mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-28 16:56:26 +00:00
e70140ba0d
The continual trickle of small conversion patches is grating on me, and is really not helping. Just get rid of the 'remove_new' member function, which is just an alias for the plain 'remove', and had a comment to that effect: /* * .remove_new() is a relic from a prototype conversion of .remove(). * New drivers are supposed to implement .remove(). Once all drivers are * converted to not use .remove_new any more, it will be dropped. */ This was just a tree-wide 'sed' script that replaced '.remove_new' with '.remove', with some care taken to turn a subsequent tab into two tabs to make things line up. I did do some minimal manual whitespace adjustment for places that used spaces to line things up. Then I just removed the old (sic) .remove_new member function, and this is the end result. No more unnecessary conversion noise. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
616 lines
15 KiB
C
616 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Virtual PTP 1588 clock for use with LM-safe VMclock device.
|
|
*
|
|
* Copyright © 2024 Amazon.com, Inc. or its affiliates.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <uapi/linux/vmclock-abi.h>
|
|
|
|
#include <linux/ptp_clock_kernel.h>
|
|
|
|
#ifdef CONFIG_X86
|
|
#include <asm/pvclock.h>
|
|
#include <asm/kvmclock.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_GUEST
|
|
#define SUPPORT_KVMCLOCK
|
|
#endif
|
|
|
|
static DEFINE_IDA(vmclock_ida);
|
|
|
|
ACPI_MODULE_NAME("vmclock");
|
|
|
|
struct vmclock_state {
|
|
struct resource res;
|
|
struct vmclock_abi *clk;
|
|
struct miscdevice miscdev;
|
|
struct ptp_clock_info ptp_clock_info;
|
|
struct ptp_clock *ptp_clock;
|
|
enum clocksource_ids cs_id, sys_cs_id;
|
|
int index;
|
|
char *name;
|
|
};
|
|
|
|
#define VMCLOCK_MAX_WAIT ms_to_ktime(100)
|
|
|
|
/* Require at least the flags field to be present. All else can be optional. */
|
|
#define VMCLOCK_MIN_SIZE offsetof(struct vmclock_abi, pad)
|
|
|
|
#define VMCLOCK_FIELD_PRESENT(_c, _f) \
|
|
(le32_to_cpu((_c)->size) >= (offsetof(struct vmclock_abi, _f) + \
|
|
sizeof((_c)->_f)))
|
|
|
|
/*
|
|
* Multiply a 64-bit count by a 64-bit tick 'period' in units of seconds >> 64
|
|
* and add the fractional second part of the reference time.
|
|
*
|
|
* The result is a 128-bit value, the top 64 bits of which are seconds, and
|
|
* the low 64 bits are (seconds >> 64).
|
|
*/
|
|
static uint64_t mul_u64_u64_shr_add_u64(uint64_t *res_hi, uint64_t delta,
|
|
uint64_t period, uint8_t shift,
|
|
uint64_t frac_sec)
|
|
{
|
|
unsigned __int128 res = (unsigned __int128)delta * period;
|
|
|
|
res >>= shift;
|
|
res += frac_sec;
|
|
*res_hi = res >> 64;
|
|
return (uint64_t)res;
|
|
}
|
|
|
|
static bool tai_adjust(struct vmclock_abi *clk, uint64_t *sec)
|
|
{
|
|
if (likely(clk->time_type == VMCLOCK_TIME_UTC))
|
|
return true;
|
|
|
|
if (clk->time_type == VMCLOCK_TIME_TAI &&
|
|
(le64_to_cpu(clk->flags) & VMCLOCK_FLAG_TAI_OFFSET_VALID)) {
|
|
if (sec)
|
|
*sec += (int16_t)le16_to_cpu(clk->tai_offset_sec);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int vmclock_get_crosststamp(struct vmclock_state *st,
|
|
struct ptp_system_timestamp *sts,
|
|
struct system_counterval_t *system_counter,
|
|
struct timespec64 *tspec)
|
|
{
|
|
ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT);
|
|
struct system_time_snapshot systime_snapshot;
|
|
uint64_t cycle, delta, seq, frac_sec;
|
|
|
|
#ifdef CONFIG_X86
|
|
/*
|
|
* We'd expect the hypervisor to know this and to report the clock
|
|
* status as VMCLOCK_STATUS_UNRELIABLE. But be paranoid.
