linux-stable/fs/xfs/xfs_bmap_item.c
Darrick J. Wong e464d8e8bb xfs: store rtgroup information with a bmap intent
Make the bmap intent items take an active reference to the rtgroup
containing the space that is being mapped or unmapped.  We will need
this functionality once we start enabling rmap and reflink on the rt
volume.  Technically speaking we need it even for !rtgroups filesystems
to prevent the (dummy) rtgroup 0 from going away, even though this will
never happen.

As a bonus, we can rework the xfs_bmap_deferred_class tracepoint to use
the xfs_group object to figure out the type and group number, widen the
group block number field to fit 64-bit quantities, and get rid of the
now redundant opdev and rtblock fields.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:41 -08:00

713 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_bmap_item.h"
#include "xfs_log.h"
#include "xfs_bmap.h"
#include "xfs_icache.h"
#include "xfs_bmap_btree.h"
#include "xfs_trans_space.h"
#include "xfs_error.h"
#include "xfs_log_priv.h"
#include "xfs_log_recover.h"
#include "xfs_ag.h"
#include "xfs_trace.h"
struct kmem_cache *xfs_bui_cache;
struct kmem_cache *xfs_bud_cache;
static const struct xfs_item_ops xfs_bui_item_ops;
static inline struct xfs_bui_log_item *BUI_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_bui_log_item, bui_item);
}
STATIC void
xfs_bui_item_free(
struct xfs_bui_log_item *buip)
{
kvfree(buip->bui_item.li_lv_shadow);
kmem_cache_free(xfs_bui_cache, buip);
}
/*
* Freeing the BUI requires that we remove it from the AIL if it has already
* been placed there. However, the BUI may not yet have been placed in the AIL
* when called by xfs_bui_release() from BUD processing due to the ordering of
* committed vs unpin operations in bulk insert operations. Hence the reference
* count to ensure only the last caller frees the BUI.
*/
STATIC void
xfs_bui_release(
struct xfs_bui_log_item *buip)
{
ASSERT(atomic_read(&buip->bui_refcount) > 0);
if (!atomic_dec_and_test(&buip->bui_refcount))
return;
xfs_trans_ail_delete(&buip->bui_item, 0);
xfs_bui_item_free(buip);
}
STATIC void
xfs_bui_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
*nvecs += 1;
*nbytes += xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents);
}
/*
* This is called to fill in the vector of log iovecs for the
* given bui log item. We use only 1 iovec, and we point that
* at the bui_log_format structure embedded in the bui item.
* It is at this point that we assert that all of the extent
* slots in the bui item have been filled.
*/
STATIC void
xfs_bui_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
ASSERT(atomic_read(&buip->bui_next_extent) ==
buip->bui_format.bui_nextents);
buip->bui_format.bui_type = XFS_LI_BUI;
buip->bui_format.bui_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUI_FORMAT, &buip->bui_format,
xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents));
}
/*
* The unpin operation is the last place an BUI is manipulated in the log. It is
* either inserted in the AIL or aborted in the event of a log I/O error. In
* either case, the BUI transaction has been successfully committed to make it
* this far. Therefore, we expect whoever committed the BUI to either construct
* and commit the BUD or drop the BUD's reference in the event of error. Simply
* drop the log's BUI reference now that the log is done with it.
*/
STATIC void
xfs_bui_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
xfs_bui_release(buip);
}
/*
* The BUI has been either committed or aborted if the transaction has been
* cancelled. If the transaction was cancelled, an BUD isn't going to be
* constructed and thus we free the BUI here directly.
*/
STATIC void
xfs_bui_item_release(
struct xfs_log_item *lip)
{
xfs_bui_release(BUI_ITEM(lip));
}
/*
* Allocate and initialize an bui item with the given number of extents.
*/
STATIC struct xfs_bui_log_item *
xfs_bui_init(
struct xfs_mount *mp)
{
struct xfs_bui_log_item *buip;
buip = kmem_cache_zalloc(xfs_bui_cache, GFP_KERNEL | __GFP_NOFAIL);
xfs_log_item_init(mp, &buip->bui_item, XFS_LI_BUI, &xfs_bui_item_ops);
buip->bui_format.bui_nextents = XFS_BUI_MAX_FAST_EXTENTS;
buip->bui_format.bui_id = (uintptr_t)(void *)buip;
atomic_set(&buip->bui_next_extent, 0);
atomic_set(&buip->bui_refcount, 2);
return buip;
}
static inline struct xfs_bud_log_item *BUD_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_bud_log_item, bud_item);
}
STATIC void
xfs_bud_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
*nvecs += 1;
*nbytes += sizeof(struct xfs_bud_log_format);
}
/*
* This is called to fill in the vector of log iovecs for the
* given bud log item. We use only 1 iovec, and we point that
* at the bud_log_format structure embedded in the bud item.
