mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-16 10:17:32 +00:00
bd27c7bcdc
With the nrext64 feature enabled, it's possible for a data fork to have 2^48 extent mappings. Even with a 64k fsblock size, that maps out to a bmbt containing more than 2^32 blocks. Therefore, this predicate must return a u64 count to avoid an integer wraparound that will cause scrub to do the wrong thing. It's unlikely that any such filesystem currently exists, because the incore bmbt would consume more than 64GB of kernel memory on its own, and so far nobody except me has driven a filesystem that far, judging from the lack of complaints. Cc: <stable@vger.kernel.org> # v5.19 Fixes: df9ad5cc7a5240 ("xfs: Introduce macros to represent new maximum extent counts for data/attr forks") Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
1803 lines
46 KiB
C
1803 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <djwong@kernel.org>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_refcount_btree.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_iunlink_item.h"
|
|
#include "scrub/scrub.h"
|
|
#include "scrub/common.h"
|
|
#include "scrub/trace.h"
|
|
#include "scrub/repair.h"
|
|
#include "scrub/bitmap.h"
|
|
#include "scrub/agb_bitmap.h"
|
|
#include "scrub/agino_bitmap.h"
|
|
#include "scrub/reap.h"
|
|
#include "scrub/xfile.h"
|
|
#include "scrub/xfarray.h"
|
|
|
|
/* Superblock */
|
|
|
|
/* Repair the superblock. */
|
|
int
|
|
xrep_superblock(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_buf *bp;
|
|
xfs_agnumber_t agno;
|
|
int error;
|
|
|
|
/* Don't try to repair AG 0's sb; let xfs_repair deal with it. */
|
|
agno = sc->sm->sm_agno;
|
|
if (agno == 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
error = xfs_sb_get_secondary(mp, sc->tp, agno, &bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Last chance to abort before we start committing fixes. */
|
|
if (xchk_should_terminate(sc, &error))
|
|
return error;
|
|
|
|
/* Copy AG 0's superblock to this one. */
|
|
xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
|
|
xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
|
|
|
|
/*
|
|
* Don't write out a secondary super with NEEDSREPAIR or log incompat
|
|
* features set, since both are ignored when set on a secondary.
|
|
*/
|
|
if (xfs_has_crc(mp)) {
|
|
struct xfs_dsb *sb = bp->b_addr;
|
|
|
|
sb->sb_features_incompat &=
|
|
~cpu_to_be32(XFS_SB_FEAT_INCOMPAT_NEEDSREPAIR);
|
|
sb->sb_features_log_incompat = 0;
|
|
}
|
|
|
|
/* Write this to disk. */
|
|
xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
|
|
xfs_trans_log_buf(sc->tp, bp, 0, BBTOB(bp->b_length) - 1);
|
|
return 0;
|
|
}
|
|
|
|
/* AGF */
|
|
|
|
struct xrep_agf_allocbt {
|
|
struct xfs_scrub *sc;
|
|
xfs_agblock_t freeblks;
|
|
xfs_agblock_t longest;
|
|
};
|
|
|
|
/* Record free space shape information. */
|
|
STATIC int
|
|
xrep_agf_walk_allocbt(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_alloc_rec_incore *rec,
|
|
void *priv)
|
|
{
|
|
struct xrep_agf_allocbt *raa = priv;
|
|
int error = 0;
|
|
|
|
if (xchk_should_terminate(raa->sc, &error))
|
|
return error;
|
|
|
|
raa->freeblks += rec->ar_blockcount;
|
|
if (rec->ar_blockcount > raa->longest)
|
|
raa->longest = rec->ar_blockcount;
|
|
return error;
|
|
}
|
|
|
|
/* Does this AGFL block look sane? */
|
|
STATIC int
|
|
xrep_agf_check_agfl_block(
|
|
struct xfs_mount *mp,
|
|
xfs_agblock_t agbno,
|
|
void *priv)
|
|
{
|
|
struct xfs_scrub *sc = priv;
|
|
|
|
if (!xfs_verify_agbno(sc->sa.pag, agbno))
|
|
return -EFSCORRUPTED;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Offset within the xrep_find_ag_btree array for each btree type. Avoid the
|
|
* XFS_BTNUM_ names here to avoid creating a sparse array.
|
|
*/
|
|
enum {
|
|
XREP_AGF_BNOBT = 0,
|
|
XREP_AGF_CNTBT,
|
|
XREP_AGF_RMAPBT,
|
|
XREP_AGF_REFCOUNTBT,
|
|
XREP_AGF_END,
|
|
XREP_AGF_MAX
|
|
};
|
|
|
|
/* Check a btree root candidate. */
|
|
static inline bool
|
|
xrep_check_btree_root(
|
|
struct xfs_scrub *sc,
|
|
struct xrep_find_ag_btree *fab)
|
|
{
|
|
return xfs_verify_agbno(sc->sa.pag, fab->root) &&
|
|
fab->height <= fab->maxlevels;
|
|
}
|
|
|
|
/*
|
|
* Given the btree roots described by *fab, find the roots, check them for
|
|
* sanity, and pass the root data back out via *fab.
|
|
*
|
|
* This is /also/ a chicken and egg problem because we have to use the rmapbt
|
|
* (rooted in the AGF) to find the btrees rooted in the AGF. We also have no
|
|
* idea if the btrees make any sense. If we hit obvious corruptions in those
|
|
* btrees we'll bail out.
|
|
*/
|
|
STATIC int
|
|
xrep_agf_find_btrees(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *agf_bp,
|
|
struct xrep_find_ag_btree *fab,
|
|
struct xfs_buf *agfl_bp)
|
|
{
|
|
struct xfs_agf *old_agf = agf_bp->b_addr;
|
|
int error;
|
|
|
|
/* Go find the root data. */
|
|
error = xrep_find_ag_btree_roots(sc, agf_bp, fab, agfl_bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* We must find the bnobt, cntbt, and rmapbt roots. */
|
|
if (!xrep_check_btree_root(sc, &fab[XREP_AGF_BNOBT]) ||
|
|
!xrep_check_btree_root(sc, &fab[XREP_AGF_CNTBT]) ||
|
|
!xrep_check_btree_root(sc, &fab[XREP_AGF_RMAPBT]))
|
|
return -EFSCORRUPTED;
|
|
|
|
/*
|
|
* We relied on the rmapbt to reconstruct the AGF. If we get a
|
|
* different root then something's seriously wrong.
|
|
*/
|
|
if (fab[XREP_AGF_RMAPBT].root != be32_to_cpu(old_agf->agf_rmap_root))
|
|
return -EFSCORRUPTED;
|
|
|
|
/* We must find the refcountbt root if that feature is enabled. */
|
|
if (xfs_has_reflink(sc->mp) &&
|
|
!xrep_check_btree_root(sc, &fab[XREP_AGF_REFCOUNTBT]))
|
|
return -EFSCORRUPTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reinitialize the AGF header, making an in-core copy of the old contents so
|
|
* that we know which in-core state needs to be reinitialized.
