linux-stable/fs/bcachefs/fs.c
Linus Torvalds c1e822754c bcachefs fixes for 6.12-rc5
Lots of hotfixes:
 - transaction restart injection has been shaking out a few things
 
 - fix a data corruption in the buffered write path on -ENOSPC, found by
   xfstests generic/299
 
 - Some small show_options fixes
 
 - Repair mismatches in inode hash type, seed: different snapshot
   versions of an inode must have the same hash/type seed, used for
   directory entries and xattrs. We were checking the hash seed, but not
   the type, and a user contributed a filesystem where the hash type on
   one inode had somehow been flipped; these fixes allow his filesystem
   to repair.
 
   Additionally, the hash type flip made some directory entries
   invisible, which were then recreated by userspace; so the hash check
   code now checks for duplicate non dangling dirents, and renames one of
   them if necessary.
 
 - Don't use wait_event_interruptible() in recovery: this fixes some
   filesystems failing to mount with -ERESTARTSYS
 
 - Workaround for kvmalloc not supporting > INT_MAX allocations, causing
   an -ENOMEM when allocating the sorted array of journal keys: this
   allows a 75 TB filesystem to mount
 
 - Make sure bch_inode_unpacked.bi_snapshot is set in the old inode
   compat path: this alllows Marcin's filesystem (in use since before
   6.7) to repair and mount.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmcX4vYACgkQE6szbY3K
 bnbywxAArBfIJfshWq5Wk9WztenzUmyUmV2HIgntT/iN4ty4eIpZ26VSvHcGvgkU
 j3wx+OuxMTPBGc3fjUS+gALf/BGcQEgh6oPZCV+6M3kasTzNzG2jYOCkLqKbpcO1
 V5n/Le/SM1X2grkgTm/H+TulGHNgG9gJ2U4kjihroJrTbTesZhzcW/qlz6RWo7U1
 02NvLop4WE9M6WaW9RzsHK2llRUAl2Z3oRMuwNz3IIijCpm98STGD4gyvGoMV2b8
 qNsXjy7b2lkYObKI29yWF0caRzWK1LRz79afRlnNVSJb6DK1QB83ms5Qa8rprCU4
 uOq0wsGWyg6lzwQ19X+2TvUYABopVk2HXLlzTO/lJrWeMTuYJVPZ7KZi3l6ubw5T
 GIsAD5qMdCm8E5nXX8hG//0rOIl6QK288+zMQyRCvAkCL+iN2k0TU8qKAEEC44de
 vj6ZyNqbuLR39LLz9K09ZhzIZGk09ELpxOJ2Wwwj4ZFriwphWDtFgBtBUpNo/KWA
 inBfq2lZJsmNjfns9vCqOmNOStOJxXnyMOR25sTv7wM69QPGkl41dPY3oeuG8lRk
 cU/qJQKlpTKJbFeXiEKWKDnMzWxOnovqLFC0tKu2qAYM6vAz+AtwTXgthVFGh21U
 QoUDbsnQCCixMkS2AksCo7nivLrxmV/EeYm5pgeiU38VdA5ofBM=
 =OpYN
 -----END PGP SIGNATURE-----

Merge tag 'bcachefs-2024-10-22' of https://github.com/koverstreet/bcachefs

Pull bcachefs fixes from Kent Overstreet:
 "Lots of hotfixes:

   - transaction restart injection has been shaking out a few things

   - fix a data corruption in the buffered write path on -ENOSPC, found
     by xfstests generic/299

   - Some small show_options fixes

   - Repair mismatches in inode hash type, seed: different snapshot
     versions of an inode must have the same hash/type seed, used for
     directory entries and xattrs. We were checking the hash seed, but
     not the type, and a user contributed a filesystem where the hash
     type on one inode had somehow been flipped; these fixes allow his
     filesystem to repair.

     Additionally, the hash type flip made some directory entries
     invisible, which were then recreated by userspace; so the hash
     check code now checks for duplicate non dangling dirents, and
     renames one of them if necessary.

   - Don't use wait_event_interruptible() in recovery: this fixes some
     filesystems failing to mount with -ERESTARTSYS

   - Workaround for kvmalloc not supporting > INT_MAX allocations,
     causing an -ENOMEM when allocating the sorted array of journal
     keys: this allows a 75 TB filesystem to mount

   - Make sure bch_inode_unpacked.bi_snapshot is set in the old inode
     compat path: this alllows Marcin's filesystem (in use since before
     6.7) to repair and mount"

* tag 'bcachefs-2024-10-22' of https://github.com/koverstreet/bcachefs: (26 commits)
  bcachefs: Set bch_inode_unpacked.bi_snapshot in old inode path
  bcachefs: Mark more errors as AUTOFIX
  bcachefs: Workaround for kvmalloc() not supporting > INT_MAX allocations
  bcachefs: Don't use wait_event_interruptible() in recovery
  bcachefs: Fix __bch2_fsck_err() warning
  bcachefs: fsck: Improve hash_check_key()
  bcachefs: bch2_hash_set_or_get_in_snapshot()
  bcachefs: Repair mismatches in inode hash seed, type
  bcachefs: Add hash seed, type to inode_to_text()
  bcachefs: INODE_STR_HASH() for bch_inode_unpacked
  bcachefs: Run in-kernel offline fsck without ratelimit errors
  bcachefs: skip mount option handle for empty string.
  bcachefs: fix incorrect show_options results
  bcachefs: Fix data corruption on -ENOSPC in buffered write path
  bcachefs: bch2_folio_reservation_get_partial() is now better behaved
  bcachefs: fix disk reservation accounting in bch2_folio_reservation_get()
  bcachefS: ec: fix data type on stripe deletion
  bcachefs: Don't use commit_do() unnecessarily
  bcachefs: handle restarts in bch2_bucket_io_time_reset()
  bcachefs: fix restart handling in __bch2_resume_logged_op_finsert()
  ...
2024-10-24 12:38:59 -07:00

