linux-stable/fs/file.c
Linus Torvalds 4c797b11a8 vfs-6.13.file
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzcW4gAKCRCRxhvAZXjc
 okF+AP9xTMb2SlnRPBOBd9yFcmVXmQi86TSCUPAEVb+wIldGYwD/RIOdvXYJlp9v
 RgJkU1DC3ddkXtONNDY6gFaP+siIWA0=
 =gMc7
 -----END PGP SIGNATURE-----

Merge tag 'vfs-6.13.file' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs file updates from Christian Brauner:
 "This contains changes the changes for files for this cycle:

   - Introduce a new reference counting mechanism for files.

     As atomic_inc_not_zero() is implemented with a try_cmpxchg() loop
     it has O(N^2) behaviour under contention with N concurrent
     operations and it is in a hot path in __fget_files_rcu().

     The rcuref infrastructures remedies this problem by using an
     unconditional increment relying on safe- and dead zones to make
     this work and requiring rcu protection for the data structure in
     question. This not just scales better it also introduces overflow
     protection.

     However, in contrast to generic rcuref, files require a memory
     barrier and thus cannot rely on *_relaxed() atomic operations and
     also require to be built on atomic_long_t as having massive amounts
     of reference isn't unheard of even if it is just an attack.

     This adds a file specific variant instead of making this a generic
     library.

     This has been tested by various people and it gives consistent
     improvement up to 3-5% on workloads with loads of threads.

   - Add a fastpath for find_next_zero_bit(). Skip 2-levels searching
     via find_next_zero_bit() when there is a free slot in the word that
     contains the next fd. This improves pts/blogbench-1.1.0 read by 8%
     and write by 4% on Intel ICX 160.

   - Conditionally clear full_fds_bits since it's very likely that a bit
     in full_fds_bits has been cleared during __clear_open_fds(). This
     improves pts/blogbench-1.1.0 read up to 13%, and write up to 5% on
     Intel ICX 160.

   - Get rid of all lookup_*_fdget_rcu() variants. They were used to
     lookup files without taking a reference count. That became invalid
     once files were switched to SLAB_TYPESAFE_BY_RCU and now we're
     always taking a reference count. Switch to an already existing
     helper and remove the legacy variants.

   - Remove pointless includes of <linux/fdtable.h>.

   - Avoid cmpxchg() in close_files() as nobody else has a reference to
     the files_struct at that point.

   - Move close_range() into fs/file.c and fold __close_range() into it.

   - Cleanup calling conventions of alloc_fdtable() and expand_files().

   - Merge __{set,clear}_close_on_exec() into one.

   - Make __set_open_fd() set cloexec as well instead of doing it in two
     separate steps"

* tag 'vfs-6.13.file' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  selftests: add file SLAB_TYPESAFE_BY_RCU recycling stressor
  fs: port files to file_ref
  fs: add file_ref
  expand_files(): simplify calling conventions
  make __set_open_fd() set cloexec state as well
  fs: protect backing files with rcu
  file.c: merge __{set,clear}_close_on_exec()
  alloc_fdtable(): change calling conventions.
  fs/file.c: add fast path in find_next_fd()
  fs/file.c: conditionally clear full_fds
  fs/file.c: remove sanity_check and add likely/unlikely in alloc_fd()
  move close_range(2) into fs/file.c, fold __close_range() into it
  close_files(): don't bother with xchg()
  remove pointless includes of <linux/fdtable.h>
  get rid of ...lookup...fdget_rcu() family
2024-11-18 10:30:29 -08:00