|
|
*/
|
|
STATIC void
|
|
xrep_agf_init_header(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *agf_bp,
|
|
struct xfs_agf *old_agf)
|
|
{
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_perag *pag = sc->sa.pag;
|
|
struct xfs_agf *agf = agf_bp->b_addr;
|
|
|
|
memcpy(old_agf, agf, sizeof(*old_agf));
|
|
memset(agf, 0, BBTOB(agf_bp->b_length));
|
|
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
|
|
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
|
|
agf->agf_seqno = cpu_to_be32(pag_agno(pag));
|
|
agf->agf_length = cpu_to_be32(pag_group(pag)->xg_block_count);
|
|
agf->agf_flfirst = old_agf->agf_flfirst;
|
|
agf->agf_fllast = old_agf->agf_fllast;
|
|
agf->agf_flcount = old_agf->agf_flcount;
|
|
if (xfs_has_crc(mp))
|
|
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
|
|
|
|
/* Mark the incore AGF data stale until we're done fixing things. */
|
|
ASSERT(xfs_perag_initialised_agf(pag));
|
|
clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
|
|
}
|
|
|
|
/* Set btree root information in an AGF. */
|
|
STATIC void
|
|
xrep_agf_set_roots(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_agf *agf,
|
|
struct xrep_find_ag_btree *fab)
|
|
{
|
|
agf->agf_bno_root = cpu_to_be32(fab[XREP_AGF_BNOBT].root);
|
|
agf->agf_bno_level = cpu_to_be32(fab[XREP_AGF_BNOBT].height);
|
|
|
|
agf->agf_cnt_root = cpu_to_be32(fab[XREP_AGF_CNTBT].root);
|
|
agf->agf_cnt_level = cpu_to_be32(fab[XREP_AGF_CNTBT].height);
|
|
|
|
agf->agf_rmap_root = cpu_to_be32(fab[XREP_AGF_RMAPBT].root);
|
|
agf->agf_rmap_level = cpu_to_be32(fab[XREP_AGF_RMAPBT].height);
|
|
|
|
if (xfs_has_reflink(sc->mp)) {
|
|
agf->agf_refcount_root =
|
|
cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].root);
|
|
agf->agf_refcount_level =
|
|
cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].height);
|
|
}
|
|
}
|
|
|
|
/* Update all AGF fields which derive from btree contents. */
|
|
STATIC int
|
|
xrep_agf_calc_from_btrees(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *agf_bp)
|
|
{
|
|
struct xrep_agf_allocbt raa = { .sc = sc };
|
|
struct xfs_btree_cur *cur = NULL;
|
|
struct xfs_agf *agf = agf_bp->b_addr;
|
|
struct xfs_mount *mp = sc->mp;
|
|
xfs_agblock_t btreeblks;
|
|
xfs_filblks_t blocks;
|
|
int error;
|
|
|
|
/* Update the AGF counters from the bnobt. */
|
|
cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
|
|
error = xfs_alloc_query_all(cur, xrep_agf_walk_allocbt, &raa);
|
|
if (error)
|
|
goto err;
|
|
error = xfs_btree_count_blocks(cur, &blocks);
|
|
if (error)
|
|
goto err;
|
|
xfs_btree_del_cursor(cur, error);
|
|
btreeblks = blocks - 1;
|
|
agf->agf_freeblks = cpu_to_be32(raa.freeblks);
|
|
agf->agf_longest = cpu_to_be32(raa.longest);
|
|
|
|
/* Update the AGF counters from the cntbt. */
|
|
cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
|
|
error = xfs_btree_count_blocks(cur, &blocks);
|
|
if (error)
|
|
goto err;
|
|
xfs_btree_del_cursor(cur, error);
|
|
btreeblks += blocks - 1;
|
|
|
|
/* Update the AGF counters from the rmapbt. */
|
|
cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
|
|
error = xfs_btree_count_blocks(cur, &blocks);
|
|
if (error)
|
|
goto err;
|
|
xfs_btree_del_cursor(cur, error);
|
|
agf->agf_rmap_blocks = cpu_to_be32(blocks);
|
|
btreeblks += blocks - 1;
|
|
|
|
agf->agf_btreeblks = cpu_to_be32(btreeblks);
|
|
|
|
/* Update the AGF counters from the refcountbt. */
|
|
if (xfs_has_reflink(mp)) {
|
|
cur = xfs_refcountbt_init_cursor(mp, sc->tp, agf_bp,
|
|
sc->sa.pag);
|
|
error = xfs_btree_count_blocks(cur, &blocks);
|
|
if (error)
|
|
goto err;
|
|
xfs_btree_del_cursor(cur, error);
|
|
agf->agf_refcount_blocks = cpu_to_be32(blocks);
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
xfs_btree_del_cursor(cur, error);
|
|
return error;
|
|
}
|
|
|
|
/* Commit the new AGF and reinitialize the incore state. */
|
|
STATIC int
|
|
xrep_agf_commit_new(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *agf_bp)
|
|
{
|
|
struct xfs_perag *pag;
|
|
struct xfs_agf *agf = agf_bp->b_addr;
|
|
|
|
/* Trigger fdblocks recalculation */
|
|
xfs_force_summary_recalc(sc->mp);
|
|
|
|
/* Write this to disk. */
|
|
xfs_trans_buf_set_type(sc->tp, agf_bp, XFS_BLFT_AGF_BUF);
|
|
xfs_trans_log_buf(sc->tp, agf_bp, 0, BBTOB(agf_bp->b_length) - 1);
|
|
|
|
/* Now reinitialize the in-core counters we changed. */
|
|
pag = sc->sa.pag;
|
|
pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
|
|
pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
|
|
pag->pagf_longest = be32_to_cpu(agf->agf_longest);
|
|
pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
|
|
pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
|
|
pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
|
|
pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
|
|
set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
|
|
|
|
return xrep_roll_ag_trans(sc);
|
|
}
|
|
|
|
/* Repair the AGF. v5 filesystems only. */
|
|
int
|
|
xrep_agf(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xrep_find_ag_btree fab[XREP_AGF_MAX] = {
|
|
[XREP_AGF_BNOBT] = {
|
|
.rmap_owner = XFS_RMAP_OWN_AG,
|
|
.buf_ops = &xfs_bnobt_buf_ops,
|
|
.maxlevels = sc->mp->m_alloc_maxlevels,
|
|
},
|
|
[XREP_AGF_CNTBT] = {
|
|
.rmap_owner = XFS_RMAP_OWN_AG,
|
|
.buf_ops = &xfs_cntbt_buf_ops,
|
|
.maxlevels = sc->mp->m_alloc_maxlevels,
|
|
},
|
|
[XREP_AGF_RMAPBT] = {
|
|
.rmap_owner = XFS_RMAP_OWN_AG,
|
|
.buf_ops = &xfs_rmapbt_buf_ops,
|
|
.maxlevels = sc->mp->m_rmap_maxlevels,
|
|
},
|
|
[XREP_AGF_REFCOUNTBT] = {
|
|
.rmap_owner = XFS_RMAP_OWN_REFC,
|
|
.buf_ops = &xfs_refcountbt_buf_ops,
|
|
.maxlevels = sc->mp->m_refc_maxlevels,
|
|
},
|
|
[XREP_AGF_END] = {
|
|
.buf_ops = NULL,
|
|
},
|
|
};
|
|
struct xfs_agf old_agf;
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_buf *agf_bp;
|
|
struct xfs_buf *agfl_bp;
|
|
struct xfs_agf *agf;
|
|
int error;
|
|
|
|
/* We require the rmapbt to rebuild anything. */
|
|
if (!xfs_has_rmapbt(mp))
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* Make sure we have the AGF buffer, as scrub might have decided it
|
|
* was corrupt after xfs_alloc_read_agf failed with -EFSCORRUPTED.
|
|
*/
|
|
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
|
|
XFS_AG_DADDR(mp, pag_agno(sc->sa.pag),
|
|
XFS_AGF_DADDR(mp)),
|
|
XFS_FSS_TO_BB(mp, 1), 0, &agf_bp, NULL);
|
|
if (error)
|
|
return error;
|
|
agf_bp->b_ops = &xfs_agf_buf_ops;
|
|
agf = agf_bp->b_addr;
|
|
|
|
/*
|
|
* Load the AGFL so that we can screen out OWN_AG blocks that are on
|
|
* the AGFL now; these blocks might have once been part of the
|
|
* bno/cnt/rmap btrees but are not now. This is a chicken and egg
|
|
* problem: the AGF is corrupt, so we have to trust the AGFL contents
|
|
* because we can't do any serious cross-referencing with any of the
|
|
* btrees rooted in the AGF. If the AGFL contents are obviously bad
|
|
* then we'll bail out.
|
|
*/
|
|
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Spot-check the AGFL blocks; if they're obviously corrupt then
|
|
* there's nothing we can do but bail out.
|
|
*/
|
|
error = xfs_agfl_walk(sc->mp, agf_bp->b_addr, agfl_bp,
|
|
xrep_agf_check_agfl_block, sc);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Find the AGF btree roots. This is also a chicken-and-egg situation;
|
|
* see the function for more details.