2393 lines
60 KiB
C

// SPDX-License-Identifier: GPL-2.0
#ifndef NO_BCACHEFS_FS
#include "bcachefs.h"
#include "acl.h"
#include "bkey_buf.h"
#include "btree_update.h"
#include "buckets.h"
#include "chardev.h"
#include "dirent.h"
#include "errcode.h"
#include "extents.h"
#include "fs.h"
#include "fs-common.h"
#include "fs-io.h"
#include "fs-ioctl.h"
#include "fs-io-buffered.h"
#include "fs-io-direct.h"
#include "fs-io-pagecache.h"
#include "fsck.h"
#include "inode.h"
#include "io_read.h"
#include "journal.h"
#include "keylist.h"
#include "quota.h"
#include "snapshot.h"
#include "super.h"
#include "xattr.h"
#include "trace.h"
#include <linux/aio.h>
#include <linux/backing-dev.h>
#include <linux/exportfs.h>
#include <linux/fiemap.h>
#include <linux/fs_context.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/posix_acl.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include <linux/statfs.h>
#include <linux/string.h>
#include <linux/xattr.h>
static struct kmem_cache *bch2_inode_cache;
static void bch2_vfs_inode_init(struct btree_trans *, subvol_inum,
struct bch_inode_info *,
struct bch_inode_unpacked *,
struct bch_subvolume *);
void bch2_inode_update_after_write(struct btree_trans *trans,
struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
unsigned fields)
{
struct bch_fs *c = trans->c;
BUG_ON(bi->bi_inum != inode->v.i_ino);
bch2_assert_pos_locked(trans, BTREE_ID_inodes, POS(0, bi->bi_inum));
set_nlink(&inode->v, bch2_inode_nlink_get(bi));
i_uid_write(&inode->v, bi->bi_uid);
i_gid_write(&inode->v, bi->bi_gid);
inode->v.i_mode = bi->bi_mode;
if (fields & ATTR_ATIME)
inode_set_atime_to_ts(&inode->v, bch2_time_to_timespec(c, bi->bi_atime));
if (fields & ATTR_MTIME)
inode_set_mtime_to_ts(&inode->v, bch2_time_to_timespec(c, bi->bi_mtime));
if (fields & ATTR_CTIME)
inode_set_ctime_to_ts(&inode->v, bch2_time_to_timespec(c, bi->bi_ctime));
inode->ei_inode = *bi;
bch2_inode_flags_to_vfs(inode);
}
int __must_check bch2_write_inode(struct bch_fs *c,
struct bch_inode_info *inode,
inode_set_fn set,
void *p, unsigned fields)
{
struct btree_trans *trans = bch2_trans_get(c);
struct btree_iter iter = { NULL };
struct bch_inode_unpacked inode_u;
int ret;
retry:
bch2_trans_begin(trans);
ret = bch2_inode_peek(trans, &iter, &inode_u, inode_inum(inode),
BTREE_ITER_intent) ?:
(set ? set(trans, inode, &inode_u, p) : 0) ?:
bch2_inode_write(trans, &iter, &inode_u) ?:
bch2_trans_commit(trans, NULL, NULL, BCH_TRANS_COMMIT_no_enospc);
/*
* the btree node lock protects inode->ei_inode, not ei_update_lock;
* this is important for inode updates via bchfs_write_index_update
*/
if (!ret)
bch2_inode_update_after_write(trans, inode, &inode_u, fields);
bch2_trans_iter_exit(trans, &iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_fs_fatal_err_on(bch2_err_matches(ret, ENOENT), c,
"%s: inode %llu:%llu not found when updating",
bch2_err_str(ret),
inode_inum(inode).subvol,
inode_inum(inode).inum);
bch2_trans_put(trans);
return ret < 0 ? ret : 0;
}
int bch2_fs_quota_transfer(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch_qid new_qid,
unsigned qtypes,
enum quota_acct_mode mode)
{
unsigned i;
int ret;
qtypes &= enabled_qtypes(c);
for (i = 0; i < QTYP_NR; i++)
if (new_qid.q[i] == inode->ei_qid.q[i])
qtypes &= ~(1U << i);
if (!qtypes)
return 0;
mutex_lock(&inode->ei_quota_lock);
ret = bch2_quota_transfer(c, qtypes, new_qid,
inode->ei_qid,
inode->v.i_blocks +
inode->ei_quota_reserved,
mode);
if (!ret)
for (i = 0; i < QTYP_NR; i++)
if (qtypes & (1 << i))
inode->ei_qid.q[i] = new_qid.q[i];
mutex_unlock(&inode->ei_quota_lock);
return ret;
}
static bool subvol_inum_eq(subvol_inum a, subvol_inum b)
{
return a.subvol == b.subvol && a.inum == b.inum;
}
static u32 bch2_vfs_inode_hash_fn(const void *data, u32 len, u32 seed)
{
const subvol_inum *inum = data;
return jhash(&inum->inum, sizeof(inum->inum), seed);
}
static u32 bch2_vfs_inode_obj_hash_fn(const void *data, u32 len, u32 seed)
{
const struct bch_inode_info *inode = data;
return bch2_vfs_inode_hash_fn(&inode->ei_inum, sizeof(inode->ei_inum), seed);
}
static int bch2_vfs_inode_cmp_fn(struct rhashtable_compare_arg *arg,
const void *obj)
{
const struct bch_inode_info *inode = obj;
const subvol_inum *v = arg->key;
return !subvol_inum_eq(inode->ei_inum, *v);
}
static const struct rhashtable_params bch2_vfs_inodes_params = {
.head_offset = offsetof(struct bch_inode_info, hash),
.key_offset = offsetof(struct bch_inode_info, ei_inum),
.key_len = sizeof(subvol_inum),
.hashfn = bch2_vfs_inode_hash_fn,
.obj_hashfn = bch2_vfs_inode_obj_hash_fn,
.obj_cmpfn = bch2_vfs_inode_cmp_fn,
.automatic_shrinking = true,
};
int bch2_inode_or_descendents_is_open(struct btree_trans *trans, struct bpos p)
{
struct bch_fs *c = trans->c;
struct rhashtable *ht = &c->vfs_inodes_table;
subvol_inum inum = (subvol_inum) { .inum = p.offset };
DARRAY(u32) subvols;
int ret = 0;
if (!test_bit(BCH_FS_started, &c->flags))
return false;
darray_init(&subvols);
restart_from_top:
/*
* Tweaked version of __rhashtable_lookup(); we need to get a list of
* subvolumes in which the given inode number is open.
*
* For this to work, we don't include the subvolume ID in the key that
* we hash - all inodes with the same inode number regardless of
* subvolume will hash to the same slot.
*
* This will be less than ideal if the same file is ever open
* simultaneously in many different snapshots:
*/
rcu_read_lock();
struct rhash_lock_head __rcu *const *bkt;
struct rhash_head *he;
unsigned int hash;
struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
restart:
hash = rht_key_hashfn(ht, tbl, &inum, bch2_vfs_inodes_params);
bkt = rht_bucket(tbl, hash);
do {
struct bch_inode_info *inode;
rht_for_each_entry_rcu_from(inode, he, rht_ptr_rcu(bkt), tbl, hash, hash) {
if (inode->ei_inum.inum == inum.inum) {
ret = darray_push_gfp(&subvols, inode->ei_inum.subvol,
GFP_NOWAIT|__GFP_NOWARN);
if (ret) {
rcu_read_unlock();
ret = darray_make_room(&subvols, 1);
if (ret)
goto err;
subvols.nr = 0;
goto restart_from_top;
}
}
}
/* An object might have been moved to a different hash chain,
* while we walk along it - better check and retry.
*/
} while (he != RHT_NULLS_MARKER(bkt));
/* Ensure we see any new tables. */
smp_rmb();
tbl = rht_dereference_rcu(tbl->future_tbl, ht);
if (unlikely(tbl))
goto restart;
rcu_read_unlock();
darray_for_each(subvols, i) {
u32 snap;
ret = bch2_subvolume_get_snapshot(trans, *i, &snap);
if (ret)
goto err;
ret = bch2_snapshot_is_ancestor(c, snap, p.snapshot);
if (ret)
break;
}
err:
darray_exit(&subvols);
return ret;
}
static struct bch_inode_info *__bch2_inode_hash_find(struct bch_fs *c, subvol_inum inum)
{
return rhashtable_lookup_fast(&c->vfs_inodes_table, &inum, bch2_vfs_inodes_params);
}
static void __wait_on_freeing_inode(struct bch_fs *c,
struct bch_inode_info *inode,
subvol_inum inum)
{
wait_queue_head_t *wq;
struct wait_bit_queue_entry wait;
wq = inode_bit_waitqueue(&wait, &inode->v, __I_NEW);
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
spin_unlock(&inode->v.i_lock);
if (__bch2_inode_hash_find(c, inum) == inode)
schedule_timeout(HZ * 10);
finish_wait(wq, &wait.wq_entry);
}
static struct bch_inode_info *bch2_inode_hash_find(struct bch_fs *c, struct btree_trans *trans,
subvol_inum inum)
{
struct bch_inode_info *inode;
repeat:
inode = __bch2_inode_hash_find(c, inum);
if (inode) {
spin_lock(&inode->v.i_lock);
if (!test_bit(EI_INODE_HASHED, &inode->ei_flags)) {
spin_unlock(&inode->v.i_lock);
return NULL;
}
if ((inode->v.i_state & (I_FREEING|I_WILL_FREE))) {
if (!trans) {
__wait_on_freeing_inode(c, inode, inum);
} else {
bch2_trans_unlock(trans);
__wait_on_freeing_inode(c, inode, inum);
int ret = bch2_trans_relock(trans);
if (ret)
return ERR_PTR(ret);
}
goto repeat;
}
__iget(&inode->v);
spin_unlock(&inode->v.i_lock);
}
return inode;
}
static void bch2_inode_hash_remove(struct bch_fs *c, struct bch_inode_info *inode)
{
spin_lock(&inode->v.i_lock);
bool remove = test_and_clear_bit(EI_INODE_HASHED, &inode->ei_flags);
spin_unlock(&inode->v.i_lock);
if (remove) {
int ret = rhashtable_remove_fast(&c->vfs_inodes_table,
&inode->hash, bch2_vfs_inodes_params);
BUG_ON(ret);