* It is at this point that we assert that all of the extent
* slots in the bud item have been filled.
*/
STATIC void
xfs_bud_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_bud_log_item *budp = BUD_ITEM(lip);
struct xfs_log_iovec *vecp = NULL;
budp->bud_format.bud_type = XFS_LI_BUD;
budp->bud_format.bud_size = 1;
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUD_FORMAT, &budp->bud_format,
sizeof(struct xfs_bud_log_format));
}
/*
* The BUD is either committed or aborted if the transaction is cancelled. If
* the transaction is cancelled, drop our reference to the BUI and free the
* BUD.
*/
STATIC void
xfs_bud_item_release(
struct xfs_log_item *lip)
{
struct xfs_bud_log_item *budp = BUD_ITEM(lip);
xfs_bui_release(budp->bud_buip);
kvfree(budp->bud_item.li_lv_shadow);
kmem_cache_free(xfs_bud_cache, budp);
}
static struct xfs_log_item *
xfs_bud_item_intent(
struct xfs_log_item *lip)
{
return &BUD_ITEM(lip)->bud_buip->bui_item;
}
static const struct xfs_item_ops xfs_bud_item_ops = {
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
XFS_ITEM_INTENT_DONE,
.iop_size = xfs_bud_item_size,
.iop_format = xfs_bud_item_format,
.iop_release = xfs_bud_item_release,
.iop_intent = xfs_bud_item_intent,
};
static inline struct xfs_bmap_intent *bi_entry(const struct list_head *e)
{
return list_entry(e, struct xfs_bmap_intent, bi_list);
}
/* Sort bmap intents by inode. */
static int
xfs_bmap_update_diff_items(
void *priv,
const struct list_head *a,
const struct list_head *b)
{
struct xfs_bmap_intent *ba = bi_entry(a);
struct xfs_bmap_intent *bb = bi_entry(b);
return ba->bi_owner->i_ino - bb->bi_owner->i_ino;
}
/* Log bmap updates in the intent item. */
STATIC void
xfs_bmap_update_log_item(
struct xfs_trans *tp,
struct xfs_bui_log_item *buip,
struct xfs_bmap_intent *bi)
{
uint next_extent;
struct xfs_map_extent *map;
/*
* atomic_inc_return gives us the value after the increment;
* we want to use it as an array index so we need to subtract 1 from
* it.
*/
next_extent = atomic_inc_return(&buip->bui_next_extent) - 1;
ASSERT(next_extent < buip->bui_format.bui_nextents);
map = &buip->bui_format.bui_extents[next_extent];
map->me_owner = bi->bi_owner->i_ino;
map->me_startblock = bi->bi_bmap.br_startblock;
map->me_startoff = bi->bi_bmap.br_startoff;
map->me_len = bi->bi_bmap.br_blockcount;
switch (bi->bi_type) {
case XFS_BMAP_MAP:
case XFS_BMAP_UNMAP:
map->me_flags = bi->bi_type;
break;
default:
ASSERT(0);
}
if (bi->bi_bmap.br_state == XFS_EXT_UNWRITTEN)
map->me_flags |= XFS_BMAP_EXTENT_UNWRITTEN;
if (bi->bi_whichfork == XFS_ATTR_FORK)
map->me_flags |= XFS_BMAP_EXTENT_ATTR_FORK;
if (xfs_ifork_is_realtime(bi->bi_owner, bi->bi_whichfork))
map->me_flags |= XFS_BMAP_EXTENT_REALTIME;
}
static struct xfs_log_item *
xfs_bmap_update_create_intent(
struct xfs_trans *tp,
struct list_head *items,
unsigned int count,
bool sort)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_bui_log_item *buip = xfs_bui_init(mp);
struct xfs_bmap_intent *bi;
ASSERT(count == XFS_BUI_MAX_FAST_EXTENTS);
if (sort)
list_sort(mp, items, xfs_bmap_update_diff_items);
list_for_each_entry(bi, items, bi_list)
xfs_bmap_update_log_item(tp, buip, bi);
return &buip->bui_item;
}
/* Get an BUD so we can process all the deferred bmap updates. */
static struct xfs_log_item *
xfs_bmap_update_create_done(
struct xfs_trans *tp,
struct xfs_log_item *intent,
unsigned int count)
{
struct xfs_bui_log_item *buip = BUI_ITEM(intent);
struct xfs_bud_log_item *budp;
budp = kmem_cache_zalloc(xfs_bud_cache, GFP_KERNEL | __GFP_NOFAIL);
xfs_log_item_init(tp->t_mountp, &budp->bud_item, XFS_LI_BUD,
&xfs_bud_item_ops);