1452 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/file.c
*
* Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
*
* Manage the dynamic fd arrays in the process files_struct.
*/
#include <linux/syscalls.h>
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/close_range.h>
#include <linux/file_ref.h>
#include <net/sock.h>
#include "internal.h"
/**
* __file_ref_put - Slowpath of file_ref_put()
* @ref: Pointer to the reference count
* @cnt: Current reference count
*
* Invoked when the reference count is outside of the valid zone.
*
* Return:
* True if this was the last reference with no future references
* possible. This signals the caller that it can safely schedule the
* object, which is protected by the reference counter, for
* deconstruction.
*
* False if there are still active references or the put() raced
* with a concurrent get()/put() pair. Caller is not allowed to
* deconstruct the protected object.
*/
bool __file_ref_put(file_ref_t *ref, unsigned long cnt)
{
/* Did this drop the last reference? */
if (likely(cnt == FILE_REF_NOREF)) {
/*
* Carefully try to set the reference count to FILE_REF_DEAD.
*
* This can fail if a concurrent get() operation has
* elevated it again or the corresponding put() even marked
* it dead already. Both are valid situations and do not
* require a retry. If this fails the caller is not
* allowed to deconstruct the object.
*/
if (!atomic_long_try_cmpxchg_release(&ref->refcnt, &cnt, FILE_REF_DEAD))
return false;
/*
* The caller can safely schedule the object for
* deconstruction. Provide acquire ordering.
*/
smp_acquire__after_ctrl_dep();
return true;
}
/*
* If the reference count was already in the dead zone, then this
* put() operation is imbalanced. Warn, put the reference count back to
* DEAD and tell the caller to not deconstruct the object.
*/
if (WARN_ONCE(cnt >= FILE_REF_RELEASED, "imbalanced put on file reference count")) {
atomic_long_set(&ref->refcnt, FILE_REF_DEAD);
return false;
}
/*
* This is a put() operation on a saturated refcount. Restore the
* mean saturation value and tell the caller to not deconstruct the
* object.
*/
if (cnt > FILE_REF_MAXREF)
atomic_long_set(&ref->refcnt, FILE_REF_SATURATED);
return false;
}
EXPORT_SYMBOL_GPL(__file_ref_put);
unsigned int sysctl_nr_open __read_mostly = 1024*1024;
unsigned int sysctl_nr_open_min = BITS_PER_LONG;
/* our min() is unusable in constant expressions ;-/ */
#define __const_min(x, y) ((x) < (y) ? (x) : (y))
unsigned int sysctl_nr_open_max =
__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
static void __free_fdtable(struct fdtable *fdt)
{
kvfree(fdt->fd);
kvfree(fdt->open_fds);
kfree(fdt);
}
static void free_fdtable_rcu(struct rcu_head *rcu)
{
__free_fdtable(container_of(rcu, struct fdtable, rcu));
}
#define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr))
#define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
#define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
/*
* Copy 'count' fd bits from the old table to the new table and clear the extra
* space if any. This does not copy the file pointers. Called with the files
* spinlock held for write.
*/
static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
unsigned int copy_words)
{
unsigned int nwords = fdt_words(nfdt);
bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
copy_words, nwords);
}
/*
* Copy all file descriptors from the old table to the new, expanded table and
* clear the extra space. Called with the files spinlock held for write.
*/
static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
{
size_t cpy, set;
BUG_ON(nfdt->max_fds < ofdt->max_fds);
cpy = ofdt->max_fds * sizeof(struct file *);
set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
memcpy(nfdt->fd, ofdt->fd, cpy);
memset((char *)nfdt->fd + cpy, 0, set);
copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
}
/*
* Note how the fdtable bitmap allocations very much have to be a multiple of
* BITS_PER_LONG. This is not only because we walk those things in chunks of
* 'unsigned long' in some places, but simply because that is how the Linux
* kernel bitmaps are defined to work: they are not "bits in an array of bytes",
* they are very much "bits in an array of unsigned long".
*/
static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
{
struct fdtable *fdt;
unsigned int nr;
void *data;
/*
* Figure out how many fds we actually want to support in this fdtable.
* Allocation steps are keyed to the size of the fdarray, since it
* grows far faster than any of the other dynamic data. We try to fit
* the fdarray into comfortable page-tuned chunks: starting at 1024B
* and growing in powers of two from there on. Since we called only
* with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
* already gives BITS_PER_LONG slots), the above boils down to
* 1. use the smallest power of two large enough to give us that many
* slots.
* 2. on 32bit skip 64 and 128 - the minimal capacity we want there is
* 256 slots (i.e. 1Kb fd array).