|
|
*/
|
|
error = xrep_agf_find_btrees(sc, agf_bp, fab, agfl_bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Last chance to abort before we start committing fixes. */
|
|
if (xchk_should_terminate(sc, &error))
|
|
return error;
|
|
|
|
/* Start rewriting the header and implant the btrees we found. */
|
|
xrep_agf_init_header(sc, agf_bp, &old_agf);
|
|
xrep_agf_set_roots(sc, agf, fab);
|
|
error = xrep_agf_calc_from_btrees(sc, agf_bp);
|
|
if (error)
|
|
goto out_revert;
|
|
|
|
/* Commit the changes and reinitialize incore state. */
|
|
return xrep_agf_commit_new(sc, agf_bp);
|
|
|
|
out_revert:
|
|
/* Mark the incore AGF state stale and revert the AGF. */
|
|
clear_bit(XFS_AGSTATE_AGF_INIT, &sc->sa.pag->pag_opstate);
|
|
memcpy(agf, &old_agf, sizeof(old_agf));
|
|
return error;
|
|
}
|
|
|
|
/* AGFL */
|
|
|
|
struct xrep_agfl {
|
|
/* Bitmap of alleged AGFL blocks that we're not going to add. */
|
|
struct xagb_bitmap crossed;
|
|
|
|
/* Bitmap of other OWN_AG metadata blocks. */
|
|
struct xagb_bitmap agmetablocks;
|
|
|
|
/* Bitmap of free space. */
|
|
struct xagb_bitmap *freesp;
|
|
|
|
/* rmapbt cursor for finding crosslinked blocks */
|
|
struct xfs_btree_cur *rmap_cur;
|
|
|
|
struct xfs_scrub *sc;
|
|
};
|
|
|
|
/* Record all OWN_AG (free space btree) information from the rmap data. */
|
|
STATIC int
|
|
xrep_agfl_walk_rmap(
|
|
struct xfs_btree_cur *cur,
|
|
const struct xfs_rmap_irec *rec,
|
|
void *priv)
|
|
{
|
|
struct xrep_agfl *ra = priv;
|
|
int error = 0;
|
|
|
|
if (xchk_should_terminate(ra->sc, &error))
|
|
return error;
|
|
|
|
/* Record all the OWN_AG blocks. */
|
|
if (rec->rm_owner == XFS_RMAP_OWN_AG) {
|
|
error = xagb_bitmap_set(ra->freesp, rec->rm_startblock,
|
|
rec->rm_blockcount);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
return xagb_bitmap_set_btcur_path(&ra->agmetablocks, cur);
|
|
}
|
|
|
|
/* Strike out the blocks that are cross-linked according to the rmapbt. */
|
|
STATIC int
|
|
xrep_agfl_check_extent(
|
|
uint32_t agbno,
|
|
uint32_t len,
|
|
void *priv)
|
|
{
|
|
struct xrep_agfl *ra = priv;
|
|
xfs_agblock_t last_agbno = agbno + len - 1;
|
|
int error;
|
|
|
|
while (agbno <= last_agbno) {
|
|
bool other_owners;
|
|
|
|
error = xfs_rmap_has_other_keys(ra->rmap_cur, agbno, 1,
|
|
&XFS_RMAP_OINFO_AG, &other_owners);
|
|
if (error)
|
|
return error;
|
|
|
|
if (other_owners) {
|
|
error = xagb_bitmap_set(&ra->crossed, agbno, 1);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (xchk_should_terminate(ra->sc, &error))
|
|
return error;
|
|
agbno++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Map out all the non-AGFL OWN_AG space in this AG so that we can deduce
|
|
* which blocks belong to the AGFL.
|
|
*
|
|
* Compute the set of old AGFL blocks by subtracting from the list of OWN_AG
|
|
* blocks the list of blocks owned by all other OWN_AG metadata (bnobt, cntbt,
|
|
* rmapbt). These are the old AGFL blocks, so return that list and the number
|
|
* of blocks we're actually going to put back on the AGFL.
|
|
*/
|
|
STATIC int
|
|
xrep_agfl_collect_blocks(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *agf_bp,
|
|
struct xagb_bitmap *agfl_extents,
|
|
xfs_agblock_t *flcount)
|
|
{
|
|
struct xrep_agfl ra;
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_btree_cur *cur;
|
|
int error;
|
|
|
|
ra.sc = sc;
|
|
ra.freesp = agfl_extents;
|
|
xagb_bitmap_init(&ra.agmetablocks);
|
|
xagb_bitmap_init(&ra.crossed);
|
|
|
|
/* Find all space used by the free space btrees & rmapbt. */
|
|
cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
|
|
error = xfs_rmap_query_all(cur, xrep_agfl_walk_rmap, &ra);
|
|
xfs_btree_del_cursor(cur, error);
|
|
if (error)
|
|
goto out_bmp;
|
|
|
|
/* Find all blocks currently being used by the bnobt. */
|
|
cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
|
|
error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur);
|
|
xfs_btree_del_cursor(cur, error);
|
|
if (error)
|
|
goto out_bmp;
|
|
|
|
/* Find all blocks currently being used by the cntbt. */
|
|
cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
|
|
error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur);
|
|
xfs_btree_del_cursor(cur, error);
|
|
if (error)
|
|
goto out_bmp;
|
|
|
|
/*
|
|
* Drop the freesp meta blocks that are in use by btrees.
|
|
* The remaining blocks /should/ be AGFL blocks.
|
|
*/
|
|
error = xagb_bitmap_disunion(agfl_extents, &ra.agmetablocks);
|
|
if (error)
|
|
goto out_bmp;
|
|
|
|
/* Strike out the blocks that are cross-linked. */
|
|
ra.rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
|
|
error = xagb_bitmap_walk(agfl_extents, xrep_agfl_check_extent, &ra);
|
|
xfs_btree_del_cursor(ra.rmap_cur, error);
|
|
if (error)
|
|
goto out_bmp;
|
|
error = xagb_bitmap_disunion(agfl_extents, &ra.crossed);
|
|
if (error)
|
|
goto out_bmp;
|
|
|
|
/*
|
|
* Calculate the new AGFL size. If we found more blocks than fit in
|
|
* the AGFL we'll free them later.
|
|
*/
|
|
*flcount = min_t(uint64_t, xagb_bitmap_hweight(agfl_extents),
|
|
xfs_agfl_size(mp));
|
|
|
|
out_bmp:
|
|
xagb_bitmap_destroy(&ra.crossed);
|
|
xagb_bitmap_destroy(&ra.agmetablocks);
|
|
return error;
|
|
}
|
|
|
|
/* Update the AGF and reset the in-core state. */
|
|
STATIC void
|
|
xrep_agfl_update_agf(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *agf_bp,
|
|
xfs_agblock_t flcount)
|
|
{
|
|
struct xfs_agf *agf = agf_bp->b_addr;
|
|
|
|
ASSERT(flcount <= xfs_agfl_size(sc->mp));
|
|
|
|
/* Trigger fdblocks recalculation */
|
|
xfs_force_summary_recalc(sc->mp);
|
|
|
|
/* Update the AGF counters. */
|
|
if (xfs_perag_initialised_agf(sc->sa.pag)) {
|
|
sc->sa.pag->pagf_flcount = flcount;
|
|
clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET,
|
|
&sc->sa.pag->pag_opstate);
|
|
}
|
|
agf->agf_flfirst = cpu_to_be32(0);
|
|
agf->agf_flcount = cpu_to_be32(flcount);
|
|
if (flcount)
|
|
agf->agf_fllast = cpu_to_be32(flcount - 1);
|
|
else
|
|
agf->agf_fllast = cpu_to_be32(xfs_agfl_size(sc->mp) - 1);
|
|
|
|
xfs_alloc_log_agf(sc->tp, agf_bp,
|
|
XFS_AGF_FLFIRST | XFS_AGF_FLLAST | XFS_AGF_FLCOUNT);
|
|
}
|
|
|
|
struct xrep_agfl_fill {
|
|
struct xagb_bitmap used_extents;
|
|
struct xfs_scrub *sc;
|
|
__be32 *agfl_bno;
|
|
xfs_agblock_t flcount;
|
|
unsigned int fl_off;
|
|
};
|
|
|
|
/* Fill the AGFL with whatever blocks are in this extent. */
|
|
static int
|
|
xrep_agfl_fill(
|
|
uint32_t start,
|
|
uint32_t len,
|
|
void *priv)
|
|
{
|
|
struct xrep_agfl_fill *af = priv;
|
|
struct xfs_scrub *sc = af->sc;
|
|
xfs_agblock_t agbno = start;
|
|
int error;
|
|
|
|
trace_xrep_agfl_insert(sc->sa.pag, agbno, len);
|
|
|
|
while (agbno < start + len && af->fl_off < af->flcount)
|
|
af->agfl_bno[af->fl_off++] = cpu_to_be32(agbno++);
|
|
|
|
error = xagb_bitmap_set(&af->used_extents, start, agbno - 1);
|
|
if (error)
|
|
return error;
|
|
|
|
if (af->fl_off == af->flcount)
|
|
return -ECANCELED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Write out a totally new AGFL. */
|
|
STATIC int
|
|
xrep_agfl_init_header(
|
|
struct xfs_scrub *sc,
|
|
struct xfs_buf *agfl_bp,
|
|
struct xagb_bitmap *agfl_extents,
|
|
xfs_agblock_t flcount)
|
|
{
|
|
struct xrep_agfl_fill af = {
|
|
.sc = sc,
|
|
.flcount = flcount,
|
|
};
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_agfl *agfl;
|
|
int error;
|
|
|
|
ASSERT(flcount <= xfs_agfl_size(mp));
|
|
|
|
/*
|
|
* Start rewriting the header by setting the bno[] array to
|
|
* NULLAGBLOCK, then setting AGFL header fields.
