linux-stable/fs/pidfs.c
Luca Boccassi cdda1f26e7
pidfd: add ioctl to retrieve pid info
A common pattern when using pid fds is having to get information
about the process, which currently requires /proc being mounted,
resolving the fd to a pid, and then do manual string parsing of
/proc/N/status and friends. This needs to be reimplemented over
and over in all userspace projects (e.g.: I have reimplemented
resolving in systemd, dbus, dbus-daemon, polkit so far), and
requires additional care in checking that the fd is still valid
after having parsed the data, to avoid races.

Having a programmatic API that can be used directly removes all
these requirements, including having /proc mounted.

As discussed at LPC24, add an ioctl with an extensible struct
so that more parameters can be added later if needed. Start with
returning pid/tgid/ppid and creds unconditionally, and cgroupid
optionally.

Signed-off-by: Luca Boccassi <luca.boccassi@gmail.com>
Link: https://lore.kernel.org/r/20241010155401.2268522-1-luca.boccassi@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-10-24 13:54:51 +02:00

498 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/anon_inodes.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/cgroup.h>
#include <linux/magic.h>
#include <linux/mount.h>
#include <linux/pid.h>
#include <linux/pidfs.h>
#include <linux/pid_namespace.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/proc_ns.h>
#include <linux/pseudo_fs.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <uapi/linux/pidfd.h>
#include <linux/ipc_namespace.h>
#include <linux/time_namespace.h>
#include <linux/utsname.h>
#include <net/net_namespace.h>
#include "internal.h"
#include "mount.h"
#ifdef CONFIG_PROC_FS
/**
* pidfd_show_fdinfo - print information about a pidfd
* @m: proc fdinfo file
* @f: file referencing a pidfd
*
* Pid:
* This function will print the pid that a given pidfd refers to in the
* pid namespace of the procfs instance.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its pid. This is
* similar to calling getppid() on a process whose parent is outside of
* its pid namespace.
*
* NSpid:
* If pid namespaces are supported then this function will also print
* the pid of a given pidfd refers to for all descendant pid namespaces
* starting from the current pid namespace of the instance, i.e. the
* Pid field and the first entry in the NSpid field will be identical.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its first NSpid
* entry and no others will be shown.
* Note that this differs from the Pid and NSpid fields in
* /proc/<pid>/status where Pid and NSpid are always shown relative to
* the pid namespace of the procfs instance. The difference becomes
* obvious when sending around a pidfd between pid namespaces from a
* different branch of the tree, i.e. where no ancestral relation is
* present between the pid namespaces:
* - create two new pid namespaces ns1 and ns2 in the initial pid
* namespace (also take care to create new mount namespaces in the
* new pid namespace and mount procfs)
* - create a process with a pidfd in ns1
* - send pidfd from ns1 to ns2
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
* have exactly one entry, which is 0
*/
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
struct pid *pid = pidfd_pid(f);
struct pid_namespace *ns;
pid_t nr = -1;
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
ns = proc_pid_ns(file_inode(m->file)->i_sb);
nr = pid_nr_ns(pid, ns);
}
seq_put_decimal_ll(m, "Pid:\t", nr);
#ifdef CONFIG_PID_NS
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
if (nr > 0) {
int i;
/* If nr is non-zero it means that 'pid' is valid and that
* ns, i.e. the pid namespace associated with the procfs
* instance, is in the pid namespace hierarchy of pid.
* Start at one below the already printed level.
*/
for (i = ns->level + 1; i <= pid->level; i++)
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
}
#endif
seq_putc(m, '\n');
}
#endif
/*
* Poll support for process exit notification.
*/
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
struct pid *pid = pidfd_pid(file);
bool thread = file->f_flags & PIDFD_THREAD;
struct task_struct *task;
__poll_t poll_flags = 0;
poll_wait(file, &pid->wait_pidfd, pts);
/*
* Depending on PIDFD_THREAD, inform pollers when the thread
* or the whole thread-group exits.