* 3. on 64bit don't skip anything, 1Kb fd array means 128 slots there
* and we are never going to be asked for 64 or less.
*/
if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
nr = 256;
else
nr = roundup_pow_of_two(slots_wanted);
/*
* Note that this can drive nr *below* what we had passed if sysctl_nr_open
* had been set lower between the check in expand_files() and here.
*
* We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
* bitmaps handling below becomes unpleasant, to put it mildly...
*/
if (unlikely(nr > sysctl_nr_open)) {
nr = round_down(sysctl_nr_open, BITS_PER_LONG);
if (nr < slots_wanted)
return ERR_PTR(-EMFILE);
}
fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
if (!fdt)
goto out;
fdt->max_fds = nr;
data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
if (!data)
goto out_fdt;
fdt->fd = data;
data = kvmalloc(max_t(size_t,
2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
GFP_KERNEL_ACCOUNT);
if (!data)
goto out_arr;
fdt->open_fds = data;
data += nr / BITS_PER_BYTE;
fdt->close_on_exec = data;
data += nr / BITS_PER_BYTE;
fdt->full_fds_bits = data;
return fdt;
out_arr:
kvfree(fdt->fd);
out_fdt:
kfree(fdt);
out:
return ERR_PTR(-ENOMEM);
}
/*
* Expand the file descriptor table.
* This function will allocate a new fdtable and both fd array and fdset, of
* the given size.
* Return <0 error code on error; 0 on successful completion.
* The files->file_lock should be held on entry, and will be held on exit.
*/
static int expand_fdtable(struct files_struct *files, unsigned int nr)
__releases(files->file_lock)
__acquires(files->file_lock)
{
struct fdtable *new_fdt, *cur_fdt;
spin_unlock(&files->file_lock);
new_fdt = alloc_fdtable(nr + 1);
/* make sure all fd_install() have seen resize_in_progress
* or have finished their rcu_read_lock_sched() section.
*/
if (atomic_read(&files->count) > 1)
synchronize_rcu();
spin_lock(&files->file_lock);
if (IS_ERR(new_fdt))
return PTR_ERR(new_fdt);
cur_fdt = files_fdtable(files);
BUG_ON(nr < cur_fdt->max_fds);
copy_fdtable(new_fdt, cur_fdt);
rcu_assign_pointer(files->fdt, new_fdt);
if (cur_fdt != &files->fdtab)
call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
/* coupled with smp_rmb() in fd_install() */
smp_wmb();
return 0;
}
/*
* Expand files.
* This function will expand the file structures, if the requested size exceeds
* the current capacity and there is room for expansion.
* Return <0 error code on error; 0 on success.
* The files->file_lock should be held on entry, and will be held on exit.
*/
static int expand_files(struct files_struct *files, unsigned int nr)
__releases(files->file_lock)
__acquires(files->file_lock)
{
struct fdtable *fdt;
int error;
repeat:
fdt = files_fdtable(files);
/* Do we need to expand? */
if (nr < fdt->max_fds)
return 0;
/* Can we expand? */
if (nr >= sysctl_nr_open)
return -EMFILE;
if (unlikely(files->resize_in_progress)) {
spin_unlock(&files->file_lock);
wait_event(files->resize_wait, !files->resize_in_progress);
spin_lock(&files->file_lock);
goto repeat;
}
/* All good, so we try */
files->resize_in_progress = true;
error = expand_fdtable(files, nr);
files->resize_in_progress = false;
wake_up_all(&files->resize_wait);
return error;
}
static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt,
bool set)
{
if (set) {
__set_bit(fd, fdt->close_on_exec);
} else {
if (test_bit(fd, fdt->close_on_exec))
__clear_bit(fd, fdt->close_on_exec);
}
}
static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt, bool set)
{
__set_bit(fd, fdt->open_fds);
__set_close_on_exec(fd, fdt, set);
fd /= BITS_PER_LONG;
if (!~fdt->open_fds[fd])
__set_bit(fd, fdt->full_fds_bits);
}
static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
{
__clear_bit(fd, fdt->open_fds);
fd /= BITS_PER_LONG;
if (test_bit(fd, fdt->full_fds_bits))
__clear_bit(fd, fdt->full_fds_bits);
}
static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
{
return test_bit(fd, fdt->open_fds);
}
/*
* Note that a sane fdtable size always has to be a multiple of
* BITS_PER_LONG, since we have bitmaps that are sized by this.
*
* punch_hole is optional - when close_range() is asked to unshare
* and close, we don't need to copy descriptors in that range, so
* a smaller cloned descriptor table might suffice if the last
* currently opened descriptor falls into that range.
*/
static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
{
unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
if (last == fdt->max_fds)
return NR_OPEN_DEFAULT;
if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
last = find_last_bit(fdt->open_fds, punch_hole->from);
if (last == punch_hole->from)
return NR_OPEN_DEFAULT;
}
return ALIGN(last + 1, BITS_PER_LONG);
}
/*
* Allocate a new descriptor table and copy contents from the passed in
* instance. Returns a pointer to cloned table on success, ERR_PTR()
* on failure. For 'punch_hole' see sane_fdtable_size().
*/
struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
{
struct files_struct *newf;
struct file **old_fds, **new_fds;