|
|
*/
|
|
agfl = XFS_BUF_TO_AGFL(agfl_bp);
|
|
memset(agfl, 0xFF, BBTOB(agfl_bp->b_length));
|
|
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
|
|
agfl->agfl_seqno = cpu_to_be32(pag_agno(sc->sa.pag));
|
|
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
|
|
|
|
/*
|
|
* Fill the AGFL with the remaining blocks. If agfl_extents has more
|
|
* blocks than fit in the AGFL, they will be freed in a subsequent
|
|
* step.
|
|
*/
|
|
xagb_bitmap_init(&af.used_extents);
|
|
af.agfl_bno = xfs_buf_to_agfl_bno(agfl_bp);
|
|
xagb_bitmap_walk(agfl_extents, xrep_agfl_fill, &af);
|
|
error = xagb_bitmap_disunion(agfl_extents, &af.used_extents);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Write new AGFL to disk. */
|
|
xfs_trans_buf_set_type(sc->tp, agfl_bp, XFS_BLFT_AGFL_BUF);
|
|
xfs_trans_log_buf(sc->tp, agfl_bp, 0, BBTOB(agfl_bp->b_length) - 1);
|
|
xagb_bitmap_destroy(&af.used_extents);
|
|
return 0;
|
|
}
|
|
|
|
/* Repair the AGFL. */
|
|
int
|
|
xrep_agfl(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xagb_bitmap agfl_extents;
|
|
struct xfs_mount *mp = sc->mp;
|
|
struct xfs_buf *agf_bp;
|
|
struct xfs_buf *agfl_bp;
|
|
xfs_agblock_t flcount;
|
|
int error;
|
|
|
|
/* We require the rmapbt to rebuild anything. */
|
|
if (!xfs_has_rmapbt(mp))
|
|
return -EOPNOTSUPP;
|
|
|
|
xagb_bitmap_init(&agfl_extents);
|
|
|
|
/*
|
|
* Read the AGF so that we can query the rmapbt. We hope that there's
|
|
* nothing wrong with the AGF, but all the AG header repair functions
|
|
* have this chicken-and-egg problem.
|
|
*/
|
|
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Make sure we have the AGFL buffer, as scrub might have decided it
|
|
* was corrupt after xfs_alloc_read_agfl failed with -EFSCORRUPTED.
|
|
*/
|
|
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
|
|
XFS_AG_DADDR(mp, pag_agno(sc->sa.pag),
|
|
XFS_AGFL_DADDR(mp)),
|
|
XFS_FSS_TO_BB(mp, 1), 0, &agfl_bp, NULL);
|
|
if (error)
|
|
return error;
|
|
agfl_bp->b_ops = &xfs_agfl_buf_ops;
|
|
|
|
/* Gather all the extents we're going to put on the new AGFL. */
|
|
error = xrep_agfl_collect_blocks(sc, agf_bp, &agfl_extents, &flcount);
|
|
if (error)
|
|
goto err;
|
|
|
|
/* Last chance to abort before we start committing fixes. */
|
|
if (xchk_should_terminate(sc, &error))
|
|
goto err;
|
|
|
|
/*
|
|
* Update AGF and AGFL. We reset the global free block counter when
|
|
* we adjust the AGF flcount (which can fail) so avoid updating any
|
|
* buffers until we know that part works.
|
|
*/
|
|
xrep_agfl_update_agf(sc, agf_bp, flcount);
|
|
error = xrep_agfl_init_header(sc, agfl_bp, &agfl_extents, flcount);
|
|
if (error)
|
|
goto err;
|
|
|
|
/*
|
|
* Ok, the AGFL should be ready to go now. Roll the transaction to
|
|
* make the new AGFL permanent before we start using it to return
|
|
* freespace overflow to the freespace btrees.
|
|
*/
|
|
sc->sa.agf_bp = agf_bp;
|
|
error = xrep_roll_ag_trans(sc);
|
|
if (error)
|
|
goto err;
|
|
|
|
/* Dump any AGFL overflow. */
|
|
error = xrep_reap_agblocks(sc, &agfl_extents, &XFS_RMAP_OINFO_AG,
|
|
XFS_AG_RESV_AGFL);
|
|
if (error)
|
|
goto err;
|
|
|
|
err:
|
|
xagb_bitmap_destroy(&agfl_extents);
|
|
return error;
|
|
}
|
|
|
|
/* AGI */
|
|
|
|
/*
|
|
* Offset within the xrep_find_ag_btree array for each btree type. Avoid the
|
|
* XFS_BTNUM_ names here to avoid creating a sparse array.
|
|
*/
|
|
enum {
|
|
XREP_AGI_INOBT = 0,
|
|
XREP_AGI_FINOBT,
|
|
XREP_AGI_END,
|
|
XREP_AGI_MAX
|
|
};
|
|
|
|
#define XREP_AGI_LOOKUP_BATCH 32
|
|
|
|
struct xrep_agi {
|
|
struct xfs_scrub *sc;
|
|
|
|
/* AGI buffer, tracked separately */
|
|
struct xfs_buf *agi_bp;
|
|
|
|
/* context for finding btree roots */
|
|
struct xrep_find_ag_btree fab[XREP_AGI_MAX];
|
|
|
|
/* old AGI contents in case we have to revert */
|
|
struct xfs_agi old_agi;
|
|
|
|
/* bitmap of which inodes are unlinked */
|
|
struct xagino_bitmap iunlink_bmp;
|
|
|
|
/* heads of the unlinked inode bucket lists */
|
|
xfs_agino_t iunlink_heads[XFS_AGI_UNLINKED_BUCKETS];
|
|
|
|
/* scratchpad for batched lookups of the radix tree */
|
|
struct xfs_inode *lookup_batch[XREP_AGI_LOOKUP_BATCH];
|
|
|
|
/* Map of ino -> next_ino for unlinked inode processing. */
|
|
struct xfarray *iunlink_next;
|
|
|
|
/* Map of ino -> prev_ino for unlinked inode processing. */
|
|
struct xfarray *iunlink_prev;
|
|
};
|
|
|
|
static void
|
|
xrep_agi_buf_cleanup(
|
|
void *buf)
|
|
{
|
|
struct xrep_agi *ragi = buf;
|
|
|
|
xfarray_destroy(ragi->iunlink_prev);
|
|
xfarray_destroy(ragi->iunlink_next);
|
|
xagino_bitmap_destroy(&ragi->iunlink_bmp);
|
|
}
|
|
|
|
/*
|
|
* Given the inode btree roots described by *fab, find the roots, check them
|
|
* for sanity, and pass the root data back out via *fab.