*/
guard(rcu)();
task = pid_task(pid, PIDTYPE_PID);
if (!task)
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
else if (task->exit_state && (thread || thread_group_empty(task)))
poll_flags = EPOLLIN | EPOLLRDNORM;
return poll_flags;
}
static long pidfd_info(struct task_struct *task, unsigned int cmd, unsigned long arg)
{
struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
size_t usize = _IOC_SIZE(cmd);
struct pidfd_info kinfo = {};
struct user_namespace *user_ns;
const struct cred *c;
__u64 mask;
#ifdef CONFIG_CGROUPS
struct cgroup *cgrp;
#endif
if (!uinfo)
return -EINVAL;
if (usize < PIDFD_INFO_SIZE_VER0)
return -EINVAL; /* First version, no smaller struct possible */
if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
return -EFAULT;
c = get_task_cred(task);
if (!c)
return -ESRCH;
/* Unconditionally return identifiers and credentials, the rest only on request */
user_ns = current_user_ns();
kinfo.ruid = from_kuid_munged(user_ns, c->uid);
kinfo.rgid = from_kgid_munged(user_ns, c->gid);
kinfo.euid = from_kuid_munged(user_ns, c->euid);
kinfo.egid = from_kgid_munged(user_ns, c->egid);
kinfo.suid = from_kuid_munged(user_ns, c->suid);
kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
kinfo.mask |= PIDFD_INFO_CREDS;
put_cred(c);
#ifdef CONFIG_CGROUPS
rcu_read_lock();
cgrp = task_dfl_cgroup(task);
kinfo.cgroupid = cgroup_id(cgrp);
kinfo.mask |= PIDFD_INFO_CGROUPID;
rcu_read_unlock();
#endif
/*
* Copy pid/tgid last, to reduce the chances the information might be
* stale. Note that it is not possible to ensure it will be valid as the
* task might return as soon as the copy_to_user finishes, but that's ok
* and userspace expects that might happen and can act accordingly, so
* this is just best-effort. What we can do however is checking that all
* the fields are set correctly, or return ESRCH to avoid providing
* incomplete information. */
kinfo.ppid = task_ppid_nr_ns(task, NULL);
kinfo.tgid = task_tgid_vnr(task);
kinfo.pid = task_pid_vnr(task);
kinfo.mask |= PIDFD_INFO_PID;
if (kinfo.pid == 0 || kinfo.tgid == 0 || (kinfo.ppid == 0 && kinfo.pid != 1))
return -ESRCH;
/*
* If userspace and the kernel have the same struct size it can just
* be copied. If userspace provides an older struct, only the bits that
* userspace knows about will be copied. If userspace provides a new
* struct, only the bits that the kernel knows about will be copied.
*/
if (copy_to_user(uinfo, &kinfo, min(usize, sizeof(kinfo))))
return -EFAULT;
return 0;
}
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct task_struct *task __free(put_task) = NULL;
struct nsproxy *nsp __free(put_nsproxy) = NULL;
struct pid *pid = pidfd_pid(file);
struct ns_common *ns_common = NULL;
struct pid_namespace *pid_ns;
task = get_pid_task(pid, PIDTYPE_PID);
if (!task)
return -ESRCH;
/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
return pidfd_info(task, cmd, arg);
if (arg)
return -EINVAL;
scoped_guard(task_lock, task) {
nsp = task->nsproxy;
if (nsp)
get_nsproxy(nsp);
}
if (!nsp)
return -ESRCH; /* just pretend it didn't exist */
/*
* We're trying to open a file descriptor to the namespace so perform a
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
return -EACCES;
switch (cmd) {
/* Namespaces that hang of nsproxy. */
case PIDFD_GET_CGROUP_NAMESPACE:
if (IS_ENABLED(CONFIG_CGROUPS)) {
get_cgroup_ns(nsp->cgroup_ns);
ns_common = to_ns_common(nsp->cgroup_ns);
}
break;
case PIDFD_GET_IPC_NAMESPACE:
if (IS_ENABLED(CONFIG_IPC_NS)) {
get_ipc_ns(nsp->ipc_ns);
ns_common = to_ns_common(nsp->ipc_ns);
}
break;
case PIDFD_GET_MNT_NAMESPACE:
get_mnt_ns(nsp->mnt_ns);
ns_common = to_ns_common(nsp->mnt_ns);
break;
case PIDFD_GET_NET_NAMESPACE:
if (IS_ENABLED(CONFIG_NET_NS)) {
ns_common = to_ns_common(nsp->net_ns);
get_net_ns(ns_common);
}
break;
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
get_pid_ns(nsp->pid_ns_for_children);
ns_common = to_ns_common(nsp->pid_ns_for_children);
}
break;
case PIDFD_GET_TIME_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns);
ns_common = to_ns_common(nsp->time_ns);
}
break;
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns_for_children);
ns_common = to_ns_common(nsp->time_ns_for_children);
}
break;
case PIDFD_GET_UTS_NAMESPACE:
if (IS_ENABLED(CONFIG_UTS_NS)) {
get_uts_ns(nsp->uts_ns);
ns_common = to_ns_common(nsp->uts_ns);
}
break;
/* Namespaces that don't hang of nsproxy. */
case PIDFD_GET_USER_NAMESPACE:
if (IS_ENABLED(CONFIG_USER_NS)) {
rcu_read_lock();
ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
rcu_read_unlock();
}
break;
case PIDFD_GET_PID_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
rcu_read_lock();
pid_ns = task_active_pid_ns(task);
if (pid_ns)
ns_common = to_ns_common(get_pid_ns(pid_ns));
rcu_read_unlock();
}
break;
default:
return -ENOIOCTLCMD;
}
if (!ns_common)
return -EOPNOTSUPP;
/* open_namespace() unconditionally consumes the reference */
return open_namespace(ns_common);
}
static const struct file_operations pidfs_file_operations = {
.poll = pidfd_poll,
#ifdef CONFIG_PROC_FS
.show_fdinfo = pidfd_show_fdinfo,
#endif
.unlocked_ioctl = pidfd_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
struct pid *pidfd_pid(const struct file *file)
{
if (file->f_op != &pidfs_file_operations)
return ERR_PTR(-EBADF);
return file_inode(file)->i_private;
}
static struct vfsmount *pidfs_mnt __ro_after_init;
#if BITS_PER_LONG == 32
/*
* Provide a fallback mechanism for 32-bit systems so processes remain
* reliably comparable by inode number even on those systems.