unsigned int open_files, i;
struct fdtable *old_fdt, *new_fdt;
newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
if (!newf)
return ERR_PTR(-ENOMEM);
atomic_set(&newf->count, 1);
spin_lock_init(&newf->file_lock);
newf->resize_in_progress = false;
init_waitqueue_head(&newf->resize_wait);
newf->next_fd = 0;
new_fdt = &newf->fdtab;
new_fdt->max_fds = NR_OPEN_DEFAULT;
new_fdt->close_on_exec = newf->close_on_exec_init;
new_fdt->open_fds = newf->open_fds_init;
new_fdt->full_fds_bits = newf->full_fds_bits_init;
new_fdt->fd = &newf->fd_array[0];
spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
open_files = sane_fdtable_size(old_fdt, punch_hole);
/*
* Check whether we need to allocate a larger fd array and fd set.
*/
while (unlikely(open_files > new_fdt->max_fds)) {
spin_unlock(&oldf->file_lock);
if (new_fdt != &newf->fdtab)
__free_fdtable(new_fdt);
new_fdt = alloc_fdtable(open_files);
if (IS_ERR(new_fdt)) {
kmem_cache_free(files_cachep, newf);
return ERR_CAST(new_fdt);
}
/*
* Reacquire the oldf lock and a pointer to its fd table
* who knows it may have a new bigger fd table. We need
* the latest pointer.
*/
spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
open_files = sane_fdtable_size(old_fdt, punch_hole);
}
copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
old_fds = old_fdt->fd;
new_fds = new_fdt->fd;
for (i = open_files; i != 0; i--) {
struct file *f = *old_fds++;
if (f) {
get_file(f);
} else {
/*
* The fd may be claimed in the fd bitmap but not yet
* instantiated in the files array if a sibling thread
* is partway through open(). So make sure that this
* fd is available to the new process.
*/
__clear_open_fd(open_files - i, new_fdt);
}
rcu_assign_pointer(*new_fds++, f);
}
spin_unlock(&oldf->file_lock);
/* clear the remainder */
memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
rcu_assign_pointer(newf->fdt, new_fdt);
return newf;
}
static struct fdtable *close_files(struct files_struct * files)
{
/*
* It is safe to dereference the fd table without RCU or
* ->file_lock because this is the last reference to the
* files structure.
*/
struct fdtable *fdt = rcu_dereference_raw(files->fdt);
unsigned int i, j = 0;
for (;;) {
unsigned long set;
i = j * BITS_PER_LONG;
if (i >= fdt->max_fds)
break;
set = fdt->open_fds[j++];
while (set) {
if (set & 1) {
struct file *file = fdt->fd[i];
if (file) {
filp_close(file, files);
cond_resched();
}
}
i++;
set >>= 1;
}
}
return fdt;
}
void put_files_struct(struct files_struct *files)
{
if (atomic_dec_and_test(&files->count)) {
struct fdtable *fdt = close_files(files);
/* free the arrays if they are not embedded */
if (fdt != &files->fdtab)
__free_fdtable(fdt);
kmem_cache_free(files_cachep, files);
}
}
void exit_files(struct task_struct *tsk)
{
struct files_struct * files = tsk->files;
if (files) {
task_lock(tsk);
tsk->files = NULL;
task_unlock(tsk);
put_files_struct(files);
}
}
struct files_struct init_files = {
.count = ATOMIC_INIT(1),
.fdt = &init_files.fdtab,
.fdtab = {
.max_fds = NR_OPEN_DEFAULT,
.fd = &init_files.fd_array[0],
.close_on_exec = init_files.close_on_exec_init,
.open_fds = init_files.open_fds_init,
.full_fds_bits = init_files.full_fds_bits_init,
},
.file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
.resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
};
static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
{
unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
unsigned int maxbit = maxfd / BITS_PER_LONG;
unsigned int bitbit = start / BITS_PER_LONG;
unsigned int bit;
/*
* Try to avoid looking at the second level bitmap
*/
bit = find_next_zero_bit(&fdt->open_fds[bitbit], BITS_PER_LONG,
start & (BITS_PER_LONG - 1));
if (bit < BITS_PER_LONG)
return bit + bitbit * BITS_PER_LONG;
bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
if (bitbit >= maxfd)
return maxfd;
if (bitbit > start)
start = bitbit;
return find_next_zero_bit(fdt->open_fds, maxfd, start);
}
/*
* allocate a file descriptor, mark it busy.
*/
static int alloc_fd(unsigned start, unsigned end, unsigned flags)
{
struct files_struct *files = current->files;
unsigned int fd;
int error;
struct fdtable *fdt;
spin_lock(&files->file_lock);
repeat:
fdt = files_fdtable(files);
fd = start;
if (fd < files->next_fd)
fd = files->next_fd;
if (likely(fd < fdt->max_fds))
fd = find_next_fd(fdt, fd);
/*
* N.B. For clone tasks sharing a files structure, this test
* will limit the total number of files that can be opened.
*/
error = -EMFILE;
if (unlikely(fd >= end))
goto out;
if (unlikely(fd >= fdt->max_fds)) {
error = expand_files(files, fd);
if (error < 0)
goto out;
goto repeat;
}
if (start <= files->next_fd)
files->next_fd = fd + 1;
__set_open_fd(fd, fdt, flags & O_CLOEXEC);
error = fd;
out:
spin_unlock(&files->file_lock);
return error;
}
int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
{
return alloc_fd(0, nofile, flags);
}
int get_unused_fd_flags(unsigned flags)
{
return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