|
|
*/
|
|
STATIC int
|
|
xrep_agi_find_btrees(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xrep_find_ag_btree *fab = ragi->fab;
|
|
struct xfs_buf *agf_bp;
|
|
struct xfs_mount *mp = sc->mp;
|
|
int error;
|
|
|
|
/* Read the AGF. */
|
|
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Find the btree roots. */
|
|
error = xrep_find_ag_btree_roots(sc, agf_bp, fab, NULL);
|
|
if (error)
|
|
return error;
|
|
|
|
/* We must find the inobt root. */
|
|
if (!xrep_check_btree_root(sc, &fab[XREP_AGI_INOBT]))
|
|
return -EFSCORRUPTED;
|
|
|
|
/* We must find the finobt root if that feature is enabled. */
|
|
if (xfs_has_finobt(mp) &&
|
|
!xrep_check_btree_root(sc, &fab[XREP_AGI_FINOBT]))
|
|
return -EFSCORRUPTED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reinitialize the AGI header, making an in-core copy of the old contents so
|
|
* that we know which in-core state needs to be reinitialized.
|
|
*/
|
|
STATIC void
|
|
xrep_agi_init_header(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_buf *agi_bp = ragi->agi_bp;
|
|
struct xfs_agi *old_agi = &ragi->old_agi;
|
|
struct xfs_agi *agi = agi_bp->b_addr;
|
|
struct xfs_perag *pag = sc->sa.pag;
|
|
struct xfs_mount *mp = sc->mp;
|
|
|
|
memcpy(old_agi, agi, sizeof(*old_agi));
|
|
memset(agi, 0, BBTOB(agi_bp->b_length));
|
|
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
|
|
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
|
|
agi->agi_seqno = cpu_to_be32(pag_agno(pag));
|
|
agi->agi_length = cpu_to_be32(pag_group(pag)->xg_block_count);
|
|
agi->agi_newino = cpu_to_be32(NULLAGINO);
|
|
agi->agi_dirino = cpu_to_be32(NULLAGINO);
|
|
if (xfs_has_crc(mp))
|
|
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
|
|
|
|
/* Mark the incore AGF data stale until we're done fixing things. */
|
|
ASSERT(xfs_perag_initialised_agi(pag));
|
|
clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
|
|
}
|
|
|
|
/* Set btree root information in an AGI. */
|
|
STATIC void
|
|
xrep_agi_set_roots(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_agi *agi = ragi->agi_bp->b_addr;
|
|
struct xrep_find_ag_btree *fab = ragi->fab;
|
|
|
|
agi->agi_root = cpu_to_be32(fab[XREP_AGI_INOBT].root);
|
|
agi->agi_level = cpu_to_be32(fab[XREP_AGI_INOBT].height);
|
|
|
|
if (xfs_has_finobt(sc->mp)) {
|
|
agi->agi_free_root = cpu_to_be32(fab[XREP_AGI_FINOBT].root);
|
|
agi->agi_free_level = cpu_to_be32(fab[XREP_AGI_FINOBT].height);
|
|
}
|
|
}
|
|
|
|
/* Update the AGI counters. */
|
|
STATIC int
|
|
xrep_agi_calc_from_btrees(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_buf *agi_bp = ragi->agi_bp;
|
|
struct xfs_btree_cur *cur;
|
|
struct xfs_agi *agi = agi_bp->b_addr;
|
|
struct xfs_mount *mp = sc->mp;
|
|
xfs_agino_t count;
|
|
xfs_agino_t freecount;
|
|
int error;
|
|
|
|
cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp);
|
|
error = xfs_ialloc_count_inodes(cur, &count, &freecount);
|
|
if (error)
|
|
goto err;
|
|
if (xfs_has_inobtcounts(mp)) {
|
|
xfs_filblks_t blocks;
|
|
|
|
error = xfs_btree_count_blocks(cur, &blocks);
|
|
if (error)
|
|
goto err;
|
|
agi->agi_iblocks = cpu_to_be32(blocks);
|
|
}
|
|
xfs_btree_del_cursor(cur, error);
|
|
|
|
agi->agi_count = cpu_to_be32(count);
|
|
agi->agi_freecount = cpu_to_be32(freecount);
|
|
|
|
if (xfs_has_finobt(mp) && xfs_has_inobtcounts(mp)) {
|
|
xfs_filblks_t blocks;
|
|
|
|
cur = xfs_finobt_init_cursor(sc->sa.pag, sc->tp, agi_bp);
|
|
error = xfs_btree_count_blocks(cur, &blocks);
|
|
if (error)
|
|
goto err;
|
|
xfs_btree_del_cursor(cur, error);
|
|
agi->agi_fblocks = cpu_to_be32(blocks);
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
xfs_btree_del_cursor(cur, error);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Record a forwards unlinked chain pointer from agino -> next_agino in our
|
|
* staging information.
|
|
*/
|
|
static inline int
|
|
xrep_iunlink_store_next(
|
|
struct xrep_agi *ragi,
|
|
xfs_agino_t agino,
|
|
xfs_agino_t next_agino)
|
|
{
|
|
ASSERT(next_agino != 0);
|
|
|
|
return xfarray_store(ragi->iunlink_next, agino, &next_agino);
|
|
}
|
|
|
|
/*
|
|
* Record a backwards unlinked chain pointer from prev_ino <- agino in our
|
|
* staging information.
|
|
*/
|
|
static inline int
|
|
xrep_iunlink_store_prev(
|
|
struct xrep_agi *ragi,
|
|
xfs_agino_t agino,
|
|
xfs_agino_t prev_agino)
|
|
{
|
|
ASSERT(prev_agino != 0);
|
|
|
|
return xfarray_store(ragi->iunlink_prev, agino, &prev_agino);
|
|
}
|
|
|
|
/*
|
|
* Given an @agino, look up the next inode in the iunlink bucket. Returns
|
|
* NULLAGINO if we're at the end of the chain, 0 if @agino is not in memory
|
|
* like it should be, or a per-AG inode number.
|
|
*/
|
|
static inline xfs_agino_t
|
|
xrep_iunlink_next(
|
|
struct xfs_scrub *sc,
|
|
xfs_agino_t agino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
ip = xfs_iunlink_lookup(sc->sa.pag, agino);
|
|
if (!ip)
|
|
return 0;
|
|
|
|
return ip->i_next_unlinked;
|
|
}
|
|
|
|
/*
|
|
* Load the inode @agino into memory, set its i_prev_unlinked, and drop the
|
|
* inode so it can be inactivated. Returns NULLAGINO if we're at the end of
|
|
* the chain or if we should stop walking the chain due to corruption; or a
|
|
* per-AG inode number.
|
|
*/
|
|
STATIC xfs_agino_t
|
|
xrep_iunlink_reload_next(
|
|
struct xrep_agi *ragi,
|
|
xfs_agino_t prev_agino,
|
|
xfs_agino_t agino)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_inode *ip;
|
|
xfs_agino_t ret = NULLAGINO;
|
|
int error;
|
|
|
|
error = xchk_iget(ragi->sc, xfs_agino_to_ino(sc->sa.pag, agino), &ip);
|
|
if (error)
|
|
return ret;
|
|
|
|
trace_xrep_iunlink_reload_next(ip, prev_agino);
|
|
|
|
/* If this is a linked inode, stop processing the chain. */
|
|
if (VFS_I(ip)->i_nlink != 0) {
|
|
xrep_iunlink_store_next(ragi, agino, NULLAGINO);
|
|
goto rele;
|
|
}
|
|
|
|
ip->i_prev_unlinked = prev_agino;
|
|
ret = ip->i_next_unlinked;
|
|
|
|
/*
|
|
* Drop the inode reference that we just took. We hold the AGI, so
|
|
* this inode cannot move off the unlinked list and hence cannot be
|
|
* reclaimed.
|
|
*/
|
|
rele:
|
|
xchk_irele(sc, ip);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Walk an AGI unlinked bucket's list to load incore any unlinked inodes that
|
|
* still existed at mount time. This can happen if iunlink processing fails
|
|
* during log recovery.