|
|
*/
|
|
if (check_tsc_unstable())
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
while (1) {
|
|
seq = le32_to_cpu(st->clk->seq_count) & ~1ULL;
|
|
|
|
/*
|
|
* This pairs with a write barrier in the hypervisor
|
|
* which populates this structure.
|
|
*/
|
|
virt_rmb();
|
|
|
|
if (st->clk->clock_status == VMCLOCK_STATUS_UNRELIABLE)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* When invoked for gettimex64(), fill in the pre/post system
|
|
* times. The simple case is when system time is based on the
|
|
* same counter as st->cs_id, in which case all three times
|
|
* will be derived from the *same* counter value.
|
|
*
|
|
* If the system isn't using the same counter, then the value
|
|
* from ktime_get_snapshot() will still be used as pre_ts, and
|
|
* ptp_read_system_postts() is called to populate postts after
|
|
* calling get_cycles().
|
|
*
|
|
* The conversion to timespec64 happens further down, outside
|
|
* the seq_count loop.
|
|
*/
|
|
if (sts) {
|
|
ktime_get_snapshot(&systime_snapshot);
|
|
if (systime_snapshot.cs_id == st->cs_id) {
|
|
cycle = systime_snapshot.cycles;
|
|
} else {
|
|
cycle = get_cycles();
|
|
ptp_read_system_postts(sts);
|
|
}
|
|
} else {
|
|
cycle = get_cycles();
|
|
}
|
|
|
|
delta = cycle - le64_to_cpu(st->clk->counter_value);
|
|
|
|
frac_sec = mul_u64_u64_shr_add_u64(&tspec->tv_sec, delta,
|
|
le64_to_cpu(st->clk->counter_period_frac_sec),
|
|
st->clk->counter_period_shift,
|
|
le64_to_cpu(st->clk->time_frac_sec));
|
|
tspec->tv_nsec = mul_u64_u64_shr(frac_sec, NSEC_PER_SEC, 64);
|
|
tspec->tv_sec += le64_to_cpu(st->clk->time_sec);
|
|
|
|
if (!tai_adjust(st->clk, &tspec->tv_sec))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* This pairs with a write barrier in the hypervisor
|
|
* which populates this structure.
|
|
*/
|
|
virt_rmb();
|
|
if (seq == le32_to_cpu(st->clk->seq_count))
|
|
break;
|
|
|
|
if (ktime_after(ktime_get(), deadline))
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (system_counter) {
|
|
system_counter->cycles = cycle;
|
|
system_counter->cs_id = st->cs_id;
|
|
}
|
|
|
|
if (sts) {
|
|
sts->pre_ts = ktime_to_timespec64(systime_snapshot.real);
|
|
if (systime_snapshot.cs_id == st->cs_id)
|
|
sts->post_ts = sts->pre_ts;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SUPPORT_KVMCLOCK
|
|
/*
|
|
* In the case where the system is using the KVM clock for timekeeping, convert
|
|
* the TSC value into a KVM clock time in order to return a paired reading that
|
|
* get_device_system_crosststamp() can cope with.
|
|
*/
|
|
static int vmclock_get_crosststamp_kvmclock(struct vmclock_state *st,
|
|
struct ptp_system_timestamp *sts,
|
|
struct system_counterval_t *system_counter,
|
|
struct timespec64 *tspec)
|
|
{
|
|
struct pvclock_vcpu_time_info *pvti = this_cpu_pvti();
|
|
unsigned int pvti_ver;
|
|
int ret;
|
|
|
|
preempt_disable_notrace();
|
|
|
|
do {
|
|
pvti_ver = pvclock_read_begin(pvti);
|
|
|
|
ret = vmclock_get_crosststamp(st, sts, system_counter, tspec);
|
|
if (ret)
|
|
break;
|
|
|
|
system_counter->cycles = __pvclock_read_cycles(pvti,
|
|
system_counter->cycles);
|
|
system_counter->cs_id = CSID_X86_KVM_CLK;
|
|
|
|
/*
|
|
* This retry should never really happen; if the TSC is
|
|
* stable and reliable enough across vCPUS that it is sane
|
|
* for the hypervisor to expose a VMCLOCK device which uses
|
|
* it as the reference counter, then the KVM clock sohuld be
|
|
* in 'master clock mode' and basically never changed. But
|
|
* the KVM clock is a fickle and often broken thing, so do
|
|
* it "properly" just in case.