budp->bud_buip = buip;
budp->bud_format.bud_bui_id = buip->bui_format.bui_id;
return &budp->bud_item;
}
/* Take a passive ref to the group containing the space we're mapping. */
static inline void
xfs_bmap_update_get_group(
struct xfs_mount *mp,
struct xfs_bmap_intent *bi)
{
enum xfs_group_type type = XG_TYPE_AG;
if (xfs_ifork_is_realtime(bi->bi_owner, bi->bi_whichfork))
type = XG_TYPE_RTG;
/*
* Bump the intent count on behalf of the deferred rmap and refcount
* intent items that that we can queue when we finish this bmap work.
* This new intent item will bump the intent count before the bmap
* intent drops the intent count, ensuring that the intent count
* remains nonzero across the transaction roll.
*/
bi->bi_group = xfs_group_intent_get(mp, bi->bi_bmap.br_startblock,
type);
}
/* Add this deferred BUI to the transaction. */
void
xfs_bmap_defer_add(
struct xfs_trans *tp,
struct xfs_bmap_intent *bi)
{
xfs_bmap_update_get_group(tp->t_mountp, bi);
/*
* Ensure the deferred mapping is pre-recorded in i_delayed_blks.
*
* Otherwise stat can report zero blocks for an inode that actually has
* data when the entire mapping is in the process of being overwritten
* using the out of place write path. This is undone in xfs_bmapi_remap
* after it has incremented di_nblocks for a successful operation.
*/
if (bi->bi_type == XFS_BMAP_MAP)
bi->bi_owner->i_delayed_blks += bi->bi_bmap.br_blockcount;
trace_xfs_bmap_defer(bi);
xfs_defer_add(tp, &bi->bi_list, &xfs_bmap_update_defer_type);
}
/* Cancel a deferred bmap update. */
STATIC void
xfs_bmap_update_cancel_item(
struct list_head *item)
{
struct xfs_bmap_intent *bi = bi_entry(item);
if (bi->bi_type == XFS_BMAP_MAP)
bi->bi_owner->i_delayed_blks -= bi->bi_bmap.br_blockcount;
xfs_group_intent_put(bi->bi_group);
kmem_cache_free(xfs_bmap_intent_cache, bi);
}
/* Process a deferred bmap update. */
STATIC int
xfs_bmap_update_finish_item(
struct xfs_trans *tp,
struct xfs_log_item *done,
struct list_head *item,
struct xfs_btree_cur **state)
{
struct xfs_bmap_intent *bi = bi_entry(item);
int error;
error = xfs_bmap_finish_one(tp, bi);
if (!error && bi->bi_bmap.br_blockcount > 0) {
ASSERT(bi->bi_type == XFS_BMAP_UNMAP);
return -EAGAIN;
}
xfs_bmap_update_cancel_item(item);
return error;
}
/* Abort all pending BUIs. */
STATIC void
xfs_bmap_update_abort_intent(
struct xfs_log_item *intent)
{
xfs_bui_release(BUI_ITEM(intent));
}
/* Is this recovered BUI ok? */
static inline bool
xfs_bui_validate(
struct xfs_mount *mp,
struct xfs_bui_log_item *buip)
{
struct xfs_map_extent *map;
/* Only one mapping operation per BUI... */
if (buip->bui_format.bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
return false;
map = &buip->bui_format.bui_extents[0];
if (map->me_flags & ~XFS_BMAP_EXTENT_FLAGS)
return false;
switch (map->me_flags & XFS_BMAP_EXTENT_TYPE_MASK) {
case XFS_BMAP_MAP:
case XFS_BMAP_UNMAP:
break;
default:
return false;
}
if (!xfs_verify_ino(mp, map->me_owner))
return false;
if (!xfs_verify_fileext(mp, map->me_startoff, map->me_len))
return false;
if (map->me_flags & XFS_BMAP_EXTENT_REALTIME)
return xfs_verify_rtbext(mp, map->me_startblock, map->me_len);
return xfs_verify_fsbext(mp, map->me_startblock, map->me_len);
}
static inline struct xfs_bmap_intent *
xfs_bui_recover_work(
struct xfs_mount *mp,
struct xfs_defer_pending *dfp,
struct xfs_inode **ipp,
struct xfs_map_extent *map)
{
struct xfs_bmap_intent *bi;
int error;
error = xlog_recover_iget(mp, map->me_owner, ipp);
if (error)
return ERR_PTR(error);
bi = kmem_cache_zalloc(xfs_bmap_intent_cache,
GFP_KERNEL | __GFP_NOFAIL);
bi->bi_whichfork = (map->me_flags & XFS_BMAP_EXTENT_ATTR_FORK) ?