}
EXPORT_SYMBOL(get_unused_fd_flags);
static void __put_unused_fd(struct files_struct *files, unsigned int fd)
{
struct fdtable *fdt = files_fdtable(files);
__clear_open_fd(fd, fdt);
if (fd < files->next_fd)
files->next_fd = fd;
}
void put_unused_fd(unsigned int fd)
{
struct files_struct *files = current->files;
spin_lock(&files->file_lock);
__put_unused_fd(files, fd);
spin_unlock(&files->file_lock);
}
EXPORT_SYMBOL(put_unused_fd);
/*
* Install a file pointer in the fd array.
*
* The VFS is full of places where we drop the files lock between
* setting the open_fds bitmap and installing the file in the file
* array. At any such point, we are vulnerable to a dup2() race
* installing a file in the array before us. We need to detect this and
* fput() the struct file we are about to overwrite in this case.
*
* It should never happen - if we allow dup2() do it, _really_ bad things
* will follow.
*
* This consumes the "file" refcount, so callers should treat it
* as if they had called fput(file).
*/
void fd_install(unsigned int fd, struct file *file)
{
struct files_struct *files = current->files;
struct fdtable *fdt;
if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
return;
rcu_read_lock_sched();
if (unlikely(files->resize_in_progress)) {
rcu_read_unlock_sched();
spin_lock(&files->file_lock);
fdt = files_fdtable(files);
WARN_ON(fdt->fd[fd] != NULL);
rcu_assign_pointer(fdt->fd[fd], file);
spin_unlock(&files->file_lock);
return;
}
/* coupled with smp_wmb() in expand_fdtable() */
smp_rmb();
fdt = rcu_dereference_sched(files->fdt);
BUG_ON(fdt->fd[fd] != NULL);
rcu_assign_pointer(fdt->fd[fd], file);
rcu_read_unlock_sched();
}
EXPORT_SYMBOL(fd_install);
/**
* file_close_fd_locked - return file associated with fd
* @files: file struct to retrieve file from
* @fd: file descriptor to retrieve file for
*
* Doesn't take a separate reference count.
*
* Context: files_lock must be held.
*
* Returns: The file associated with @fd (NULL if @fd is not open)
*/
struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
{
struct fdtable *fdt = files_fdtable(files);
struct file *file;
lockdep_assert_held(&files->file_lock);
if (fd >= fdt->max_fds)
return NULL;
fd = array_index_nospec(fd, fdt->max_fds);
file = fdt->fd[fd];
if (file) {
rcu_assign_pointer(fdt->fd[fd], NULL);
__put_unused_fd(files, fd);
}
return file;
}
int close_fd(unsigned fd)
{
struct files_struct *files = current->files;
struct file *file;
spin_lock(&files->file_lock);
file = file_close_fd_locked(files, fd);
spin_unlock(&files->file_lock);
if (!file)
return -EBADF;
return filp_close(file, files);
}
EXPORT_SYMBOL(close_fd);
/**
* last_fd - return last valid index into fd table
* @fdt: File descriptor table.
*
* Context: Either rcu read lock or files_lock must be held.
*
* Returns: Last valid index into fdtable.
*/
static inline unsigned last_fd(struct fdtable *fdt)
{
return fdt->max_fds - 1;
}
static inline void __range_cloexec(struct files_struct *cur_fds,
unsigned int fd, unsigned int max_fd)
{
struct fdtable *fdt;
/* make sure we're using the correct maximum value */
spin_lock(&cur_fds->file_lock);
fdt = files_fdtable(cur_fds);
max_fd = min(last_fd(fdt), max_fd);
if (fd <= max_fd)
bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
spin_unlock(&cur_fds->file_lock);
}
static inline void __range_close(struct files_struct *files, unsigned int fd,
unsigned int max_fd)
{
struct file *file;
unsigned n;
spin_lock(&files->file_lock);
n = last_fd(files_fdtable(files));
max_fd = min(max_fd, n);
for (; fd <= max_fd; fd++) {
file = file_close_fd_locked(files, fd);
if (file) {
spin_unlock(&files->file_lock);
filp_close(file, files);
cond_resched();
spin_lock(&files->file_lock);
} else if (need_resched()) {
spin_unlock(&files->file_lock);
cond_resched();
spin_lock(&files->file_lock);
}
}
spin_unlock(&files->file_lock);
}
/**
* sys_close_range() - Close all file descriptors in a given range.
*
* @fd: starting file descriptor to close
* @max_fd: last file descriptor to close
* @flags: CLOSE_RANGE flags.
*
* This closes a range of file descriptors. All file descriptors
* from @fd up to and including @max_fd are closed.
* Currently, errors to close a given file descriptor are ignored.
*/
SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd,
unsigned int, flags)
{
struct task_struct *me = current;
struct files_struct *cur_fds = me->files, *fds = NULL;
if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
return -EINVAL;
if (fd > max_fd)
return -EINVAL;
if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
struct fd_range range = {fd, max_fd}, *punch_hole = &range;
/*
* If the caller requested all fds to be made cloexec we always
* copy all of the file descriptors since they still want to
* use them.
*/
if (flags & CLOSE_RANGE_CLOEXEC)
punch_hole = NULL;
fds = dup_fd(cur_fds, punch_hole);
if (IS_ERR(fds))
return PTR_ERR(fds);
/*
* We used to share our file descriptor table, and have now
* created a private one, make sure we're using it below.
*/