inode->v.i_hash.pprev = NULL;
/*
* This pairs with the bch2_inode_hash_find() ->
* __wait_on_freeing_inode() path
*/
inode_wake_up_bit(&inode->v, __I_NEW);
}
}
static struct bch_inode_info *bch2_inode_hash_insert(struct bch_fs *c,
struct btree_trans *trans,
struct bch_inode_info *inode)
{
struct bch_inode_info *old = inode;
set_bit(EI_INODE_HASHED, &inode->ei_flags);
retry:
if (unlikely(rhashtable_lookup_insert_key(&c->vfs_inodes_table,
&inode->ei_inum,
&inode->hash,
bch2_vfs_inodes_params))) {
old = bch2_inode_hash_find(c, trans, inode->ei_inum);
if (!old)
goto retry;
clear_bit(EI_INODE_HASHED, &inode->ei_flags);
/*
* bcachefs doesn't use I_NEW; we have no use for it since we
* only insert fully created inodes in the inode hash table. But
* discard_new_inode() expects it to be set...
*/
inode->v.i_state |= I_NEW;
/*
* We don't want bch2_evict_inode() to delete the inode on disk,
* we just raced and had another inode in cache. Normally new
* inodes don't have nlink == 0 - except tmpfiles do...
*/
set_nlink(&inode->v, 1);
discard_new_inode(&inode->v);
return old;
} else {
inode_fake_hash(&inode->v);
inode_sb_list_add(&inode->v);
mutex_lock(&c->vfs_inodes_lock);
list_add(&inode->ei_vfs_inode_list, &c->vfs_inodes_list);
mutex_unlock(&c->vfs_inodes_lock);
return inode;
}
}
#define memalloc_flags_do(_flags, _do) \
({ \
unsigned _saved_flags = memalloc_flags_save(_flags); \
typeof(_do) _ret = _do; \
memalloc_noreclaim_restore(_saved_flags); \
_ret; \
})
static struct inode *bch2_alloc_inode(struct super_block *sb)
{
BUG();
}
static struct bch_inode_info *__bch2_new_inode(struct bch_fs *c, gfp_t gfp)
{
struct bch_inode_info *inode = alloc_inode_sb(c->vfs_sb,
bch2_inode_cache, gfp);
if (!inode)
return NULL;
inode_init_once(&inode->v);
mutex_init(&inode->ei_update_lock);
two_state_lock_init(&inode->ei_pagecache_lock);
INIT_LIST_HEAD(&inode->ei_vfs_inode_list);
inode->ei_flags = 0;
mutex_init(&inode->ei_quota_lock);
memset(&inode->ei_devs_need_flush, 0, sizeof(inode->ei_devs_need_flush));
if (unlikely(inode_init_always_gfp(c->vfs_sb, &inode->v, gfp))) {
kmem_cache_free(bch2_inode_cache, inode);
return NULL;
}
return inode;
}
/*
* Allocate a new inode, dropping/retaking btree locks if necessary:
*/
static struct bch_inode_info *bch2_new_inode(struct btree_trans *trans)
{
struct bch_inode_info *inode = __bch2_new_inode(trans->c, GFP_NOWAIT);
if (unlikely(!inode)) {
int ret = drop_locks_do(trans, (inode = __bch2_new_inode(trans->c, GFP_NOFS)) ? 0 : -ENOMEM);
if (ret && inode) {
__destroy_inode(&inode->v);
kmem_cache_free(bch2_inode_cache, inode);
}
if (ret)
return ERR_PTR(ret);
}
return inode;
}
static struct bch_inode_info *bch2_inode_hash_init_insert(struct btree_trans *trans,
subvol_inum inum,
struct bch_inode_unpacked *bi,
struct bch_subvolume *subvol)
{
struct bch_inode_info *inode = bch2_new_inode(trans);
if (IS_ERR(inode))
return inode;
bch2_vfs_inode_init(trans, inum, inode, bi, subvol);
return bch2_inode_hash_insert(trans->c, trans, inode);
}
struct inode *bch2_vfs_inode_get(struct bch_fs *c, subvol_inum inum)
{
struct bch_inode_info *inode = bch2_inode_hash_find(c, NULL, inum);
if (inode)
return &inode->v;
struct btree_trans *trans = bch2_trans_get(c);
struct bch_inode_unpacked inode_u;
struct bch_subvolume subvol;
int ret = lockrestart_do(trans,
bch2_subvolume_get(trans, inum.subvol, true, 0, &subvol) ?:
bch2_inode_find_by_inum_trans(trans, inum, &inode_u)) ?:
PTR_ERR_OR_ZERO(inode = bch2_inode_hash_init_insert(trans, inum, &inode_u, &subvol));
bch2_trans_put(trans);
return ret ? ERR_PTR(ret) : &inode->v;
}
struct bch_inode_info *
__bch2_create(struct mnt_idmap *idmap,
struct bch_inode_info *dir, struct dentry *dentry,
umode_t mode, dev_t rdev, subvol_inum snapshot_src,
unsigned flags)
{
struct bch_fs *c = dir->v.i_sb->s_fs_info;
struct btree_trans *trans;
struct bch_inode_unpacked dir_u;
struct bch_inode_info *inode;
struct bch_inode_unpacked inode_u;
struct posix_acl *default_acl = NULL, *acl = NULL;
subvol_inum inum;
struct bch_subvolume subvol;
u64 journal_seq = 0;
kuid_t kuid;
kgid_t kgid;
int ret;
/*
* preallocate acls + vfs inode before btree transaction, so that
* nothing can fail after the transaction succeeds:
*/
#ifdef CONFIG_BCACHEFS_POSIX_ACL
ret = posix_acl_create(&dir->v, &mode, &default_acl, &acl);
if (ret)
return ERR_PTR(ret);
#endif
inode = __bch2_new_inode(c, GFP_NOFS);
if (unlikely(!inode)) {
inode = ERR_PTR(-ENOMEM);
goto err;
}
bch2_inode_init_early(c, &inode_u);
if (!(flags & BCH_CREATE_TMPFILE))
mutex_lock(&dir->ei_update_lock);
trans = bch2_trans_get(c);
retry:
bch2_trans_begin(trans);
kuid = mapped_fsuid(idmap, i_user_ns(&dir->v));
kgid = mapped_fsgid(idmap, i_user_ns(&dir->v));
ret = bch2_subvol_is_ro_trans(trans, dir->ei_inum.subvol) ?:
bch2_create_trans(trans,
inode_inum(dir), &dir_u, &inode_u,
!(flags & BCH_CREATE_TMPFILE)
? &dentry->d_name : NULL,
from_kuid(i_user_ns(&dir->v), kuid),
from_kgid(i_user_ns(&dir->v), kgid),
mode, rdev,
default_acl, acl, snapshot_src, flags) ?:
bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, 1,
KEY_TYPE_QUOTA_PREALLOC);
if (unlikely(ret))
goto err_before_quota;
inum.subvol = inode_u.bi_subvol ?: dir->ei_inum.subvol;
inum.inum = inode_u.bi_inum;
ret = bch2_subvolume_get(trans, inum.subvol, true,
BTREE_ITER_with_updates, &subvol) ?:
bch2_trans_commit(trans, NULL, &journal_seq, 0);
if (unlikely(ret)) {
bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, -1,
KEY_TYPE_QUOTA_WARN);
err_before_quota:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
goto err_trans;
}
if (!(flags & BCH_CREATE_TMPFILE)) {
bch2_inode_update_after_write(trans, dir, &dir_u,
ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&dir->ei_update_lock);
}
bch2_vfs_inode_init(trans, inum, inode, &inode_u, &subvol);
set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl);
set_cached_acl(&inode->v, ACL_TYPE_DEFAULT, default_acl);
/*
* we must insert the new inode into the inode cache before calling
* bch2_trans_exit() and dropping locks, else we could race with another
* thread pulling the inode in and modifying it:
*
* also, calling bch2_inode_hash_insert() without passing in the
* transaction object is sketchy - if we could ever end up in
* __wait_on_freeing_inode(), we'd risk deadlock.
*
* But that shouldn't be possible, since we still have the inode locked
* that we just created, and we _really_ can't take a transaction
* restart here.
*/
inode = bch2_inode_hash_insert(c, NULL, inode);
bch2_trans_put(trans);
err:
posix_acl_release(default_acl);
posix_acl_release(acl);
return inode;
err_trans:
if (!(flags & BCH_CREATE_TMPFILE))
mutex_unlock(&dir->ei_update_lock);
bch2_trans_put(trans);
make_bad_inode(&inode->v);
iput(&inode->v);
inode = ERR_PTR(ret);
goto err;
}
/* methods */
static struct bch_inode_info *bch2_lookup_trans(struct btree_trans *trans,
subvol_inum dir, struct bch_hash_info *dir_hash_info,
const struct qstr *name)
{
struct bch_fs *c = trans->c;
struct btree_iter dirent_iter = {};
subvol_inum inum = {};
struct printbuf buf = PRINTBUF;
struct bkey_s_c k = bch2_hash_lookup(trans, &dirent_iter, bch2_dirent_hash_desc,
dir_hash_info, dir, name, 0);
int ret = bkey_err(k);
if (ret)
return ERR_PTR(ret);
ret = bch2_dirent_read_target(trans, dir, bkey_s_c_to_dirent(k), &inum);
if (ret > 0)
ret = -ENOENT;
if (ret)
goto err;
struct bch_inode_info *inode = bch2_inode_hash_find(c, trans, inum);
if (inode)
goto out;
struct bch_subvolume subvol;
struct bch_inode_unpacked inode_u;
ret = bch2_subvolume_get(trans, inum.subvol, true, 0, &subvol) ?:
bch2_inode_find_by_inum_nowarn_trans(trans, inum, &inode_u) ?:
PTR_ERR_OR_ZERO(inode = bch2_inode_hash_init_insert(trans, inum, &inode_u, &subvol));
bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT),
c, "dirent to missing inode:\n %s",
(bch2_bkey_val_to_text(&buf, c, k), buf.buf));
if (ret)
goto err;
/* regular files may have hardlinks: */
if (bch2_fs_inconsistent_on(bch2_inode_should_have_bp(&inode_u) &&
!bkey_eq(k.k->p, POS(inode_u.bi_dir, inode_u.bi_dir_offset)),
c,
"dirent points to inode that does not point back:\n %s",
(bch2_bkey_val_to_text(&buf, c, k),
prt_printf(&buf, "\n "),