XFS_ATTR_FORK : XFS_DATA_FORK;
bi->bi_type = map->me_flags & XFS_BMAP_EXTENT_TYPE_MASK;
bi->bi_bmap.br_startblock = map->me_startblock;
bi->bi_bmap.br_startoff = map->me_startoff;
bi->bi_bmap.br_blockcount = map->me_len;
bi->bi_bmap.br_state = (map->me_flags & XFS_BMAP_EXTENT_UNWRITTEN) ?
XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
bi->bi_owner = *ipp;
xfs_bmap_update_get_group(mp, bi);
/* see xfs_bmap_defer_add for details */
if (bi->bi_type == XFS_BMAP_MAP)
bi->bi_owner->i_delayed_blks += bi->bi_bmap.br_blockcount;
xfs_defer_add_item(dfp, &bi->bi_list);
return bi;
}
/*
* Process a bmap update intent item that was recovered from the log.
* We need to update some inode's bmbt.
*/
STATIC int
xfs_bmap_recover_work(
struct xfs_defer_pending *dfp,
struct list_head *capture_list)
{
struct xfs_trans_res resv;
struct xfs_log_item *lip = dfp->dfp_intent;
struct xfs_bui_log_item *buip = BUI_ITEM(lip);
struct xfs_trans *tp;
struct xfs_inode *ip = NULL;
struct xfs_mount *mp = lip->li_log->l_mp;
struct xfs_map_extent *map;
struct xfs_bmap_intent *work;
int iext_delta;
int error = 0;
if (!xfs_bui_validate(mp, buip)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
&buip->bui_format, sizeof(buip->bui_format));
return -EFSCORRUPTED;
}
map = &buip->bui_format.bui_extents[0];
work = xfs_bui_recover_work(mp, dfp, &ip, map);
if (IS_ERR(work))
return PTR_ERR(work);
/* Allocate transaction and do the work. */
resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
error = xfs_trans_alloc(mp, &resv,
XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK), 0, 0, &tp);
if (error)
goto err_rele;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
if (!!(map->me_flags & XFS_BMAP_EXTENT_REALTIME) !=
xfs_ifork_is_realtime(ip, work->bi_whichfork)) {
error = -EFSCORRUPTED;
goto err_cancel;
}
if (work->bi_type == XFS_BMAP_MAP)
iext_delta = XFS_IEXT_ADD_NOSPLIT_CNT;
else
iext_delta = XFS_IEXT_PUNCH_HOLE_CNT;
error = xfs_iext_count_extend(tp, ip, work->bi_whichfork, iext_delta);
if (error)
goto err_cancel;
error = xlog_recover_finish_intent(tp, dfp);
if (error == -EFSCORRUPTED)
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
&buip->bui_format, sizeof(buip->bui_format));
if (error)
goto err_cancel;
/*
* Commit transaction, which frees the transaction and saves the inode
* for later replay activities.