*/
static DEFINE_IDA(pidfd_inum_ida);
static int pidfs_inum(struct pid *pid, unsigned long *ino)
{
int ret;
ret = ida_alloc_range(&pidfd_inum_ida, RESERVED_PIDS + 1,
UINT_MAX, GFP_ATOMIC);
if (ret < 0)
return -ENOSPC;
*ino = ret;
return 0;
}
static inline void pidfs_free_inum(unsigned long ino)
{
if (ino > 0)
ida_free(&pidfd_inum_ida, ino);
}
#else
static inline int pidfs_inum(struct pid *pid, unsigned long *ino)
{
*ino = pid->ino;
return 0;
}
#define pidfs_free_inum(ino) ((void)(ino))
#endif
/*
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
* implemented. Let's reject it completely until we have a clean
* permission concept for pidfds.
*/
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
return -EOPNOTSUPP;
}
/*
* User space expects pidfs inodes to have no file type in st_mode.
*
* In particular, 'lsof' has this legacy logic:
*
* type = s->st_mode & S_IFMT;
* switch (type) {
* ...
* case 0:
* if (!strcmp(p, "anon_inode"))
* Lf->ntype = Ntype = N_ANON_INODE;
*
* to detect our old anon_inode logic.
*
* Rather than mess with our internal sane inode data, just fix it
* up here in getattr() by masking off the format bits.
*/
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask,
unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
stat->mode &= ~S_IFMT;
return 0;
}
static const struct inode_operations pidfs_inode_operations = {
.getattr = pidfs_getattr,
.setattr = pidfs_setattr,
};
static void pidfs_evict_inode(struct inode *inode)
{
struct pid *pid = inode->i_private;
clear_inode(inode);
put_pid(pid);
pidfs_free_inum(inode->i_ino);
}
static const struct super_operations pidfs_sops = {
.drop_inode = generic_delete_inode,
.evict_inode = pidfs_evict_inode,
.statfs = simple_statfs,
};
/*
* 'lsof' has knowledge of out historical anon_inode use, and expects
* the pidfs dentry name to start with 'anon_inode'.
*/
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
}
static const struct dentry_operations pidfs_dentry_operations = {
.d_delete = always_delete_dentry,
.d_dname = pidfs_dname,
.d_prune = stashed_dentry_prune,
};
static int pidfs_init_inode(struct inode *inode, void *data)
{
inode->i_private = data;
inode->i_flags |= S_PRIVATE;
inode->i_mode |= S_IRWXU;
inode->i_op = &pidfs_inode_operations;
inode->i_fop = &pidfs_file_operations;
/*
* Inode numbering for pidfs start at RESERVED_PIDS + 1. This
* avoids collisions with the root inode which is 1 for pseudo
* filesystems.
*/
return pidfs_inum(data, &inode->i_ino);
}
static void pidfs_put_data(void *data)
{
struct pid *pid = data;
put_pid(pid);
}
static const struct stashed_operations pidfs_stashed_ops = {
.init_inode = pidfs_init_inode,
.put_data = pidfs_put_data,
};
static int pidfs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx;
ctx = init_pseudo(fc, PID_FS_MAGIC);
if (!ctx)
return -ENOMEM;
ctx->ops = &pidfs_sops;
ctx->dops = &pidfs_dentry_operations;
fc->s_fs_info = (void *)&pidfs_stashed_ops;
return 0;
}
static struct file_system_type pidfs_type = {
.name = "pidfs",
.init_fs_context = pidfs_init_fs_context,
.kill_sb = kill_anon_super,
};
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
{
struct file *pidfd_file;
struct path path;
int ret;
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
if (ret < 0)
return ERR_PTR(ret);
pidfd_file = dentry_open(&path, flags, current_cred());
path_put(&path);
return pidfd_file;
}
void __init pidfs_init(void)
{
pidfs_mnt = kern_mount(&pidfs_type);
if (IS_ERR(pidfs_mnt))
panic("Failed to mount pidfs pseudo filesystem");
}