bch2_inode_unpacked_to_text(&buf, &inode_u),
buf.buf))) {
ret = -ENOENT;
goto err;
}
out:
bch2_trans_iter_exit(trans, &dirent_iter);
printbuf_exit(&buf);
return inode;
err:
inode = ERR_PTR(ret);
goto out;
}
static struct dentry *bch2_lookup(struct inode *vdir, struct dentry *dentry,
unsigned int flags)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir);
struct bch_hash_info hash = bch2_hash_info_init(c, &dir->ei_inode);
struct bch_inode_info *inode;
bch2_trans_do(c,
PTR_ERR_OR_ZERO(inode = bch2_lookup_trans(trans, inode_inum(dir),
&hash, &dentry->d_name)));
if (IS_ERR(inode))
inode = NULL;
return d_splice_alias(&inode->v, dentry);
}
static int bch2_mknod(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry,
umode_t mode, dev_t rdev)
{
struct bch_inode_info *inode =
__bch2_create(idmap, to_bch_ei(vdir), dentry, mode, rdev,
(subvol_inum) { 0 }, 0);
if (IS_ERR(inode))
return bch2_err_class(PTR_ERR(inode));
d_instantiate(dentry, &inode->v);
return 0;
}
static int bch2_create(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry,
umode_t mode, bool excl)
{
return bch2_mknod(idmap, vdir, dentry, mode|S_IFREG, 0);
}
static int __bch2_link(struct bch_fs *c,
struct bch_inode_info *inode,
struct bch_inode_info *dir,
struct dentry *dentry)
{
struct bch_inode_unpacked dir_u, inode_u;
int ret;
mutex_lock(&inode->ei_update_lock);
struct btree_trans *trans = bch2_trans_get(c);
ret = commit_do(trans, NULL, NULL, 0,
bch2_link_trans(trans,
inode_inum(dir), &dir_u,
inode_inum(inode), &inode_u,
&dentry->d_name));
if (likely(!ret)) {
bch2_inode_update_after_write(trans, dir, &dir_u,
ATTR_MTIME|ATTR_CTIME);
bch2_inode_update_after_write(trans, inode, &inode_u, ATTR_CTIME);
}
bch2_trans_put(trans);
mutex_unlock(&inode->ei_update_lock);
return ret;
}
static int bch2_link(struct dentry *old_dentry, struct inode *vdir,
struct dentry *dentry)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir);
struct bch_inode_info *inode = to_bch_ei(old_dentry->d_inode);
int ret;
lockdep_assert_held(&inode->v.i_rwsem);
ret = bch2_subvol_is_ro(c, dir->ei_inum.subvol) ?:
bch2_subvol_is_ro(c, inode->ei_inum.subvol) ?:
__bch2_link(c, inode, dir, dentry);
if (unlikely(ret))
return bch2_err_class(ret);
ihold(&inode->v);
d_instantiate(dentry, &inode->v);
return 0;
}
int __bch2_unlink(struct inode *vdir, struct dentry *dentry,
bool deleting_snapshot)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir);
struct bch_inode_info *inode = to_bch_ei(dentry->d_inode);
struct bch_inode_unpacked dir_u, inode_u;
int ret;
bch2_lock_inodes(INODE_UPDATE_LOCK, dir, inode);
struct btree_trans *trans = bch2_trans_get(c);
ret = commit_do(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc,
bch2_unlink_trans(trans,
inode_inum(dir), &dir_u,
&inode_u, &dentry->d_name,
deleting_snapshot));
if (unlikely(ret))
goto err;
bch2_inode_update_after_write(trans, dir, &dir_u,
ATTR_MTIME|ATTR_CTIME);
bch2_inode_update_after_write(trans, inode, &inode_u,
ATTR_MTIME);
if (inode_u.bi_subvol) {
/*
* Subvolume deletion is asynchronous, but we still want to tell
* the VFS that it's been deleted here:
*/
set_nlink(&inode->v, 0);
}
err:
bch2_trans_put(trans);
bch2_unlock_inodes(INODE_UPDATE_LOCK, dir, inode);
return ret;
}
static int bch2_unlink(struct inode *vdir, struct dentry *dentry)
{
struct bch_inode_info *dir= to_bch_ei(vdir);
struct bch_fs *c = dir->v.i_sb->s_fs_info;
int ret = bch2_subvol_is_ro(c, dir->ei_inum.subvol) ?:
__bch2_unlink(vdir, dentry, false);
return bch2_err_class(ret);
}
static int bch2_symlink(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry,
const char *symname)
{
struct bch_fs *c = vdir->i_sb->s_fs_info;
struct bch_inode_info *dir = to_bch_ei(vdir), *inode;
int ret;
inode = __bch2_create(idmap, dir, dentry, S_IFLNK|S_IRWXUGO, 0,
(subvol_inum) { 0 }, BCH_CREATE_TMPFILE);
if (IS_ERR(inode))
return bch2_err_class(PTR_ERR(inode));
inode_lock(&inode->v);
ret = page_symlink(&inode->v, symname, strlen(symname) + 1);
inode_unlock(&inode->v);
if (unlikely(ret))
goto err;
ret = filemap_write_and_wait_range(inode->v.i_mapping, 0, LLONG_MAX);
if (unlikely(ret))
goto err;
ret = __bch2_link(c, inode, dir, dentry);
if (unlikely(ret))
goto err;
d_instantiate(dentry, &inode->v);
return 0;
err:
iput(&inode->v);
return bch2_err_class(ret);
}
static int bch2_mkdir(struct mnt_idmap *idmap,
struct inode *vdir, struct dentry *dentry, umode_t mode)
{
return bch2_mknod(idmap, vdir, dentry, mode|S_IFDIR, 0);
}
static int bch2_rename2(struct mnt_idmap *idmap,
struct inode *src_vdir, struct dentry *src_dentry,
struct inode *dst_vdir, struct dentry *dst_dentry,
unsigned flags)
{
struct bch_fs *c = src_vdir->i_sb->s_fs_info;
struct bch_inode_info *src_dir = to_bch_ei(src_vdir);
struct bch_inode_info *dst_dir = to_bch_ei(dst_vdir);
struct bch_inode_info *src_inode = to_bch_ei(src_dentry->d_inode);
struct bch_inode_info *dst_inode = to_bch_ei(dst_dentry->d_inode);
struct bch_inode_unpacked dst_dir_u, src_dir_u;
struct bch_inode_unpacked src_inode_u, dst_inode_u, *whiteout_inode_u;
struct btree_trans *trans;
enum bch_rename_mode mode = flags & RENAME_EXCHANGE
? BCH_RENAME_EXCHANGE
: dst_dentry->d_inode
? BCH_RENAME_OVERWRITE : BCH_RENAME;
bool whiteout = !!(flags & RENAME_WHITEOUT);
int ret;
if (flags & ~(RENAME_NOREPLACE|RENAME_EXCHANGE|RENAME_WHITEOUT))
return -EINVAL;
if (mode == BCH_RENAME_OVERWRITE) {
ret = filemap_write_and_wait_range(src_inode->v.i_mapping,
0, LLONG_MAX);
if (ret)
return ret;
}
bch2_lock_inodes(INODE_UPDATE_LOCK,
src_dir,
dst_dir,
src_inode,
dst_inode);
trans = bch2_trans_get(c);
ret = bch2_subvol_is_ro_trans(trans, src_dir->ei_inum.subvol) ?:
bch2_subvol_is_ro_trans(trans, dst_dir->ei_inum.subvol);
if (ret)
goto err_tx_restart;
if (inode_attr_changing(dst_dir, src_inode, Inode_opt_project)) {
ret = bch2_fs_quota_transfer(c, src_inode,
dst_dir->ei_qid,
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_PREALLOC);
if (ret)
goto err;
}
if (mode == BCH_RENAME_EXCHANGE &&
inode_attr_changing(src_dir, dst_inode, Inode_opt_project)) {
ret = bch2_fs_quota_transfer(c, dst_inode,
src_dir->ei_qid,
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_PREALLOC);
if (ret)
goto err;
}
retry:
bch2_trans_begin(trans);
ret = bch2_rename_trans(trans,
inode_inum(src_dir), &src_dir_u,
inode_inum(dst_dir), &dst_dir_u,
&src_inode_u,
&dst_inode_u,
&src_dentry->d_name,
&dst_dentry->d_name,
mode);
if (unlikely(ret))
goto err_tx_restart;
if (whiteout) {
whiteout_inode_u = bch2_trans_kmalloc_nomemzero(trans, sizeof(*whiteout_inode_u));
ret = PTR_ERR_OR_ZERO(whiteout_inode_u);
if (unlikely(ret))
goto err_tx_restart;
bch2_inode_init_early(c, whiteout_inode_u);
ret = bch2_create_trans(trans,
inode_inum(src_dir), &src_dir_u,
whiteout_inode_u,
&src_dentry->d_name,
from_kuid(i_user_ns(&src_dir->v), current_fsuid()),
from_kgid(i_user_ns(&src_dir->v), current_fsgid()),
S_IFCHR|WHITEOUT_MODE, 0,
NULL, NULL, (subvol_inum) { 0 }, 0) ?:
bch2_quota_acct(c, bch_qid(whiteout_inode_u), Q_INO, 1,
KEY_TYPE_QUOTA_PREALLOC);
if (unlikely(ret))
goto err_tx_restart;
}
ret = bch2_trans_commit(trans, NULL, NULL, 0);
if (unlikely(ret)) {
err_tx_restart:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
goto err;
}
BUG_ON(src_inode->v.i_ino != src_inode_u.bi_inum);
BUG_ON(dst_inode &&
dst_inode->v.i_ino != dst_inode_u.bi_inum);
bch2_inode_update_after_write(trans, src_dir, &src_dir_u,
ATTR_MTIME|ATTR_CTIME);
if (src_dir != dst_dir)
bch2_inode_update_after_write(trans, dst_dir, &dst_dir_u,
ATTR_MTIME|ATTR_CTIME);
bch2_inode_update_after_write(trans, src_inode, &src_inode_u,
ATTR_CTIME);
if (dst_inode)
bch2_inode_update_after_write(trans, dst_inode, &dst_inode_u,
ATTR_CTIME);
err:
bch2_trans_put(trans);
bch2_fs_quota_transfer(c, src_inode,
bch_qid(&src_inode->ei_inode),
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_NOCHECK);
if (dst_inode)
bch2_fs_quota_transfer(c, dst_inode,
bch_qid(&dst_inode->ei_inode),
1 << QTYP_PRJ,
KEY_TYPE_QUOTA_NOCHECK);
bch2_unlock_inodes(INODE_UPDATE_LOCK,
src_dir,
dst_dir,
src_inode,
dst_inode);
return bch2_err_class(ret);
}
static void bch2_setattr_copy(struct mnt_idmap *idmap,
struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
struct iattr *attr)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
unsigned int ia_valid = attr->ia_valid;
kuid_t kuid;
kgid_t kgid;
if (ia_valid & ATTR_UID) {
kuid = from_vfsuid(idmap, i_user_ns(&inode->v), attr->ia_vfsuid);
bi->bi_uid = from_kuid(i_user_ns(&inode->v), kuid);
}
if (ia_valid & ATTR_GID) {
kgid = from_vfsgid(idmap, i_user_ns(&inode->v), attr->ia_vfsgid);
bi->bi_gid = from_kgid(i_user_ns(&inode->v), kgid);
}
if (ia_valid & ATTR_SIZE)
bi->bi_size = attr->ia_size;
if (ia_valid & ATTR_ATIME)
bi->bi_atime = timespec_to_bch2_time(c, attr->ia_atime);
if (ia_valid & ATTR_MTIME)
bi->bi_mtime = timespec_to_bch2_time(c, attr->ia_mtime);
if (ia_valid & ATTR_CTIME)
bi->bi_ctime = timespec_to_bch2_time(c, attr->ia_ctime);
if (ia_valid & ATTR_MODE) {
umode_t mode = attr->ia_mode;
kgid_t gid = ia_valid & ATTR_GID
? kgid
: inode->v.i_gid;
if (!in_group_or_capable(idmap, &inode->v,
make_vfsgid(idmap, i_user_ns(&inode->v), gid)))
mode &= ~S_ISGID;
bi->bi_mode = mode;
}
}
int bch2_setattr_nonsize(struct mnt_idmap *idmap,
struct bch_inode_info *inode,
struct iattr *attr)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct bch_qid qid;
struct btree_trans *trans;
struct btree_iter inode_iter = { NULL };
struct bch_inode_unpacked inode_u;
struct posix_acl *acl = NULL;
kuid_t kuid;
kgid_t kgid;
int ret;
mutex_lock(&inode->ei_update_lock);
qid = inode->ei_qid;
if (attr->ia_valid & ATTR_UID) {
kuid = from_vfsuid(idmap, i_user_ns(&inode->v), attr->ia_vfsuid);
qid.q[QTYP_USR] = from_kuid(i_user_ns(&inode->v), kuid);
}
if (attr->ia_valid & ATTR_GID) {
kgid = from_vfsgid(idmap, i_user_ns(&inode->v), attr->ia_vfsgid);
qid.q[QTYP_GRP] = from_kgid(i_user_ns(&inode->v), kgid);
}
ret = bch2_fs_quota_transfer(c, inode, qid, ~0,
KEY_TYPE_QUOTA_PREALLOC);
if (ret)
goto err;
trans = bch2_trans_get(c);
retry:
bch2_trans_begin(trans);
kfree(acl);
acl = NULL;
ret = bch2_inode_peek(trans, &inode_iter, &inode_u, inode_inum(inode),
BTREE_ITER_intent);
if (ret)
goto btree_err;
bch2_setattr_copy(idmap, inode, &inode_u, attr);
if (attr->ia_valid & ATTR_MODE) {
ret = bch2_acl_chmod(trans, inode_inum(inode), &inode_u,
inode_u.bi_mode, &acl);
if (ret)
goto btree_err;
}
ret = bch2_inode_write(trans, &inode_iter, &inode_u) ?:
bch2_trans_commit(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc);
btree_err:
bch2_trans_iter_exit(trans, &inode_iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
if (unlikely(ret))
goto err_trans;
bch2_inode_update_after_write(trans, inode, &inode_u, attr->ia_valid);
if (acl)
set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl);
err_trans:
bch2_trans_put(trans);
err:
mutex_unlock(&inode->ei_update_lock);
return bch2_err_class(ret);
}
static int bch2_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned query_flags)
{
struct bch_inode_info *inode = to_bch_ei(d_inode(path->dentry));
struct bch_fs *c = inode->v.i_sb->s_fs_info;
vfsuid_t vfsuid = i_uid_into_vfsuid(idmap, &inode->v);
vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, &inode->v);
stat->dev = inode->v.i_sb->s_dev;
stat->ino = inode->v.i_ino;
stat->mode = inode->v.i_mode;
stat->nlink = inode->v.i_nlink;
stat->uid = vfsuid_into_kuid(vfsuid);
stat->gid = vfsgid_into_kgid(vfsgid);
stat->rdev = inode->v.i_rdev;
stat->size = i_size_read(&inode->v);
stat->atime = inode_get_atime(&inode->v);
stat->mtime = inode_get_mtime(&inode->v);
stat->ctime = inode_get_ctime(&inode->v);
stat->blksize = block_bytes(c);
stat->blocks = inode->v.i_blocks;
stat->subvol = inode->ei_inum.subvol;
stat->result_mask |= STATX_SUBVOL;
if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->v.i_mode)) {
stat->result_mask |= STATX_DIOALIGN;
/*
* this is incorrect; we should be tracking this in superblock,
* and checking the alignment of open devices
*/
stat->dio_mem_align = SECTOR_SIZE;
stat->dio_offset_align = block_bytes(c);
}
if (request_mask & STATX_BTIME) {
stat->result_mask |= STATX_BTIME;
stat->btime = bch2_time_to_timespec(c, inode->ei_inode.bi_otime);
}
if (inode->ei_inode.bi_flags & BCH_INODE_immutable)
stat->attributes |= STATX_ATTR_IMMUTABLE;
stat->attributes_mask |= STATX_ATTR_IMMUTABLE;
if (inode->ei_inode.bi_flags & BCH_INODE_append)
stat->attributes |= STATX_ATTR_APPEND;
stat->attributes_mask |= STATX_ATTR_APPEND;
if (inode->ei_inode.bi_flags & BCH_INODE_nodump)
stat->attributes |= STATX_ATTR_NODUMP;
stat->attributes_mask |= STATX_ATTR_NODUMP;
return 0;
}
static int bch2_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *iattr)
{
struct bch_inode_info *inode = to_bch_ei(dentry->d_inode);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
int ret;
lockdep_assert_held(&inode->v.i_rwsem);
ret = bch2_subvol_is_ro(c, inode->ei_inum.subvol) ?:
setattr_prepare(idmap, dentry, iattr);
if (ret)
return ret;
return iattr->ia_valid & ATTR_SIZE
? bchfs_truncate(idmap, inode, iattr)
: bch2_setattr_nonsize(idmap, inode, iattr);
}
static int bch2_tmpfile(struct mnt_idmap *idmap,
struct inode *vdir, struct file *file, umode_t mode)
{
struct bch_inode_info *inode =
__bch2_create(idmap, to_bch_ei(vdir),
file->f_path.dentry, mode, 0,
(subvol_inum) { 0 }, BCH_CREATE_TMPFILE);
if (IS_ERR(inode))
return bch2_err_class(PTR_ERR(inode));
d_mark_tmpfile(file, &inode->v);
d_instantiate(file->f_path.dentry, &inode->v);
return finish_open_simple(file, 0);
}
static int bch2_fill_extent(struct bch_fs *c,
struct fiemap_extent_info *info,
struct bkey_s_c k, unsigned flags)
{
if (bkey_extent_is_direct_data(k.k)) {
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
int ret;
if (k.k->type == KEY_TYPE_reflink_v)
flags |= FIEMAP_EXTENT_SHARED;
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
int flags2 = 0;
u64 offset = p.ptr.offset;
if (p.ptr.unwritten)
flags2 |= FIEMAP_EXTENT_UNWRITTEN;
if (p.crc.compression_type)
flags2 |= FIEMAP_EXTENT_ENCODED;
else
offset += p.crc.offset;
if ((offset & (block_sectors(c) - 1)) ||
(k.k->size & (block_sectors(c) - 1)))
flags2 |= FIEMAP_EXTENT_NOT_ALIGNED;
ret = fiemap_fill_next_extent(info,
bkey_start_offset(k.k) << 9,
offset << 9,
k.k->size << 9, flags|flags2);
if (ret)
return ret;
}
return 0;
} else if (bkey_extent_is_inline_data(k.k)) {
return fiemap_fill_next_extent(info,
bkey_start_offset(k.k) << 9,
0, k.k->size << 9,
flags|
FIEMAP_EXTENT_DATA_INLINE);
} else if (k.k->type == KEY_TYPE_reservation) {
return fiemap_fill_next_extent(info,
bkey_start_offset(k.k) << 9,
0, k.k->size << 9,
flags|
FIEMAP_EXTENT_DELALLOC|
FIEMAP_EXTENT_UNWRITTEN);
} else {
BUG();
}
}
static int bch2_fiemap(struct inode *vinode, struct fiemap_extent_info *info,
u64 start, u64 len)
{
struct bch_fs *c = vinode->i_sb->s_fs_info;
struct bch_inode_info *ei = to_bch_ei(vinode);
struct btree_trans *trans;
struct btree_iter iter;
struct bkey_s_c k;
struct bkey_buf cur, prev;
unsigned offset_into_extent, sectors;
bool have_extent = false;
int ret = 0;
ret = fiemap_prep(&ei->v, info, start, &len, FIEMAP_FLAG_SYNC);
if (ret)
return ret;
struct bpos end = POS(ei->v.i_ino, (start + len) >> 9);
if (start + len < start)
return -EINVAL;
start >>= 9;
bch2_bkey_buf_init(&cur);
bch2_bkey_buf_init(&prev);
trans = bch2_trans_get(c);
bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
POS(ei->v.i_ino, start), 0);
while (!ret || bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
enum btree_id data_btree = BTREE_ID_extents;
bch2_trans_begin(trans);
u32 snapshot;
ret = bch2_subvolume_get_snapshot(trans, ei->ei_inum.subvol, &snapshot);
if (ret)
continue;
bch2_btree_iter_set_snapshot(&iter, snapshot);
k = bch2_btree_iter_peek_upto(&iter, end);
ret = bkey_err(k);
if (ret)
continue;
if (!k.k)
break;
if (!bkey_extent_is_data(k.k) &&
k.k->type != KEY_TYPE_reservation) {
bch2_btree_iter_advance(&iter);
continue;
}
offset_into_extent = iter.pos.offset -
bkey_start_offset(k.k);
sectors = k.k->size - offset_into_extent;
bch2_bkey_buf_reassemble(&cur, c, k);
ret = bch2_read_indirect_extent(trans, &data_btree,
&offset_into_extent, &cur);
if (ret)
continue;
k = bkey_i_to_s_c(cur.k);
bch2_bkey_buf_realloc(&prev, c, k.k->u64s);
sectors = min(sectors, k.k->size - offset_into_extent);
bch2_cut_front(POS(k.k->p.inode,