|
|
*/
|
|
} while (pvclock_read_retry(pvti, pvti_ver));
|
|
|
|
preempt_enable_notrace();
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int ptp_vmclock_get_time_fn(ktime_t *device_time,
|
|
struct system_counterval_t *system_counter,
|
|
void *ctx)
|
|
{
|
|
struct vmclock_state *st = ctx;
|
|
struct timespec64 tspec;
|
|
int ret;
|
|
|
|
#ifdef SUPPORT_KVMCLOCK
|
|
if (READ_ONCE(st->sys_cs_id) == CSID_X86_KVM_CLK)
|
|
ret = vmclock_get_crosststamp_kvmclock(st, NULL, system_counter,
|
|
&tspec);
|
|
else
|
|
#endif
|
|
ret = vmclock_get_crosststamp(st, NULL, system_counter, &tspec);
|
|
|
|
if (!ret)
|
|
*device_time = timespec64_to_ktime(tspec);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ptp_vmclock_getcrosststamp(struct ptp_clock_info *ptp,
|
|
struct system_device_crosststamp *xtstamp)
|
|
{
|
|
struct vmclock_state *st = container_of(ptp, struct vmclock_state,
|
|
ptp_clock_info);
|
|
int ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn, st,
|
|
NULL, xtstamp);
|
|
#ifdef SUPPORT_KVMCLOCK
|
|
/*
|
|
* On x86, the KVM clock may be used for the system time. We can
|
|
* actually convert a TSC reading to that, and return a paired
|
|
* timestamp that get_device_system_crosststamp() *can* handle.
|
|
*/
|
|
if (ret == -ENODEV) {
|
|
struct system_time_snapshot systime_snapshot;
|
|
|
|
ktime_get_snapshot(&systime_snapshot);
|
|
|
|
if (systime_snapshot.cs_id == CSID_X86_TSC ||
|
|
systime_snapshot.cs_id == CSID_X86_KVM_CLK) {
|
|
WRITE_ONCE(st->sys_cs_id, systime_snapshot.cs_id);
|
|
ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn,
|
|
st, NULL, xtstamp);
|
|
}
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* PTP clock operations
|
|
*/
|
|
|
|
static int ptp_vmclock_adjfine(struct ptp_clock_info *ptp, long delta)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int ptp_vmclock_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int ptp_vmclock_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int ptp_vmclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct vmclock_state *st = container_of(ptp, struct vmclock_state,
|
|
ptp_clock_info);
|
|
|
|
return vmclock_get_crosststamp(st, sts, NULL, ts);
|
|
}
|
|
|
|
static int ptp_vmclock_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *rq, int on)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static const struct ptp_clock_info ptp_vmclock_info = {
|
|
.owner = THIS_MODULE,
|
|
.max_adj = 0,
|
|
.n_ext_ts = 0,
|
|
.n_pins = 0,
|
|
.pps = 0,
|
|
.adjfine = ptp_vmclock_adjfine,
|
|
.adjtime = ptp_vmclock_adjtime,
|
|
.gettimex64 = ptp_vmclock_gettimex,
|
|
.settime64 = ptp_vmclock_settime,
|
|
.enable = ptp_vmclock_enable,
|
|
.getcrosststamp = ptp_vmclock_getcrosststamp,
|
|
};
|
|
|
|
static struct ptp_clock *vmclock_ptp_register(struct device *dev,
|
|
struct vmclock_state *st)
|
|
{
|
|
enum clocksource_ids cs_id;
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64) &&
|
|
st->clk->counter_id == VMCLOCK_COUNTER_ARM_VCNT) {
|
|
/* Can we check it's the virtual counter? */
|
|
cs_id = CSID_ARM_ARCH_COUNTER;
|
|
} else if (IS_ENABLED(CONFIG_X86) &&
|
|
st->clk->counter_id == VMCLOCK_COUNTER_X86_TSC) {
|
|
cs_id = CSID_X86_TSC;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