|
|
*/
|
|
STATIC int
|
|
xrep_iunlink_walk_ondisk_bucket(
|
|
struct xrep_agi *ragi,
|
|
unsigned int bucket)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
|
|
xfs_agino_t prev_agino = NULLAGINO;
|
|
xfs_agino_t next_agino;
|
|
int error = 0;
|
|
|
|
next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
|
|
while (next_agino != NULLAGINO) {
|
|
xfs_agino_t agino = next_agino;
|
|
|
|
if (xchk_should_terminate(ragi->sc, &error))
|
|
return error;
|
|
|
|
trace_xrep_iunlink_walk_ondisk_bucket(sc->sa.pag, bucket,
|
|
prev_agino, agino);
|
|
|
|
if (bucket != agino % XFS_AGI_UNLINKED_BUCKETS)
|
|
break;
|
|
|
|
next_agino = xrep_iunlink_next(sc, agino);
|
|
if (!next_agino)
|
|
next_agino = xrep_iunlink_reload_next(ragi, prev_agino,
|
|
agino);
|
|
|
|
prev_agino = agino;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Decide if this is an unlinked inode in this AG. */
|
|
STATIC bool
|
|
xrep_iunlink_igrab(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = pag_mount(pag);
|
|
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
|
|
return false;
|
|
|
|
if (!xfs_inode_on_unlinked_list(ip))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Mark the given inode in the lookup batch in our unlinked inode bitmap, and
|
|
* remember if this inode is the start of the unlinked chain.
|
|
*/
|
|
STATIC int
|
|
xrep_iunlink_visit(
|
|
struct xrep_agi *ragi,
|
|
unsigned int batch_idx)
|
|
{
|
|
struct xfs_mount *mp = ragi->sc->mp;
|
|
struct xfs_inode *ip = ragi->lookup_batch[batch_idx];
|
|
xfs_agino_t agino;
|
|
unsigned int bucket;
|
|
int error;
|
|
|
|
ASSERT(XFS_INO_TO_AGNO(mp, ip->i_ino) == pag_agno(ragi->sc->sa.pag));
|
|
ASSERT(xfs_inode_on_unlinked_list(ip));
|
|
|
|
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
|
|
bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
|
|
trace_xrep_iunlink_visit(ragi->sc->sa.pag, bucket,
|
|
ragi->iunlink_heads[bucket], ip);
|
|
|
|
error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1);
|
|
if (error)
|
|
return error;
|
|
|
|
if (ip->i_prev_unlinked == NULLAGINO) {
|
|
if (ragi->iunlink_heads[bucket] == NULLAGINO)
|
|
ragi->iunlink_heads[bucket] = agino;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find all incore unlinked inodes so that we can rebuild the unlinked buckets.
|
|
* We hold the AGI so there should not be any modifications to the unlinked
|
|
* list.
|
|
*/
|
|
STATIC int
|
|
xrep_iunlink_mark_incore(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_perag *pag = ragi->sc->sa.pag;
|
|
struct xfs_mount *mp = pag_mount(pag);
|
|
uint32_t first_index = 0;
|
|
bool done = false;
|
|
unsigned int nr_found = 0;
|
|
|
|
do {
|
|
unsigned int i;
|
|
int error = 0;
|
|
|
|
if (xchk_should_terminate(ragi->sc, &error))
|
|
return error;
|
|
|
|
rcu_read_lock();
|
|
|
|
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
|
|
(void **)&ragi->lookup_batch, first_index,
|
|
XREP_AGI_LOOKUP_BATCH);
|
|
if (!nr_found) {
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
struct xfs_inode *ip = ragi->lookup_batch[i];
|
|
|
|
if (done || !xrep_iunlink_igrab(pag, ip))
|
|
ragi->lookup_batch[i] = NULL;
|
|
|
|
/*
|
|
* Update the index for the next lookup. Catch
|
|
* overflows into the next AG range which can occur if
|
|
* we have inodes in the last block of the AG and we
|
|
* are currently pointing to the last inode.
|
|
*
|
|
* Because we may see inodes that are from the wrong AG
|
|
* due to RCU freeing and reallocation, only update the
|
|
* index if it lies in this AG. It was a race that lead
|
|
* us to see this inode, so another lookup from the
|
|
* same index will not find it again.
|
|
*/
|
|
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
|
|
continue;
|
|
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
|
|
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
|
|
done = true;
|
|
}
|
|
|
|
/* unlock now we've grabbed the inodes. */
|
|
rcu_read_unlock();
|
|
|
|
for (i = 0; i < nr_found; i++) {
|
|
if (!ragi->lookup_batch[i])
|
|
continue;
|
|
error = xrep_iunlink_visit(ragi, i);
|
|
if (error)
|
|
return error;
|
|
}
|
|
} while (!done);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Mark all the unlinked ondisk inodes in this inobt record in iunlink_bmp. */
|
|
STATIC int
|
|
xrep_iunlink_mark_ondisk_rec(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_rec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_inobt_rec_incore irec;
|
|
struct xrep_agi *ragi = priv;
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
xfs_agino_t agino;
|
|
unsigned int i;
|
|
int error = 0;
|
|
|
|
xfs_inobt_btrec_to_irec(mp, rec, &irec);
|
|
|
|
for (i = 0, agino = irec.ir_startino;
|
|
i < XFS_INODES_PER_CHUNK;
|
|
i++, agino++) {
|
|
struct xfs_inode *ip;
|
|
unsigned int len = 1;
|
|
|
|
/* Skip free inodes */
|
|
if (XFS_INOBT_MASK(i) & irec.ir_free)
|
|
continue;
|
|
/* Skip inodes we've seen before */
|
|
if (xagino_bitmap_test(&ragi->iunlink_bmp, agino, &len))
|
|
continue;
|
|
|
|
/*
|
|
* Skip incore inodes; these were already picked up by
|
|
* the _mark_incore step.
|
|
*/
|
|
rcu_read_lock();
|
|
ip = radix_tree_lookup(&sc->sa.pag->pag_ici_root, agino);
|
|
rcu_read_unlock();
|
|
if (ip)
|
|
continue;
|
|
|
|
/*
|
|
* Try to look up this inode. If we can't get it, just move
|
|
* on because we haven't actually scrubbed the inobt or the
|
|
* inodes yet.
|
|
*/
|
|
error = xchk_iget(ragi->sc, xfs_agino_to_ino(sc->sa.pag, agino),
|
|
&ip);
|
|
if (error)
|
|
continue;
|
|
|
|
trace_xrep_iunlink_reload_ondisk(ip);
|
|
|
|
if (VFS_I(ip)->i_nlink == 0)
|
|
error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1);
|
|
xchk_irele(sc, ip);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Find ondisk inodes that are unlinked and not in cache, and mark them in
|
|
* iunlink_bmp. We haven't checked the inobt yet, so we don't error out if
|
|
* the btree is corrupt.
|
|
*/
|
|
STATIC void
|
|
xrep_iunlink_mark_ondisk(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_buf *agi_bp = ragi->agi_bp;
|
|
struct xfs_btree_cur *cur;
|
|
int error;
|
|
|
|
cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp);
|
|
error = xfs_btree_query_all(cur, xrep_iunlink_mark_ondisk_rec, ragi);
|
|
xfs_btree_del_cursor(cur, error);
|
|
}
|
|
|
|
/*
|
|
* Walk an iunlink bucket's inode list. For each inode that should be on this
|
|
* chain, clear its entry in in iunlink_bmp because it's ok and we don't need
|
|
* to touch it further.
|
|
*/
|
|
STATIC int
|
|
xrep_iunlink_resolve_bucket(
|
|
struct xrep_agi *ragi,
|
|
unsigned int bucket)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_inode *ip;
|
|
xfs_agino_t prev_agino = NULLAGINO;
|
|
xfs_agino_t next_agino = ragi->iunlink_heads[bucket];
|
|
int error = 0;
|
|
|
|
while (next_agino != NULLAGINO) {
|
|
if (xchk_should_terminate(ragi->sc, &error))
|
|
return error;
|
|
|
|
/* Find the next inode in the chain. */
|
|
ip = xfs_iunlink_lookup(sc->sa.pag, next_agino);
|
|
if (!ip) {
|
|
/* Inode not incore? Terminate the chain. */
|
|
trace_xrep_iunlink_resolve_uncached(sc->sa.pag,
|
|
bucket, prev_agino, next_agino);
|
|
|
|
next_agino = NULLAGINO;
|
|
break;
|
|
}
|
|
|
|
if (next_agino % XFS_AGI_UNLINKED_BUCKETS != bucket) {
|
|
/*
|
|
* Inode is in the wrong bucket. Advance the list,
|
|
* but pretend we didn't see this inode.