bkey_start_offset(k.k) +
offset_into_extent),
cur.k);
bch2_key_resize(&cur.k->k, sectors);
cur.k->k.p = iter.pos;
cur.k->k.p.offset += cur.k->k.size;
if (have_extent) {
bch2_trans_unlock(trans);
ret = bch2_fill_extent(c, info,
bkey_i_to_s_c(prev.k), 0);
if (ret)
break;
}
bkey_copy(prev.k, cur.k);
have_extent = true;
bch2_btree_iter_set_pos(&iter,
POS(iter.pos.inode, iter.pos.offset + sectors));
}
bch2_trans_iter_exit(trans, &iter);
if (!ret && have_extent) {
bch2_trans_unlock(trans);
ret = bch2_fill_extent(c, info, bkey_i_to_s_c(prev.k),
FIEMAP_EXTENT_LAST);
}
bch2_trans_put(trans);
bch2_bkey_buf_exit(&cur, c);
bch2_bkey_buf_exit(&prev, c);
return ret < 0 ? ret : 0;
}
static const struct vm_operations_struct bch_vm_ops = {
.fault = bch2_page_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = bch2_page_mkwrite,
};
static int bch2_mmap(struct file *file, struct vm_area_struct *vma)
{
file_accessed(file);
vma->vm_ops = &bch_vm_ops;
return 0;
}
/* Directories: */
static loff_t bch2_dir_llseek(struct file *file, loff_t offset, int whence)
{
return generic_file_llseek_size(file, offset, whence,
S64_MAX, S64_MAX);
}
static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx)
{
struct bch_inode_info *inode = file_bch_inode(file);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
if (!dir_emit_dots(file, ctx))
return 0;
int ret = bch2_readdir(c, inode_inum(inode), ctx);
bch_err_fn(c, ret);
return bch2_err_class(ret);
}
static int bch2_open(struct inode *vinode, struct file *file)
{
if (file->f_flags & (O_WRONLY|O_RDWR)) {
struct bch_inode_info *inode = to_bch_ei(vinode);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
int ret = bch2_subvol_is_ro(c, inode->ei_inum.subvol);
if (ret)
return ret;
}
file->f_mode |= FMODE_CAN_ODIRECT;
return generic_file_open(vinode, file);
}
static const struct file_operations bch_file_operations = {
.open = bch2_open,
.llseek = bch2_llseek,
.read_iter = bch2_read_iter,
.write_iter = bch2_write_iter,
.mmap = bch2_mmap,
.get_unmapped_area = thp_get_unmapped_area,
.fsync = bch2_fsync,
.splice_read = filemap_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = bch2_fallocate_dispatch,
.unlocked_ioctl = bch2_fs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = bch2_compat_fs_ioctl,
#endif
.remap_file_range = bch2_remap_file_range,
};
static const struct inode_operations bch_file_inode_operations = {
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.fiemap = bch2_fiemap,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct inode_operations bch_dir_inode_operations = {
.lookup = bch2_lookup,
.create = bch2_create,
.link = bch2_link,
.unlink = bch2_unlink,
.symlink = bch2_symlink,
.mkdir = bch2_mkdir,
.rmdir = bch2_unlink,
.mknod = bch2_mknod,
.rename = bch2_rename2,
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.tmpfile = bch2_tmpfile,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct file_operations bch_dir_file_operations = {
.llseek = bch2_dir_llseek,
.read = generic_read_dir,
.iterate_shared = bch2_vfs_readdir,
.fsync = bch2_fsync,
.unlocked_ioctl = bch2_fs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = bch2_compat_fs_ioctl,
#endif
};
static const struct inode_operations bch_symlink_inode_operations = {
.get_link = page_get_link,
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct inode_operations bch_special_inode_operations = {
.getattr = bch2_getattr,
.setattr = bch2_setattr,
.listxattr = bch2_xattr_list,
#ifdef CONFIG_BCACHEFS_POSIX_ACL
.get_inode_acl = bch2_get_acl,
.set_acl = bch2_set_acl,
#endif
};
static const struct address_space_operations bch_address_space_operations = {
.read_folio = bch2_read_folio,
.writepages = bch2_writepages,
.readahead = bch2_readahead,
.dirty_folio = filemap_dirty_folio,
.write_begin = bch2_write_begin,
.write_end = bch2_write_end,
.invalidate_folio = bch2_invalidate_folio,
.release_folio = bch2_release_folio,
#ifdef CONFIG_MIGRATION
.migrate_folio = filemap_migrate_folio,
#endif
.error_remove_folio = generic_error_remove_folio,
};
struct bcachefs_fid {
u64 inum;
u32 subvol;
u32 gen;
} __packed;
struct bcachefs_fid_with_parent {
struct bcachefs_fid fid;
struct bcachefs_fid dir;
} __packed;
static int bcachefs_fid_valid(int fh_len, int fh_type)
{
switch (fh_type) {
case FILEID_BCACHEFS_WITHOUT_PARENT:
return fh_len == sizeof(struct bcachefs_fid) / sizeof(u32);
case FILEID_BCACHEFS_WITH_PARENT:
return fh_len == sizeof(struct bcachefs_fid_with_parent) / sizeof(u32);
default:
return false;
}
}
static struct bcachefs_fid bch2_inode_to_fid(struct bch_inode_info *inode)
{
return (struct bcachefs_fid) {
.inum = inode->ei_inum.inum,
.subvol = inode->ei_inum.subvol,
.gen = inode->ei_inode.bi_generation,
};
}
static int bch2_encode_fh(struct inode *vinode, u32 *fh, int *len,
struct inode *vdir)
{
struct bch_inode_info *inode = to_bch_ei(vinode);
struct bch_inode_info *dir = to_bch_ei(vdir);
int min_len;
if (!S_ISDIR(inode->v.i_mode) && dir) {
struct bcachefs_fid_with_parent *fid = (void *) fh;
min_len = sizeof(*fid) / sizeof(u32);
if (*len < min_len) {
*len = min_len;
return FILEID_INVALID;
}
fid->fid = bch2_inode_to_fid(inode);
fid->dir = bch2_inode_to_fid(dir);
*len = min_len;
return FILEID_BCACHEFS_WITH_PARENT;
} else {
struct bcachefs_fid *fid = (void *) fh;
min_len = sizeof(*fid) / sizeof(u32);
if (*len < min_len) {
*len = min_len;
return FILEID_INVALID;
}
*fid = bch2_inode_to_fid(inode);
*len = min_len;
return FILEID_BCACHEFS_WITHOUT_PARENT;
}
}
static struct inode *bch2_nfs_get_inode(struct super_block *sb,
struct bcachefs_fid fid)
{
struct bch_fs *c = sb->s_fs_info;
struct inode *vinode = bch2_vfs_inode_get(c, (subvol_inum) {
.subvol = fid.subvol,
.inum = fid.inum,
});
if (!IS_ERR(vinode) && vinode->i_generation != fid.gen) {
iput(vinode);
vinode = ERR_PTR(-ESTALE);
}
return vinode;
}
static struct dentry *bch2_fh_to_dentry(struct super_block *sb, struct fid *_fid,
int fh_len, int fh_type)
{
struct bcachefs_fid *fid = (void *) _fid;
if (!bcachefs_fid_valid(fh_len, fh_type))
return NULL;
return d_obtain_alias(bch2_nfs_get_inode(sb, *fid));
}
static struct dentry *bch2_fh_to_parent(struct super_block *sb, struct fid *_fid,
int fh_len, int fh_type)
{
struct bcachefs_fid_with_parent *fid = (void *) _fid;
if (!bcachefs_fid_valid(fh_len, fh_type) ||
fh_type != FILEID_BCACHEFS_WITH_PARENT)
return NULL;
return d_obtain_alias(bch2_nfs_get_inode(sb, fid->dir));
}
static struct dentry *bch2_get_parent(struct dentry *child)
{
struct bch_inode_info *inode = to_bch_ei(child->d_inode);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
subvol_inum parent_inum = {
.subvol = inode->ei_inode.bi_parent_subvol ?:
inode->ei_inum.subvol,
.inum = inode->ei_inode.bi_dir,
};
return d_obtain_alias(bch2_vfs_inode_get(c, parent_inum));
}
static int bch2_get_name(struct dentry *parent, char *name, struct dentry *child)
{
struct bch_inode_info *inode = to_bch_ei(child->d_inode);
struct bch_inode_info *dir = to_bch_ei(parent->d_inode);
struct bch_fs *c = inode->v.i_sb->s_fs_info;
struct btree_trans *trans;
struct btree_iter iter1;
struct btree_iter iter2;
struct bkey_s_c k;
struct bkey_s_c_dirent d;
struct bch_inode_unpacked inode_u;
subvol_inum target;
u32 snapshot;
struct qstr dirent_name;
unsigned name_len = 0;
int ret;
if (!S_ISDIR(dir->v.i_mode))
return -EINVAL;
trans = bch2_trans_get(c);
bch2_trans_iter_init(trans, &iter1, BTREE_ID_dirents,
POS(dir->ei_inode.bi_inum, 0), 0);
bch2_trans_iter_init(trans, &iter2, BTREE_ID_dirents,
POS(dir->ei_inode.bi_inum, 0), 0);
retry:
bch2_trans_begin(trans);
ret = bch2_subvolume_get_snapshot(trans, dir->ei_inum.subvol, &snapshot);
if (ret)
goto err;
bch2_btree_iter_set_snapshot(&iter1, snapshot);
bch2_btree_iter_set_snapshot(&iter2, snapshot);
ret = bch2_inode_find_by_inum_trans(trans, inode_inum(inode), &inode_u);
if (ret)
goto err;
if (inode_u.bi_dir == dir->ei_inode.bi_inum) {
bch2_btree_iter_set_pos(&iter1, POS(inode_u.bi_dir, inode_u.bi_dir_offset));
k = bch2_btree_iter_peek_slot(&iter1);
ret = bkey_err(k);
if (ret)
goto err;
if (k.k->type != KEY_TYPE_dirent) {
ret = -BCH_ERR_ENOENT_dirent_doesnt_match_inode;
goto err;
}