swap(cur_fds, fds);
}
if (flags & CLOSE_RANGE_CLOEXEC)
__range_cloexec(cur_fds, fd, max_fd);
else
__range_close(cur_fds, fd, max_fd);
if (fds) {
/*
* We're done closing the files we were supposed to. Time to install
* the new file descriptor table and drop the old one.
*/
task_lock(me);
me->files = cur_fds;
task_unlock(me);
put_files_struct(fds);
}
return 0;
}
/**
* file_close_fd - return file associated with fd
* @fd: file descriptor to retrieve file for
*
* Doesn't take a separate reference count.
*
* Returns: The file associated with @fd (NULL if @fd is not open)
*/
struct file *file_close_fd(unsigned int fd)
{
struct files_struct *files = current->files;
struct file *file;
spin_lock(&files->file_lock);
file = file_close_fd_locked(files, fd);
spin_unlock(&files->file_lock);
return file;
}
void do_close_on_exec(struct files_struct *files)
{
unsigned i;
struct fdtable *fdt;
/* exec unshares first */
spin_lock(&files->file_lock);
for (i = 0; ; i++) {
unsigned long set;
unsigned fd = i * BITS_PER_LONG;
fdt = files_fdtable(files);
if (fd >= fdt->max_fds)
break;
set = fdt->close_on_exec[i];
if (!set)
continue;
fdt->close_on_exec[i] = 0;
for ( ; set ; fd++, set >>= 1) {
struct file *file;
if (!(set & 1))
continue;
file = fdt->fd[fd];
if (!file)
continue;
rcu_assign_pointer(fdt->fd[fd], NULL);
__put_unused_fd(files, fd);
spin_unlock(&files->file_lock);
filp_close(file, files);
cond_resched();
spin_lock(&files->file_lock);
}
}
spin_unlock(&files->file_lock);
}
static struct file *__get_file_rcu(struct file __rcu **f)
{
struct file __rcu *file;
struct file __rcu *file_reloaded;
struct file __rcu *file_reloaded_cmp;
file = rcu_dereference_raw(*f);
if (!file)
return NULL;
if (unlikely(!file_ref_get(&file->f_ref)))
return ERR_PTR(-EAGAIN);
file_reloaded = rcu_dereference_raw(*f);
/*
* Ensure that all accesses have a dependency on the load from
* rcu_dereference_raw() above so we get correct ordering
* between reuse/allocation and the pointer check below.
*/
file_reloaded_cmp = file_reloaded;
OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
/*
* file_ref_get() above provided a full memory barrier when we
* acquired a reference.
*
* This is paired with the write barrier from assigning to the
* __rcu protected file pointer so that if that pointer still
* matches the current file, we know we have successfully
* acquired a reference to the right file.
*
* If the pointers don't match the file has been reallocated by
* SLAB_TYPESAFE_BY_RCU.
*/
if (file == file_reloaded_cmp)
return file_reloaded;
fput(file);
return ERR_PTR(-EAGAIN);
}
/**
* get_file_rcu - try go get a reference to a file under rcu
* @f: the file to get a reference on
*
* This function tries to get a reference on @f carefully verifying that
* @f hasn't been reused.
*
* This function should rarely have to be used and only by users who
* understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
*
* Return: Returns @f with the reference count increased or NULL.
*/
struct file *get_file_rcu(struct file __rcu **f)
{
for (;;) {
struct file __rcu *file;
file = __get_file_rcu(f);
if (!IS_ERR(file))
return file;
}
}
EXPORT_SYMBOL_GPL(get_file_rcu);
/**
* get_file_active - try go get a reference to a file
* @f: the file to get a reference on
*
* In contast to get_file_rcu() the pointer itself isn't part of the
* reference counting.
*
* This function should rarely have to be used and only by users who
* understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
*
* Return: Returns @f with the reference count increased or NULL.
*/
struct file *get_file_active(struct file **f)
{
struct file __rcu *file;
rcu_read_lock();
file = __get_file_rcu(f);
rcu_read_unlock();
if (IS_ERR(file))
file = NULL;
return file;
}
EXPORT_SYMBOL_GPL(get_file_active);
static inline struct file *__fget_files_rcu(struct files_struct *files,
unsigned int fd, fmode_t mask)
{
for (;;) {
struct file *file;
struct fdtable *fdt = rcu_dereference_raw(files->fdt);
struct file __rcu **fdentry;
unsigned long nospec_mask;
/* Mask is a 0 for invalid fd's, ~0 for valid ones */
nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
/*
* fdentry points to the 'fd' offset, or fdt->fd[0].
* Loading from fdt->fd[0] is always safe, because the
* array always exists.
*/
fdentry = fdt->fd + (fd & nospec_mask);
/* Do the load, then mask any invalid result */
file = rcu_dereference_raw(*fdentry);
file = (void *)(nospec_mask & (unsigned long)file);
if (unlikely(!file))
return NULL;
/*
* Ok, we have a file pointer that was valid at
* some point, but it might have become stale since.
*
* We need to confirm it by incrementing the refcount
* and then check the lookup again.
*
* file_ref_get() gives us a full memory barrier. We
* only really need an 'acquire' one to protect the
* loads below, but we don't have that.
*/
if (unlikely(!file_ref_get(&file->f_ref)))
continue;
/*
* Such a race can take two forms:
*
* (a) the file ref already went down to zero and the
* file hasn't been reused yet or the file count