|
|
*/
|
|
trace_xrep_iunlink_resolve_wronglist(sc->sa.pag,
|
|
bucket, prev_agino, next_agino);
|
|
|
|
next_agino = ip->i_next_unlinked;
|
|
continue;
|
|
}
|
|
|
|
if (!xfs_inode_on_unlinked_list(ip)) {
|
|
/*
|
|
* Incore inode doesn't think this inode is on an
|
|
* unlinked list. This is probably because we reloaded
|
|
* it from disk. Advance the list, but pretend we
|
|
* didn't see this inode; we'll fix that later.
|
|
*/
|
|
trace_xrep_iunlink_resolve_nolist(sc->sa.pag,
|
|
bucket, prev_agino, next_agino);
|
|
next_agino = ip->i_next_unlinked;
|
|
continue;
|
|
}
|
|
|
|
trace_xrep_iunlink_resolve_ok(sc->sa.pag, bucket, prev_agino,
|
|
next_agino);
|
|
|
|
/*
|
|
* Otherwise, this inode's unlinked pointers are ok. Clear it
|
|
* from the unlinked bitmap since we're done with it, and make
|
|
* sure the chain is still correct.
|
|
*/
|
|
error = xagino_bitmap_clear(&ragi->iunlink_bmp, next_agino, 1);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Remember the previous inode's next pointer. */
|
|
if (prev_agino != NULLAGINO) {
|
|
error = xrep_iunlink_store_next(ragi, prev_agino,
|
|
next_agino);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* Remember this inode's previous pointer. */
|
|
error = xrep_iunlink_store_prev(ragi, next_agino, prev_agino);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Advance the list and remember this inode. */
|
|
prev_agino = next_agino;
|
|
next_agino = ip->i_next_unlinked;
|
|
}
|
|
|
|
/* Update the previous inode's next pointer. */
|
|
if (prev_agino != NULLAGINO) {
|
|
error = xrep_iunlink_store_next(ragi, prev_agino, next_agino);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reinsert this unlinked inode into the head of the staged bucket list. */
|
|
STATIC int
|
|
xrep_iunlink_add_to_bucket(
|
|
struct xrep_agi *ragi,
|
|
xfs_agino_t agino)
|
|
{
|
|
xfs_agino_t current_head;
|
|
unsigned int bucket;
|
|
int error;
|
|
|
|
bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
|
|
|
|
/* Point this inode at the current head of the bucket list. */
|
|
current_head = ragi->iunlink_heads[bucket];
|
|
|
|
trace_xrep_iunlink_add_to_bucket(ragi->sc->sa.pag, bucket, agino,
|
|
current_head);
|
|
|
|
error = xrep_iunlink_store_next(ragi, agino, current_head);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Remember the head inode's previous pointer. */
|
|
if (current_head != NULLAGINO) {
|
|
error = xrep_iunlink_store_prev(ragi, current_head, agino);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
ragi->iunlink_heads[bucket] = agino;
|
|
return 0;
|
|
}
|
|
|
|
/* Reinsert unlinked inodes into the staged iunlink buckets. */
|
|
STATIC int
|
|
xrep_iunlink_add_lost_inodes(
|
|
uint32_t start,
|
|
uint32_t len,
|
|
void *priv)
|
|
{
|
|
struct xrep_agi *ragi = priv;
|
|
int error;
|
|
|
|
for (; len > 0; start++, len--) {
|
|
error = xrep_iunlink_add_to_bucket(ragi, start);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Figure out the iunlink bucket values and find inodes that need to be
|
|
* reinserted into the list.
|
|
*/
|
|
STATIC int
|
|
xrep_iunlink_rebuild_buckets(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
unsigned int i;
|
|
int error;
|
|
|
|
/*
|
|
* Walk the ondisk AGI unlinked list to find inodes that are on the
|
|
* list but aren't in memory. This can happen if a past log recovery
|
|
* tried to clear the iunlinked list but failed. Our scan rebuilds the
|
|
* unlinked list using incore inodes, so we must load and link them
|
|
* properly.
|
|
*/
|
|
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
|
|
error = xrep_iunlink_walk_ondisk_bucket(ragi, i);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Record all the incore unlinked inodes in iunlink_bmp that we didn't
|
|
* find by walking the ondisk iunlink buckets. This shouldn't happen,
|
|
* but we can't risk forgetting an inode somewhere.
|
|
*/
|
|
error = xrep_iunlink_mark_incore(ragi);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* If there are ondisk inodes that are unlinked and are not been loaded
|
|
* into cache, record them in iunlink_bmp.
|
|
*/
|
|
xrep_iunlink_mark_ondisk(ragi);
|
|
|
|
/*
|
|
* Walk each iunlink bucket to (re)construct as much of the incore list
|
|
* as would be correct. For each inode that survives this step, mark
|
|
* it clear in iunlink_bmp; we're done with those inodes.
|
|
*/
|
|
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
|
|
error = xrep_iunlink_resolve_bucket(ragi, i);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Any unlinked inodes that we didn't find through the bucket list
|
|
* walk (or was ignored by the walk) must be inserted into the bucket
|
|
* list. Stage this in memory for now.
|
|
*/
|
|
return xagino_bitmap_walk(&ragi->iunlink_bmp,
|
|
xrep_iunlink_add_lost_inodes, ragi);
|
|
}
|
|
|
|
/* Update i_next_iunlinked for the inode @agino. */
|
|
STATIC int
|
|
xrep_iunlink_relink_next(
|
|
struct xrep_agi *ragi,
|
|
xfarray_idx_t idx,
|
|
xfs_agino_t next_agino)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_perag *pag = sc->sa.pag;
|
|
struct xfs_inode *ip;
|
|
xfarray_idx_t agino = idx - 1;
|
|
bool want_rele = false;
|
|
int error = 0;
|
|
|
|
ip = xfs_iunlink_lookup(pag, agino);
|
|
if (!ip) {
|
|
xfs_agino_t prev_agino;
|
|
|
|
/*
|
|
* No inode exists in cache. Load it off the disk so that we
|
|
* can reinsert it into the incore unlinked list.
|
|
*/
|
|
error = xchk_iget(sc, xfs_agino_to_ino(pag, agino), &ip);
|
|
if (error)
|
|
return -EFSCORRUPTED;
|
|
|
|
want_rele = true;
|
|
|
|
/* Set the backward pointer since this just came off disk. */
|
|
error = xfarray_load(ragi->iunlink_prev, agino, &prev_agino);
|
|
if (error)
|
|
goto out_rele;
|
|
|
|
trace_xrep_iunlink_relink_prev(ip, prev_agino);
|
|
ip->i_prev_unlinked = prev_agino;
|
|
}
|
|
|
|
/* Update the forward pointer. */
|
|
if (ip->i_next_unlinked != next_agino) {
|
|
error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino);
|
|
if (error)
|
|
goto out_rele;
|
|
|
|
trace_xrep_iunlink_relink_next(ip, next_agino);
|
|
ip->i_next_unlinked = next_agino;
|
|
}
|
|
|
|
out_rele:
|
|
/*
|
|
* The iunlink lookup doesn't igrab because we hold the AGI buffer lock
|
|
* and the inode cannot be reclaimed. However, if we used iget to load
|
|
* a missing inode, we must irele it here.
|
|
*/
|
|
if (want_rele)
|
|
xchk_irele(sc, ip);
|
|
return error;
|
|
}
|
|
|
|
/* Update i_prev_iunlinked for the inode @agino. */
|
|
STATIC int
|
|
xrep_iunlink_relink_prev(
|
|
struct xrep_agi *ragi,
|
|
xfarray_idx_t idx,
|
|
xfs_agino_t prev_agino)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_perag *pag = sc->sa.pag;
|
|
struct xfs_inode *ip;
|
|
xfarray_idx_t agino = idx - 1;
|
|
bool want_rele = false;
|
|
int error = 0;
|
|
|
|
ASSERT(prev_agino != 0);
|
|
|
|
ip = xfs_iunlink_lookup(pag, agino);
|
|
if (!ip) {
|
|
xfs_agino_t next_agino;
|
|
|
|
/*
|
|
* No inode exists in cache. Load it off the disk so that we
|
|
* can reinsert it into the incore unlinked list.
