl_unhashed(&entry->e_hash_list)) { hlist_bl_del_init(&entry->e_hash_list); atomic_dec(&entry->e_refcnt); } hlist_bl_unlock(head); if (mb2_cache_entry_put(cache, entry)) shrunk++; cond_resched(); spin_lock(&cache->c_list_lock); } spin_unlock(&cache->c_list_lock); return shrunk; } static unsigned long mb2_cache_scan(struct shrinker *shrink, struct shrink_control *sc) { int nr_to_scan = sc->nr_to_scan; struct mb2_cache *cache = container_of(shrink, struct mb2_cache, c_shrink); return mb2_cache_shrink(cache, nr_to_scan); } /* We shrink 1/X of the cache when we have too many entries in it */ #define SHRINK_DIVISOR 16 static void mb2_cache_shrink_worker(struct work_struct *work) { struct mb2_cache *cache = container_of(work, struct mb2_cache, c_shrink_work); mb2_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR); } /* * mb2_cache_create - create cache * @bucket_bits: log2 of the hash table size * * Create cache for keys with 2^bucket_bits hash entries. */ struct mb2_cache *mb2_cache_create(int bucket_bits) { struct mb2_cache *cache; int bucket_count = 1 << bucket_bits; int i; if (!try_module_get(THIS_MODULE)) return NULL; cache = kzalloc(sizeof(struct mb2_cache), GFP_KERNEL); if (!cache) goto err_out; cache->c_bucket_bits = bucket_bits; cache->c_max_entries = bucket_count << 4; INIT_LIST_HEAD(&cache->c_list); spin_lock_init(&cache->c_list_lock); cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head), GFP_KERNEL); if (!cache->c_hash) { kfree(cache); goto err_out; } for (i = 0; i < bucket_count; i++) INIT_HLIST_BL_HEAD(&cache->c_hash[i]); cache->c_shrink.count_objects = mb2_cache_count; cache->c_shrink.scan_objects = mb2_cache_scan; cache->c_shrink.seeks = DEFAULT_SEEKS; register_shrinker(&cache->c_shrink); INIT_WORK(&cache->c_shrink_work, mb2_cache_shrink_worker); return cache; err_out: module_put(THIS_MODULE); return NULL; } EXPORT_SYMBOL(mb2_cache_create); /* * mb2_cache_destroy - destroy cache * @cache: the cache to destroy * * Free all entries in cache and cache itself. Caller must make sure nobody * (except shrinker) can reach @cache when calling this. */ void mb2_cache_destroy(struct mb2_cache *cache) { struct mb2_cache_entry *entry, *next; unregister_shrinker(&cache->c_shrink); /* * We don't bother with any locking. Cache must not be used at this * point. */ list_for_each_entry_safe(entry, next, &cache->c_list, e_list) { if (!hlist_bl_unhashed(&entry->e_hash_list)) { hlist_bl_del_init(&entry->e_hash_list); atomic_dec(&entry->e_refcnt); } else WARN_ON(1); list_del(&entry->e_list); WARN_ON(atomic_read(&entry->e_refcnt) != 1); mb2_cache_entry_put(cache, entry); } kfree(cache->c_hash); kfree(cache); module_put(THIS_MODULE); } EXPORT_SYMBOL(mb2_cache_destroy); static int __init mb2cache_init(void) { mb2_entry_cache = kmem_cache_create("mbcache", sizeof(struct mb2_cache_entry), 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); BUG_ON(!mb2_entry_cache); return 0; } static void __exit mb2cache_exit(void) { kmem_cache_destroy(mb2_entry_cache); } module_init(mb2cache_init) module_exit(mb2cache_exit) MODULE_AUTHOR("Jan Kara "); MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); MODULE_LICENSE("GPL");