/* Only UTC, or TAI with offset */
|
|
if (!tai_adjust(st->clk, NULL)) {
|
|
dev_info(dev, "vmclock does not provide unambiguous UTC\n");
|
|
return NULL;
|
|
}
|
|
|
|
st->sys_cs_id = cs_id;
|
|
st->cs_id = cs_id;
|
|
st->ptp_clock_info = ptp_vmclock_info;
|
|
strscpy(st->ptp_clock_info.name, st->name);
|
|
|
|
return ptp_clock_register(&st->ptp_clock_info, dev);
|
|
}
|
|
|
|
static int vmclock_miscdev_mmap(struct file *fp, struct vm_area_struct *vma)
|
|
{
|
|
struct vmclock_state *st = container_of(fp->private_data,
|
|
struct vmclock_state, miscdev);
|
|
|
|
if ((vma->vm_flags & (VM_READ|VM_WRITE)) != VM_READ)
|
|
return -EROFS;
|
|
|
|
if (vma->vm_end - vma->vm_start != PAGE_SIZE || vma->vm_pgoff)
|
|
return -EINVAL;
|
|
|
|
if (io_remap_pfn_range(vma, vma->vm_start,
|
|
st->res.start >> PAGE_SHIFT, PAGE_SIZE,
|
|
vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t vmclock_miscdev_read(struct file *fp, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct vmclock_state *st = container_of(fp->private_data,
|
|
struct vmclock_state, miscdev);
|
|
ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT);
|
|
size_t max_count;
|
|
uint32_t seq;
|
|
|
|
if (*ppos >= PAGE_SIZE)
|
|
return 0;
|
|
|
|
max_count = PAGE_SIZE - *ppos;
|
|
if (count > max_count)
|
|
count = max_count;
|
|
|
|
while (1) {
|
|
seq = le32_to_cpu(st->clk->seq_count) & ~1U;
|
|
/* Pairs with hypervisor wmb */
|
|
virt_rmb();
|
|
|
|
if (copy_to_user(buf, ((char *)st->clk) + *ppos, count))
|
|
return -EFAULT;
|
|
|
|
/* Pairs with hypervisor wmb */
|
|
virt_rmb();
|
|
if (seq == le32_to_cpu(st->clk->seq_count))
|
|
break;
|
|
|
|
if (ktime_after(ktime_get(), deadline))
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
*ppos += count;
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations vmclock_miscdev_fops = {
|
|
.mmap = vmclock_miscdev_mmap,
|
|
.read = vmclock_miscdev_read,
|
|
};
|
|
|
|
/* module operations */
|
|
|
|
static void vmclock_remove(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct vmclock_state *st = dev_get_drvdata(dev);
|
|
|
|
if (st->ptp_clock)
|
|
ptp_clock_unregister(st->ptp_clock);
|
|
|
|
if (st->miscdev.minor != MISC_DYNAMIC_MINOR)
|
|
misc_deregister(&st->miscdev);
|
|
}
|
|
|
|
static acpi_status vmclock_acpi_resources(struct acpi_resource *ares, void *data)
|
|
{
|
|
struct vmclock_state *st = data;
|
|
struct resource_win win;
|
|
struct resource *res = &win.res;
|
|
|
|
if (ares->type == ACPI_RESOURCE_TYPE_END_TAG)
|
|
return AE_OK;
|
|
|
|
/* There can be only one */
|
|
if (resource_type(&st->res) == IORESOURCE_MEM)
|
|
return AE_ERROR;
|
|
|
|
if (acpi_dev_resource_memory(ares, res) ||
|
|
acpi_dev_resource_address_space(ares, &win)) {
|
|
|
|
if (resource_type(res) != IORESOURCE_MEM ||
|
|
resource_size(res) < sizeof(st->clk))
|
|
return AE_ERROR;
|
|
|
|
st->res = *res;
|
|
return AE_OK;
|
|
}
|
|
|
|
return AE_ERROR;
|
|
}
|
|
|
|
static int vmclock_probe_acpi(struct device *dev, struct vmclock_state *st)
|
|
{
|
|
struct acpi_device *adev = ACPI_COMPANION(dev);
|
|
acpi_status status;
|
|
|
|
/*
|
|
* This should never happen as this function is only called when
|
|
* has_acpi_companion(dev) is true, but the logic is sufficiently
|
|
* complex that Coverity can't see the tautology.