d = bkey_s_c_to_dirent(k);
ret = bch2_dirent_read_target(trans, inode_inum(dir), d, &target);
if (ret > 0)
ret = -BCH_ERR_ENOENT_dirent_doesnt_match_inode;
if (ret)
goto err;
if (subvol_inum_eq(target, inode->ei_inum))
goto found;
} else {
/*
* File with multiple hardlinks and our backref is to the wrong
* directory - linear search:
*/
for_each_btree_key_continue_norestart(iter2, 0, k, ret) {
if (k.k->p.inode > dir->ei_inode.bi_inum)
break;
if (k.k->type != KEY_TYPE_dirent)
continue;
d = bkey_s_c_to_dirent(k);
ret = bch2_dirent_read_target(trans, inode_inum(dir), d, &target);
if (ret < 0)
break;
if (ret)
continue;
if (subvol_inum_eq(target, inode->ei_inum))
goto found;
}
}
ret = -ENOENT;
goto err;
found:
dirent_name = bch2_dirent_get_name(d);
name_len = min_t(unsigned, dirent_name.len, NAME_MAX);
memcpy(name, dirent_name.name, name_len);
name[name_len] = '\0';
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_iter_exit(trans, &iter1);
bch2_trans_iter_exit(trans, &iter2);
bch2_trans_put(trans);
return ret;
}
static const struct export_operations bch_export_ops = {
.encode_fh = bch2_encode_fh,
.fh_to_dentry = bch2_fh_to_dentry,
.fh_to_parent = bch2_fh_to_parent,
.get_parent = bch2_get_parent,
.get_name = bch2_get_name,
};
static void bch2_vfs_inode_init(struct btree_trans *trans,
subvol_inum inum,
struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
struct bch_subvolume *subvol)
{
inode->v.i_ino = inum.inum;
inode->ei_inum = inum;
inode->ei_inode.bi_inum = inum.inum;
bch2_inode_update_after_write(trans, inode, bi, ~0);
inode->v.i_blocks = bi->bi_sectors;
inode->v.i_ino = bi->bi_inum;
inode->v.i_rdev = bi->bi_dev;
inode->v.i_generation = bi->bi_generation;
inode->v.i_size = bi->bi_size;
inode->ei_flags = 0;
inode->ei_quota_reserved = 0;
inode->ei_qid = bch_qid(bi);
if (BCH_SUBVOLUME_SNAP(subvol))
set_bit(EI_INODE_SNAPSHOT, &inode->ei_flags);
inode->v.i_mapping->a_ops = &bch_address_space_operations;
switch (inode->v.i_mode & S_IFMT) {
case S_IFREG:
inode->v.i_op = &bch_file_inode_operations;
inode->v.i_fop = &bch_file_operations;
break;
case S_IFDIR:
inode->v.i_op = &bch_dir_inode_operations;
inode->v.i_fop = &bch_dir_file_operations;
break;
case S_IFLNK:
inode_nohighmem(&inode->v);
inode->v.i_op = &bch_symlink_inode_operations;
break;
default:
init_special_inode(&inode->v, inode->v.i_mode, inode->v.i_rdev);
inode->v.i_op = &bch_special_inode_operations;
break;
}
mapping_set_large_folios(inode->v.i_mapping);
}
static void bch2_free_inode(struct inode *vinode)
{
kmem_cache_free(bch2_inode_cache, to_bch_ei(vinode));
}
static int inode_update_times_fn(struct btree_trans *trans,
struct bch_inode_info *inode,
struct bch_inode_unpacked *bi,
void *p)
{
struct bch_fs *c = inode->v.i_sb->s_fs_info;
bi->bi_atime = timespec_to_bch2_time(c, inode_get_atime(&inode->v));
bi->bi_mtime = timespec_to_bch2_time(c, inode_get_mtime(&inode->v));
bi->bi_ctime = timespec_to_bch2_time(c, inode_get_ctime(&inode->v));
return 0;
}
static int bch2_vfs_write_inode(struct inode *vinode,
struct writeback_control *wbc)
{
struct bch_fs *c = vinode->i_sb->s_fs_info;
struct bch_inode_info *inode = to_bch_ei(vinode);
int ret;
mutex_lock(&inode->ei_update_lock);
ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL,
ATTR_ATIME|ATTR_MTIME|ATTR_CTIME);
mutex_unlock(&inode->ei_update_lock);
return bch2_err_class(ret);
}
static void bch2_evict_inode(struct inode *vinode)
{
struct bch_fs *c = vinode->i_sb->s_fs_info;
struct bch_inode_info *inode = to_bch_ei(vinode);
bool delete = !inode->v.i_nlink && !is_bad_inode(&inode->v);
/*
* evict() has waited for outstanding writeback, we'll do no more IO
* through this inode: it's safe to remove from VFS inode hashtable here
*
* Do that now so that other threads aren't blocked from pulling it back
* in, there's no reason for them to be:
*/
if (!delete)
bch2_inode_hash_remove(c, inode);
truncate_inode_pages_final(&inode->v.i_data);
clear_inode(&inode->v);
BUG_ON(!is_bad_inode(&inode->v) && inode->ei_quota_reserved);
if (delete) {
bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) inode->v.i_blocks),
KEY_TYPE_QUOTA_WARN);
bch2_quota_acct(c, inode->ei_qid, Q_INO, -1,
KEY_TYPE_QUOTA_WARN);
bch2_inode_rm(c, inode_inum(inode));
/*
* If we are deleting, we need it present in the vfs hash table
* so that fsck can check if unlinked inodes are still open:
*/
bch2_inode_hash_remove(c, inode);
}
mutex_lock(&c->vfs_inodes_lock);
list_del_init(&inode->ei_vfs_inode_list);
mutex_unlock(&c->vfs_inodes_lock);
}
void bch2_evict_subvolume_inodes(struct bch_fs *c, snapshot_id_list *s)
{
struct bch_inode_info *inode;
DARRAY(struct bch_inode_info *) grabbed;
bool clean_pass = false, this_pass_clean;
/*
* Initially, we scan for inodes without I_DONTCACHE, then mark them to
* be pruned with d_mark_dontcache().
*
* Once we've had a clean pass where we didn't find any inodes without
* I_DONTCACHE, we wait for them to be freed:
*/
darray_init(&grabbed);
darray_make_room(&grabbed, 1024);
again:
cond_resched();
this_pass_clean = true;
mutex_lock(&c->vfs_inodes_lock);
list_for_each_entry(inode, &c->vfs_inodes_list, ei_vfs_inode_list) {
if (!snapshot_list_has_id(s, inode->ei_inum.subvol))
continue;
if (!(inode->v.i_state & I_DONTCACHE) &&
!(inode->v.i_state & I_FREEING) &&
igrab(&inode->v)) {
this_pass_clean = false;
if (darray_push_gfp(&grabbed, inode, GFP_ATOMIC|__GFP_NOWARN)) {
iput(&inode->v);
break;
}
} else if (clean_pass && this_pass_clean) {
struct wait_bit_queue_entry wqe;
struct wait_queue_head *wq_head;
wq_head = inode_bit_waitqueue(&wqe, &inode->v, __I_NEW);
prepare_to_wait_event(wq_head, &wqe.wq_entry,
TASK_UNINTERRUPTIBLE);
mutex_unlock(&c->vfs_inodes_lock);
schedule();
finish_wait(wq_head, &wqe.wq_entry);
goto again;
}
}
mutex_unlock(&c->vfs_inodes_lock);
darray_for_each(grabbed, i) {
inode = *i;
d_mark_dontcache(&inode->v);
d_prune_aliases(&inode->v);
iput(&inode->v);
}
grabbed.nr = 0;
if (!clean_pass || !this_pass_clean) {
clean_pass = this_pass_clean;
goto again;
}
darray_exit(&grabbed);
}
static int bch2_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct bch_fs *c = sb->s_fs_info;
struct bch_fs_usage_short usage = bch2_fs_usage_read_short(c);
unsigned shift = sb->s_blocksize_bits - 9;
/*
* this assumes inodes take up 64 bytes, which is a decent average
* number:
*/
u64 avail_inodes = ((usage.capacity - usage.used) << 3);
buf->f_type = BCACHEFS_STATFS_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = usage.capacity >> shift;
buf->f_bfree = usage.free >> shift;
buf->f_bavail = avail_factor(usage.free) >> shift;
buf->f_files = usage.nr_inodes + avail_inodes;
buf->f_ffree = avail_inodes;
buf->f_fsid = uuid_to_fsid(c->sb.user_uuid.b);
buf->f_namelen = BCH_NAME_MAX;
return 0;
}
static int bch2_sync_fs(struct super_block *sb, int wait)
{
struct bch_fs *c = sb->s_fs_info;
int ret;
trace_bch2_sync_fs(sb, wait);
if (c->opts.journal_flush_disabled)
return 0;
if (!wait) {
bch2_journal_flush_async(&c->journal, NULL);
return 0;
}
ret = bch2_journal_flush(&c->journal);
return bch2_err_class(ret);
}
static struct bch_fs *bch2_path_to_fs(const char *path)
{
struct bch_fs *c;
dev_t dev;
int ret;
ret = lookup_bdev(path, &dev);
if (ret)
return ERR_PTR(ret);
c = bch2_dev_to_fs(dev);
if (c)
closure_put(&c->cl);
return c ?: ERR_PTR(-ENOENT);
}
static int bch2_remount(struct super_block *sb, int *flags,
struct bch_opts opts)
{
struct bch_fs *c = sb->s_fs_info;
int ret = 0;
opt_set(opts, read_only, (*flags & SB_RDONLY) != 0);
if (opts.read_only != c->opts.read_only) {
down_write(&c->state_lock);
if (opts.read_only) {
bch2_fs_read_only(c);
sb->s_flags |= SB_RDONLY;
} else {
ret = bch2_fs_read_write(c);
if (ret) {
bch_err(c, "error going rw: %i", ret);
up_write(&c->state_lock);
ret = -EINVAL;
goto err;
}
sb->s_flags &= ~SB_RDONLY;
}
c->opts.read_only = opts.read_only;
up_write(&c->state_lock);
}
if (opt_defined(opts, errors))
c->opts.errors = opts.errors;
err:
return bch2_err_class(ret);
}
static int bch2_show_devname(struct seq_file *seq, struct dentry *root)
{
struct bch_fs *c = root->d_sb->s_fs_info;
bool first = true;
for_each_online_member(c, ca) {
if (!first)
seq_putc(seq, ':');