* isn't zero but the file has already been reused.
*
* (b) the file table entry has changed under us.
* Note that we don't need to re-check the 'fdt->fd'
* pointer having changed, because it always goes
* hand-in-hand with 'fdt'.
*
* If so, we need to put our ref and try again.
*/
if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
fput(file);
continue;
}
/*
* This isn't the file we're looking for or we're not
* allowed to get a reference to it.
*/
if (unlikely(file->f_mode & mask)) {
fput(file);
return NULL;
}
/*
* Ok, we have a ref to the file, and checked that it
* still exists.
*/
return file;
}
}
static struct file *__fget_files(struct files_struct *files, unsigned int fd,
fmode_t mask)
{
struct file *file;
rcu_read_lock();
file = __fget_files_rcu(files, fd, mask);
rcu_read_unlock();
return file;
}
static inline struct file *__fget(unsigned int fd, fmode_t mask)
{
return __fget_files(current->files, fd, mask);
}
struct file *fget(unsigned int fd)
{
return __fget(fd, FMODE_PATH);
}
EXPORT_SYMBOL(fget);
struct file *fget_raw(unsigned int fd)
{
return __fget(fd, 0);
}
EXPORT_SYMBOL(fget_raw);
struct file *fget_task(struct task_struct *task, unsigned int fd)
{
struct file *file = NULL;
task_lock(task);
if (task->files)
file = __fget_files(task->files, fd, 0);
task_unlock(task);
return file;
}
struct file *fget_task_next(struct task_struct *task, unsigned int *ret_fd)
{
/* Must be called with rcu_read_lock held */
struct files_struct *files;
unsigned int fd = *ret_fd;
struct file *file = NULL;
task_lock(task);
files = task->files;
if (files) {
rcu_read_lock();
for (; fd < files_fdtable(files)->max_fds; fd++) {
file = __fget_files_rcu(files, fd, 0);
if (file)
break;
}
rcu_read_unlock();
}
task_unlock(task);
*ret_fd = fd;
return file;
}
EXPORT_SYMBOL(fget_task_next);
/*
* Lightweight file lookup - no refcnt increment if fd table isn't shared.
*
* You can use this instead of fget if you satisfy all of the following
* conditions:
* 1) You must call fput_light before exiting the syscall and returning control
* to userspace (i.e. you cannot remember the returned struct file * after
* returning to userspace).
* 2) You must not call filp_close on the returned struct file * in between
* calls to fget_light and fput_light.
* 3) You must not clone the current task in between the calls to fget_light
* and fput_light.
*
* The fput_needed flag returned by fget_light should be passed to the
* corresponding fput_light.
*
* (As an exception to rule 2, you can call filp_close between fget_light and
* fput_light provided that you capture a real refcount with get_file before
* the call to filp_close, and ensure that this real refcount is fput *after*
* the fput_light call.)
*
* See also the documentation in rust/kernel/file.rs.
*/
static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
{
struct files_struct *files = current->files;
struct file *file;
/*
* If another thread is concurrently calling close_fd() followed
* by put_files_struct(), we must not observe the old table
* entry combined with the new refcount - otherwise we could
* return a file that is concurrently being freed.
*
* atomic_read_acquire() pairs with atomic_dec_and_test() in
* put_files_struct().
*/
if (likely(atomic_read_acquire(&files->count) == 1)) {
file = files_lookup_fd_raw(files, fd);
if (!file || unlikely(file->f_mode & mask))
return EMPTY_FD;
return BORROWED_FD(file);
} else {
file = __fget_files(files, fd, mask);
if (!file)
return EMPTY_FD;
return CLONED_FD(file);
}
}
struct fd fdget(unsigned int fd)
{
return __fget_light(fd, FMODE_PATH);
}
EXPORT_SYMBOL(fdget);
struct fd fdget_raw(unsigned int fd)
{
return __fget_light(fd, 0);
}
/*
* Try to avoid f_pos locking. We only need it if the
* file is marked for FMODE_ATOMIC_POS, and it can be
* accessed multiple ways.
*
* Always do it for directories, because pidfd_getfd()
* can make a file accessible even if it otherwise would
* not be, and for directories this is a correctness
* issue, not a "POSIX requirement".
*/
static inline bool file_needs_f_pos_lock(struct file *file)
{
return (file->f_mode & FMODE_ATOMIC_POS) &&
(file_count(file) > 1 || file->f_op->iterate_shared);
}
struct fd fdget_pos(unsigned int fd)
{
struct fd f = fdget(fd);
struct file *file = fd_file(f);
if (file && file_needs_f_pos_lock(file)) {
f.word |= FDPUT_POS_UNLOCK;
mutex_lock(&file->f_pos_lock);
}
return f;
}
void __f_unlock_pos(struct file *f)
{
mutex_unlock(&f->f_pos_lock);
}
/*
* We only lock f_pos if we have threads or if the file might be
* shared with another process. In both cases we'll have an elevated
* file count (done either by fdget() or by fork()).
*/
void set_close_on_exec(unsigned int fd, int flag)
{
struct files_struct *files = current->files;
spin_lock(&files->file_lock);
__set_close_on_exec(fd, files_fdtable(files), flag);
spin_unlock(&files->file_lock);
}
bool get_close_on_exec(unsigned int fd)
{
bool res;
rcu_read_lock();
res = close_on_exec(fd, current->files);