|
|
*/
|
|
error = xchk_iget(sc, xfs_agino_to_ino(pag, agino), &ip);
|
|
if (error)
|
|
return -EFSCORRUPTED;
|
|
|
|
want_rele = true;
|
|
|
|
/* Set the forward pointer since this just came off disk. */
|
|
error = xfarray_load(ragi->iunlink_prev, agino, &next_agino);
|
|
if (error)
|
|
goto out_rele;
|
|
|
|
error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino);
|
|
if (error)
|
|
goto out_rele;
|
|
|
|
trace_xrep_iunlink_relink_next(ip, next_agino);
|
|
ip->i_next_unlinked = next_agino;
|
|
}
|
|
|
|
/* Update the backward pointer. */
|
|
if (ip->i_prev_unlinked != prev_agino) {
|
|
trace_xrep_iunlink_relink_prev(ip, prev_agino);
|
|
ip->i_prev_unlinked = prev_agino;
|
|
}
|
|
|
|
out_rele:
|
|
/*
|
|
* The iunlink lookup doesn't igrab because we hold the AGI buffer lock
|
|
* and the inode cannot be reclaimed. However, if we used iget to load
|
|
* a missing inode, we must irele it here.
|
|
*/
|
|
if (want_rele)
|
|
xchk_irele(sc, ip);
|
|
return error;
|
|
}
|
|
|
|
/* Log all the iunlink updates we need to finish regenerating the AGI. */
|
|
STATIC int
|
|
xrep_iunlink_commit(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_agi *agi = ragi->agi_bp->b_addr;
|
|
xfarray_idx_t idx = XFARRAY_CURSOR_INIT;
|
|
xfs_agino_t agino;
|
|
unsigned int i;
|
|
int error;
|
|
|
|
/* Fix all the forward links */
|
|
while ((error = xfarray_iter(ragi->iunlink_next, &idx, &agino)) == 1) {
|
|
error = xrep_iunlink_relink_next(ragi, idx, agino);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* Fix all the back links */
|
|
idx = XFARRAY_CURSOR_INIT;
|
|
while ((error = xfarray_iter(ragi->iunlink_prev, &idx, &agino)) == 1) {
|
|
error = xrep_iunlink_relink_prev(ragi, idx, agino);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* Copy the staged iunlink buckets to the new AGI. */
|
|
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
|
|
trace_xrep_iunlink_commit_bucket(ragi->sc->sa.pag, i,
|
|
be32_to_cpu(ragi->old_agi.agi_unlinked[i]),
|
|
ragi->iunlink_heads[i]);
|
|
|
|
agi->agi_unlinked[i] = cpu_to_be32(ragi->iunlink_heads[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Trigger reinitialization of the in-core data. */
|
|
STATIC int
|
|
xrep_agi_commit_new(
|
|
struct xrep_agi *ragi)
|
|
{
|
|
struct xfs_scrub *sc = ragi->sc;
|
|
struct xfs_buf *agi_bp = ragi->agi_bp;
|
|
struct xfs_perag *pag;
|
|
struct xfs_agi *agi = agi_bp->b_addr;
|
|
|
|
/* Trigger inode count recalculation */
|
|
xfs_force_summary_recalc(sc->mp);
|
|
|
|
/* Write this to disk. */
|
|
xfs_trans_buf_set_type(sc->tp, agi_bp, XFS_BLFT_AGI_BUF);
|
|
xfs_trans_log_buf(sc->tp, agi_bp, 0, BBTOB(agi_bp->b_length) - 1);
|
|
|
|
/* Now reinitialize the in-core counters if necessary. */
|
|
pag = sc->sa.pag;
|
|
pag->pagi_count = be32_to_cpu(agi->agi_count);
|
|
pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
|
|
set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
|
|
|
|
return xrep_roll_ag_trans(sc);
|
|
}
|
|
|
|
/* Repair the AGI. */
|
|
int
|
|
xrep_agi(
|
|
struct xfs_scrub *sc)
|
|
{
|
|
struct xrep_agi *ragi;
|
|
struct xfs_mount *mp = sc->mp;
|
|
char *descr;
|
|
unsigned int i;
|
|
int error;
|
|
|
|
/* We require the rmapbt to rebuild anything. */
|
|
if (!xfs_has_rmapbt(mp))
|
|
return -EOPNOTSUPP;
|
|
|
|
sc->buf = kzalloc(sizeof(struct xrep_agi), XCHK_GFP_FLAGS);
|
|
if (!sc->buf)
|
|
return -ENOMEM;
|
|
ragi = sc->buf;
|
|
ragi->sc = sc;
|
|
|
|
ragi->fab[XREP_AGI_INOBT] = (struct xrep_find_ag_btree){
|
|
.rmap_owner = XFS_RMAP_OWN_INOBT,
|
|
.buf_ops = &xfs_inobt_buf_ops,
|
|
.maxlevels = M_IGEO(sc->mp)->inobt_maxlevels,
|
|
};
|
|
ragi->fab[XREP_AGI_FINOBT] = (struct xrep_find_ag_btree){
|
|
.rmap_owner = XFS_RMAP_OWN_INOBT,
|
|
.buf_ops = &xfs_finobt_buf_ops,
|
|
.maxlevels = M_IGEO(sc->mp)->inobt_maxlevels,
|
|
};
|
|
ragi->fab[XREP_AGI_END] = (struct xrep_find_ag_btree){
|
|
.buf_ops = NULL,
|
|
};
|
|
|
|
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
|
|
ragi->iunlink_heads[i] = NULLAGINO;
|
|
|
|
xagino_bitmap_init(&ragi->iunlink_bmp);
|
|
sc->buf_cleanup = xrep_agi_buf_cleanup;
|
|
|
|
descr = xchk_xfile_ag_descr(sc, "iunlinked next pointers");
|
|
error = xfarray_create(descr, 0, sizeof(xfs_agino_t),
|
|
&ragi->iunlink_next);
|
|
kfree(descr);
|
|
if (error)
|
|
return error;
|
|
|
|
descr = xchk_xfile_ag_descr(sc, "iunlinked prev pointers");
|
|
error = xfarray_create(descr, 0, sizeof(xfs_agino_t),
|
|
&ragi->iunlink_prev);
|
|
kfree(descr);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Make sure we have the AGI buffer, as scrub might have decided it
|
|
* was corrupt after xfs_ialloc_read_agi failed with -EFSCORRUPTED.
|
|
*/
|
|
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
|
|
XFS_AG_DADDR(mp, pag_agno(sc->sa.pag),
|
|
XFS_AGI_DADDR(mp)),
|
|
XFS_FSS_TO_BB(mp, 1), 0, &ragi->agi_bp, NULL);
|
|
if (error)
|
|
return error;
|
|
ragi->agi_bp->b_ops = &xfs_agi_buf_ops;
|
|
|
|
/* Find the AGI btree roots. */
|
|
error = xrep_agi_find_btrees(ragi);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xrep_iunlink_rebuild_buckets(ragi);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Last chance to abort before we start committing fixes. */
|
|
if (xchk_should_terminate(sc, &error))
|
|
return error;
|
|
|
|
/* Start rewriting the header and implant the btrees we found. */
|
|
xrep_agi_init_header(ragi);
|
|
xrep_agi_set_roots(ragi);
|
|
error = xrep_agi_calc_from_btrees(ragi);
|
|
if (error)
|
|
goto out_revert;
|
|
error = xrep_iunlink_commit(ragi);
|
|
if (error)
|
|
goto out_revert;
|
|
|
|
/* Reinitialize in-core state. */
|
|
return xrep_agi_commit_new(ragi);
|
|
|
|
out_revert:
|
|
/* Mark the incore AGI state stale and revert the AGI. */
|
|
clear_bit(XFS_AGSTATE_AGI_INIT, &sc->sa.pag->pag_opstate);
|
|
memcpy(ragi->agi_bp->b_addr, &ragi->old_agi, sizeof(struct xfs_agi));
|
|
return error;
|
|
}
|