|
|
*/
|
|
if (!adev)
|
|
return -ENODEV;
|
|
|
|
status = acpi_walk_resources(adev->handle, METHOD_NAME__CRS,
|
|
vmclock_acpi_resources, st);
|
|
if (ACPI_FAILURE(status) || resource_type(&st->res) != IORESOURCE_MEM) {
|
|
dev_err(dev, "failed to get resources\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vmclock_put_idx(void *data)
|
|
{
|
|
struct vmclock_state *st = data;
|
|
|
|
ida_free(&vmclock_ida, st->index);
|
|
}
|
|
|
|
static int vmclock_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct vmclock_state *st;
|
|
int ret;
|
|
|
|
st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
|
|
if (!st)
|
|
return -ENOMEM;
|
|
|
|
if (has_acpi_companion(dev))
|
|
ret = vmclock_probe_acpi(dev, st);
|
|
else
|
|
ret = -EINVAL; /* Only ACPI for now */
|
|
|
|
if (ret) {
|
|
dev_info(dev, "Failed to obtain physical address: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
if (resource_size(&st->res) < VMCLOCK_MIN_SIZE) {
|
|
dev_info(dev, "Region too small (0x%llx)\n",
|
|
resource_size(&st->res));
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
st->clk = devm_memremap(dev, st->res.start, resource_size(&st->res),
|
|
MEMREMAP_WB | MEMREMAP_DEC);
|
|
if (IS_ERR(st->clk)) {
|
|
ret = PTR_ERR(st->clk);
|
|
dev_info(dev, "failed to map shared memory\n");
|
|
st->clk = NULL;
|
|
goto out;
|
|
}
|
|
|
|
if (le32_to_cpu(st->clk->magic) != VMCLOCK_MAGIC ||
|
|
le32_to_cpu(st->clk->size) > resource_size(&st->res) ||
|
|
le16_to_cpu(st->clk->version) != 1) {
|
|
dev_info(dev, "vmclock magic fields invalid\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = ida_alloc(&vmclock_ida, GFP_KERNEL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
st->index = ret;
|
|
ret = devm_add_action_or_reset(&pdev->dev, vmclock_put_idx, st);
|
|
if (ret)
|
|
goto out;
|
|
|
|
st->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "vmclock%d", st->index);
|
|
if (!st->name) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the structure is big enough, it can be mapped to userspace.
|
|
* Theoretically a guest OS even using larger pages could still
|
|
* use 4KiB PTEs to map smaller MMIO regions like this, but let's
|
|
* cross that bridge if/when we come to it.
|
|
*/
|
|
if (le32_to_cpu(st->clk->size) >= PAGE_SIZE) {
|
|
st->miscdev.minor = MISC_DYNAMIC_MINOR;
|
|
st->miscdev.fops = &vmclock_miscdev_fops;
|
|
st->miscdev.name = st->name;
|
|
|
|
ret = misc_register(&st->miscdev);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* If there is valid clock information, register a PTP clock */
|
|
if (VMCLOCK_FIELD_PRESENT(st->clk, time_frac_sec)) {
|
|
/* Can return a silent NULL, or an error. */
|
|
st->ptp_clock = vmclock_ptp_register(dev, st);
|
|
if (IS_ERR(st->ptp_clock)) {
|
|
ret = PTR_ERR(st->ptp_clock);
|
|
st->ptp_clock = NULL;
|
|
vmclock_remove(pdev);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!st->miscdev.minor && !st->ptp_clock) {
|
|
/* Neither miscdev nor PTP registered */
|
|
dev_info(dev, "vmclock: Neither miscdev nor PTP available; not registering\n");
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
dev_info(dev, "%s: registered %s%s%s\n", st->name,
|
|
st->miscdev.minor ? "miscdev" : "",
|
|
(st->miscdev.minor && st->ptp_clock) ? ", " : "",
|
|
st->ptp_clock ? "PTP" : "");
|
|
|
|
dev_set_drvdata(dev, st);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static const struct acpi_device_id vmclock_acpi_ids[] = {
|
|
{ "AMZNC10C", 0 },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, vmclock_acpi_ids);
|
|
|
|
static struct platform_driver vmclock_platform_driver = {
|
|
.probe = vmclock_probe,
|
|
.remove = vmclock_remove,
|
|
.driver = {
|
|
.name = "vmclock",
|
|
.acpi_match_table = vmclock_acpi_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(vmclock_platform_driver)
|
|
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
|
MODULE_DESCRIPTION("PTP clock using VMCLOCK");
|
|
MODULE_LICENSE("GPL");
|