rcu_read_unlock();
return res;
}
static int do_dup2(struct files_struct *files,
struct file *file, unsigned fd, unsigned flags)
__releases(&files->file_lock)
{
struct file *tofree;
struct fdtable *fdt;
/*
* We need to detect attempts to do dup2() over allocated but still
* not finished descriptor. NB: OpenBSD avoids that at the price of
* extra work in their equivalent of fget() - they insert struct
* file immediately after grabbing descriptor, mark it larval if
* more work (e.g. actual opening) is needed and make sure that
* fget() treats larval files as absent. Potentially interesting,
* but while extra work in fget() is trivial, locking implications
* and amount of surgery on open()-related paths in VFS are not.
* FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
* deadlocks in rather amusing ways, AFAICS. All of that is out of
* scope of POSIX or SUS, since neither considers shared descriptor
* tables and this condition does not arise without those.
*/
fdt = files_fdtable(files);
fd = array_index_nospec(fd, fdt->max_fds);
tofree = fdt->fd[fd];
if (!tofree && fd_is_open(fd, fdt))
goto Ebusy;
get_file(file);
rcu_assign_pointer(fdt->fd[fd], file);
__set_open_fd(fd, fdt, flags & O_CLOEXEC);
spin_unlock(&files->file_lock);
if (tofree)
filp_close(tofree, files);
return fd;
Ebusy:
spin_unlock(&files->file_lock);
return -EBUSY;
}
int replace_fd(unsigned fd, struct file *file, unsigned flags)
{
int err;
struct files_struct *files = current->files;
if (!file)
return close_fd(fd);
if (fd >= rlimit(RLIMIT_NOFILE))
return -EBADF;
spin_lock(&files->file_lock);
err = expand_files(files, fd);
if (unlikely(err < 0))
goto out_unlock;
return do_dup2(files, file, fd, flags);
out_unlock:
spin_unlock(&files->file_lock);
return err;
}
/**
* receive_fd() - Install received file into file descriptor table
* @file: struct file that was received from another process
* @ufd: __user pointer to write new fd number to
* @o_flags: the O_* flags to apply to the new fd entry
*
* Installs a received file into the file descriptor table, with appropriate
* checks and count updates. Optionally writes the fd number to userspace, if
* @ufd is non-NULL.
*
* This helper handles its own reference counting of the incoming
* struct file.
*
* Returns newly install fd or -ve on error.
*/
int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
{
int new_fd;
int error;
error = security_file_receive(file);
if (error)
return error;
new_fd = get_unused_fd_flags(o_flags);
if (new_fd < 0)
return new_fd;
if (ufd) {
error = put_user(new_fd, ufd);
if (error) {
put_unused_fd(new_fd);
return error;
}
}
fd_install(new_fd, get_file(file));
__receive_sock(file);
return new_fd;
}
EXPORT_SYMBOL_GPL(receive_fd);
int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
{
int error;
error = security_file_receive(file);
if (error)
return error;
error = replace_fd(new_fd, file, o_flags);
if (error)
return error;
__receive_sock(file);
return new_fd;
}
static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
{
int err = -EBADF;
struct file *file;
struct files_struct *files = current->files;
if ((flags & ~O_CLOEXEC) != 0)
return -EINVAL;
if (unlikely(oldfd == newfd))
return -EINVAL;
if (newfd >= rlimit(RLIMIT_NOFILE))
return -EBADF;
spin_lock(&files->file_lock);
err = expand_files(files, newfd);
file = files_lookup_fd_locked(files, oldfd);
if (unlikely(!file))
goto Ebadf;
if (unlikely(err < 0)) {
if (err == -EMFILE)
goto Ebadf;
goto out_unlock;
}
return do_dup2(files, file, newfd, flags);
Ebadf:
err = -EBADF;
out_unlock:
spin_unlock(&files->file_lock);
return err;
}
SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
{
return ksys_dup3(oldfd, newfd, flags);
}
SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
{
if (unlikely(newfd == oldfd)) { /* corner case */
struct files_struct *files = current->files;
struct file *f;
int retval = oldfd;
rcu_read_lock();
f = __fget_files_rcu(files, oldfd, 0);
if (!f)
retval = -EBADF;
rcu_read_unlock();
if (f)
fput(f);
return retval;
}
return ksys_dup3(oldfd, newfd, 0);
}
SYSCALL_DEFINE1(dup, unsigned int, fildes)
{
int ret = -EBADF;
struct file *file = fget_raw(fildes);
if (file) {
ret = get_unused_fd_flags(0);
if (ret >= 0)
fd_install(ret, file);
else
fput(file);
}
return ret;
}
int f_dupfd(unsigned int from, struct file *file, unsigned flags)
{
unsigned long nofile = rlimit(RLIMIT_NOFILE);
int err;
if (from >= nofile)
return -EINVAL;
err = alloc_fd(from, nofile, flags);
if (err >= 0) {
get_file(file);
fd_install(err, file);
}
return err;
}
int iterate_fd(struct files_struct *files, unsigned n,
int (*f)(const void *, struct file *, unsigned),
const void *p)
{
struct fdtable *fdt;
int res = 0;
if (!files)
return 0;
spin_lock(&files->file_lock);
for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
struct file *file;
file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
if (!file)
continue;
res = f(p, file, n);
if (res)
break;
}
spin_unlock(&files->file_lock);
return res;
}
EXPORT_SYMBOL(iterate_fd);