first = false;
seq_puts(seq, ca->disk_sb.sb_name);
}
return 0;
}
static int bch2_show_options(struct seq_file *seq, struct dentry *root)
{
struct bch_fs *c = root->d_sb->s_fs_info;
struct printbuf buf = PRINTBUF;
bch2_opts_to_text(&buf, c->opts, c, c->disk_sb.sb,
OPT_MOUNT, OPT_HIDDEN, OPT_SHOW_MOUNT_STYLE);
printbuf_nul_terminate(&buf);
seq_printf(seq, ",%s", buf.buf);
int ret = buf.allocation_failure ? -ENOMEM : 0;
printbuf_exit(&buf);
return ret;
}
static void bch2_put_super(struct super_block *sb)
{
struct bch_fs *c = sb->s_fs_info;
__bch2_fs_stop(c);
}
/*
* bcachefs doesn't currently integrate intwrite freeze protection but the
* internal write references serve the same purpose. Therefore reuse the
* read-only transition code to perform the quiesce. The caveat is that we don't
* currently have the ability to block tasks that want a write reference while
* the superblock is frozen. This is fine for now, but we should either add
* blocking support or find a way to integrate sb_start_intwrite() and friends.
*/
static int bch2_freeze(struct super_block *sb)
{
struct bch_fs *c = sb->s_fs_info;
down_write(&c->state_lock);
bch2_fs_read_only(c);
up_write(&c->state_lock);
return 0;
}
static int bch2_unfreeze(struct super_block *sb)
{
struct bch_fs *c = sb->s_fs_info;
int ret;
if (test_bit(BCH_FS_emergency_ro, &c->flags))
return 0;
down_write(&c->state_lock);
ret = bch2_fs_read_write(c);
up_write(&c->state_lock);
return ret;
}
static const struct super_operations bch_super_operations = {
.alloc_inode = bch2_alloc_inode,
.free_inode = bch2_free_inode,
.write_inode = bch2_vfs_write_inode,
.evict_inode = bch2_evict_inode,
.sync_fs = bch2_sync_fs,
.statfs = bch2_statfs,
.show_devname = bch2_show_devname,
.show_options = bch2_show_options,
.put_super = bch2_put_super,
.freeze_fs = bch2_freeze,
.unfreeze_fs = bch2_unfreeze,
};
static int bch2_set_super(struct super_block *s, void *data)
{
s->s_fs_info = data;
return 0;
}
static int bch2_noset_super(struct super_block *s, void *data)
{
return -EBUSY;
}
typedef DARRAY(struct bch_fs *) darray_fs;
static int bch2_test_super(struct super_block *s, void *data)
{
struct bch_fs *c = s->s_fs_info;
darray_fs *d = data;
if (!c)
return false;
darray_for_each(*d, i)
if (c != *i)
return false;
return true;
}
static int bch2_fs_get_tree(struct fs_context *fc)
{
struct bch_fs *c;
struct super_block *sb;
struct inode *vinode;
struct bch2_opts_parse *opts_parse = fc->fs_private;
struct bch_opts opts = opts_parse->opts;
darray_str devs;
darray_fs devs_to_fs = {};
int ret;
opt_set(opts, read_only, (fc->sb_flags & SB_RDONLY) != 0);
opt_set(opts, nostart, true);
if (!fc->source || strlen(fc->source) == 0)
return -EINVAL;
ret = bch2_split_devs(fc->source, &devs);
if (ret)
return ret;
darray_for_each(devs, i) {
ret = darray_push(&devs_to_fs, bch2_path_to_fs(*i));
if (ret)
goto err;
}
sb = sget(fc->fs_type, bch2_test_super, bch2_noset_super, fc->sb_flags|SB_NOSEC, &devs_to_fs);
if (!IS_ERR(sb))
goto got_sb;
c = bch2_fs_open(devs.data, devs.nr, opts);
ret = PTR_ERR_OR_ZERO(c);
if (ret)
goto err;
/* Some options can't be parsed until after the fs is started: */
opts = bch2_opts_empty();
ret = bch2_parse_mount_opts(c, &opts, NULL, opts_parse->parse_later.buf);
if (ret)
goto err_stop_fs;
bch2_opts_apply(&c->opts, opts);
ret = bch2_fs_start(c);
if (ret)
goto err_stop_fs;
sb = sget(fc->fs_type, NULL, bch2_set_super, fc->sb_flags|SB_NOSEC, c);
ret = PTR_ERR_OR_ZERO(sb);
if (ret)
goto err_stop_fs;
got_sb:
c = sb->s_fs_info;
if (sb->s_root) {
if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY) {
ret = -EBUSY;
goto err_put_super;
}
goto out;
}
sb->s_blocksize = block_bytes(c);
sb->s_blocksize_bits = ilog2(block_bytes(c));
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_op = &bch_super_operations;
sb->s_export_op = &bch_export_ops;
#ifdef CONFIG_BCACHEFS_QUOTA
sb->s_qcop = &bch2_quotactl_operations;
sb->s_quota_types = QTYPE_MASK_USR|QTYPE_MASK_GRP|QTYPE_MASK_PRJ;
#endif
sb->s_xattr = bch2_xattr_handlers;
sb->s_magic = BCACHEFS_STATFS_MAGIC;
sb->s_time_gran = c->sb.nsec_per_time_unit;
sb->s_time_min = div_s64(S64_MIN, c->sb.time_units_per_sec) + 1;
sb->s_time_max = div_s64(S64_MAX, c->sb.time_units_per_sec);
sb->s_uuid = c->sb.user_uuid;
sb->s_shrink->seeks = 0;
c->vfs_sb = sb;
strscpy(sb->s_id, c->name, sizeof(sb->s_id));
ret = super_setup_bdi(sb);
if (ret)
goto err_put_super;
sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
for_each_online_member(c, ca) {
struct block_device *bdev = ca->disk_sb.bdev;
/* XXX: create an anonymous device for multi device filesystems */
sb->s_bdev = bdev;
sb->s_dev = bdev->bd_dev;
percpu_ref_put(&ca->io_ref);
break;
}
c->dev = sb->s_dev;
#ifdef CONFIG_BCACHEFS_POSIX_ACL
if (c->opts.acl)
sb->s_flags |= SB_POSIXACL;
#endif
sb->s_shrink->seeks = 0;
vinode = bch2_vfs_inode_get(c, BCACHEFS_ROOT_SUBVOL_INUM);
ret = PTR_ERR_OR_ZERO(vinode);
bch_err_msg(c, ret, "mounting: error getting root inode");
if (ret)
goto err_put_super;
sb->s_root = d_make_root(vinode);
if (!sb->s_root) {
bch_err(c, "error mounting: error allocating root dentry");
ret = -ENOMEM;
goto err_put_super;
}
sb->s_flags |= SB_ACTIVE;
out:
fc->root = dget(sb->s_root);
err:
darray_exit(&devs_to_fs);
bch2_darray_str_exit(&devs);
if (ret)
pr_err("error: %s", bch2_err_str(ret));
/*
* On an inconsistency error in recovery we might see an -EROFS derived
* errorcode (from the journal), but we don't want to return that to
* userspace as that causes util-linux to retry the mount RO - which is
* confusing:
*/
if (bch2_err_matches(ret, EROFS) && ret != -EROFS)
ret = -EIO;
return bch2_err_class(ret);
err_stop_fs:
bch2_fs_stop(c);
goto err;
err_put_super:
__bch2_fs_stop(c);
deactivate_locked_super(sb);
goto err;
}
static void bch2_kill_sb(struct super_block *sb)
{
struct bch_fs *c = sb->s_fs_info;
generic_shutdown_super(sb);
bch2_fs_free(c);
}
static void bch2_fs_context_free(struct fs_context *fc)
{
struct bch2_opts_parse *opts = fc->fs_private;
if (opts) {
printbuf_exit(&opts->parse_later);
kfree(opts);
}
}
static int bch2_fs_parse_param(struct fs_context *fc,
struct fs_parameter *param)
{
/*
* the "source" param, i.e., the name of the device(s) to mount,
* is handled by the VFS layer.
*/
if (!strcmp(param->key, "source"))
return -ENOPARAM;
struct bch2_opts_parse *opts = fc->fs_private;
struct bch_fs *c = NULL;
/* for reconfigure, we already have a struct bch_fs */
if (fc->root)
c = fc->root->d_sb->s_fs_info;
int ret = bch2_parse_one_mount_opt(c, &opts->opts,
&opts->parse_later, param->key,
param->string);
return bch2_err_class(ret);
}
static int bch2_fs_reconfigure(struct fs_context *fc)
{
struct super_block *sb = fc->root->d_sb;
struct bch2_opts_parse *opts = fc->fs_private;
return bch2_remount(sb, &fc->sb_flags, opts->opts);
}
static const struct fs_context_operations bch2_context_ops = {
.free = bch2_fs_context_free,
.parse_param = bch2_fs_parse_param,
.get_tree = bch2_fs_get_tree,
.reconfigure = bch2_fs_reconfigure,
};
static int bch2_init_fs_context(struct fs_context *fc)
{
struct bch2_opts_parse *opts = kzalloc(sizeof(*opts), GFP_KERNEL);
if (!opts)
return -ENOMEM;
opts->parse_later = PRINTBUF;
fc->ops = &bch2_context_ops;
fc->fs_private = opts;
return 0;
}
void bch2_fs_vfs_exit(struct bch_fs *c)
{
if (c->vfs_inodes_table.tbl)
rhashtable_destroy(&c->vfs_inodes_table);
}
int bch2_fs_vfs_init(struct bch_fs *c)
{
return rhashtable_init(&c->vfs_inodes_table, &bch2_vfs_inodes_params);
}
static struct file_system_type bcache_fs_type = {
.owner = THIS_MODULE,
.name = "bcachefs",
.init_fs_context = bch2_init_fs_context,
.kill_sb = bch2_kill_sb,
.fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
};
MODULE_ALIAS_FS("bcachefs");
void bch2_vfs_exit(void)
{
unregister_filesystem(&bcache_fs_type);
kmem_cache_destroy(bch2_inode_cache);
}
int __init bch2_vfs_init(void)
{
int ret = -ENOMEM;
bch2_inode_cache = KMEM_CACHE(bch_inode_info, SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT);
if (!bch2_inode_cache)
goto err;
ret = register_filesystem(&bcache_fs_type);
if (ret)
goto err;
return 0;
err:
bch2_vfs_exit();
return ret;
}
#endif /* NO_BCACHEFS_FS */