*/
error = xfs_defer_ops_capture_and_commit(tp, capture_list);
if (error)
goto err_unlock;
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_irele(ip);
return 0;
err_cancel:
xfs_trans_cancel(tp);
err_unlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
err_rele:
xfs_irele(ip);
return error;
}
/* Relog an intent item to push the log tail forward. */
static struct xfs_log_item *
xfs_bmap_relog_intent(
struct xfs_trans *tp,
struct xfs_log_item *intent,
struct xfs_log_item *done_item)
{
struct xfs_bui_log_item *buip;
struct xfs_map_extent *map;
unsigned int count;
count = BUI_ITEM(intent)->bui_format.bui_nextents;
map = BUI_ITEM(intent)->bui_format.bui_extents;
buip = xfs_bui_init(tp->t_mountp);
memcpy(buip->bui_format.bui_extents, map, count * sizeof(*map));
atomic_set(&buip->bui_next_extent, count);
return &buip->bui_item;
}
const struct xfs_defer_op_type xfs_bmap_update_defer_type = {
.name = "bmap",
.max_items = XFS_BUI_MAX_FAST_EXTENTS,
.create_intent = xfs_bmap_update_create_intent,
.abort_intent = xfs_bmap_update_abort_intent,
.create_done = xfs_bmap_update_create_done,
.finish_item = xfs_bmap_update_finish_item,
.cancel_item = xfs_bmap_update_cancel_item,
.recover_work = xfs_bmap_recover_work,
.relog_intent = xfs_bmap_relog_intent,
};
STATIC bool
xfs_bui_item_match(
struct xfs_log_item *lip,
uint64_t intent_id)
{
return BUI_ITEM(lip)->bui_format.bui_id == intent_id;
}
static const struct xfs_item_ops xfs_bui_item_ops = {
.flags = XFS_ITEM_INTENT,
.iop_size = xfs_bui_item_size,
.iop_format = xfs_bui_item_format,
.iop_unpin = xfs_bui_item_unpin,
.iop_release = xfs_bui_item_release,
.iop_match = xfs_bui_item_match,
};
static inline void
xfs_bui_copy_format(
struct xfs_bui_log_format *dst,
const struct xfs_bui_log_format *src)
{
unsigned int i;
memcpy(dst, src, offsetof(struct xfs_bui_log_format, bui_extents));
for (i = 0; i < src->bui_nextents; i++)
memcpy(&dst->bui_extents[i], &src->bui_extents[i],
sizeof(struct xfs_map_extent));
}
/*
* This routine is called to create an in-core extent bmap update
* item from the bui format structure which was logged on disk.
* It allocates an in-core bui, copies the extents from the format
* structure into it, and adds the bui to the AIL with the given
* LSN.
*/
STATIC int
xlog_recover_bui_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_mount *mp = log->l_mp;
struct xfs_bui_log_item *buip;
struct xfs_bui_log_format *bui_formatp;
size_t len;
bui_formatp = item->ri_buf[0].i_addr;
if (item->ri_buf[0].i_len < xfs_bui_log_format_sizeof(0)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
len = xfs_bui_log_format_sizeof(bui_formatp->bui_nextents);
if (item->ri_buf[0].i_len != len) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
buip = xfs_bui_init(mp);
xfs_bui_copy_format(&buip->bui_format, bui_formatp);
atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
xlog_recover_intent_item(log, &buip->bui_item, lsn,
&xfs_bmap_update_defer_type);
return 0;
}
const struct xlog_recover_item_ops xlog_bui_item_ops = {
.item_type = XFS_LI_BUI,
.commit_pass2 = xlog_recover_bui_commit_pass2,
};
/*
* This routine is called when an BUD format structure is found in a committed
* transaction in the log. Its purpose is to cancel the corresponding BUI if it
* was still in the log. To do this it searches the AIL for the BUI with an id
* equal to that in the BUD format structure. If we find it we drop the BUD
* reference, which removes the BUI from the AIL and frees it.
*/
STATIC int
xlog_recover_bud_commit_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
struct xfs_bud_log_format *bud_formatp;
bud_formatp = item->ri_buf[0].i_addr;
if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) {
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
return -EFSCORRUPTED;
}
xlog_recover_release_intent(log, XFS_LI_BUI, bud_formatp->bud_bui_id);
return 0;
}
const struct xlog_recover_item_ops xlog_bud_item_ops = {
.item_type = XFS_LI_BUD,
.commit_pass2 = xlog_recover_bud_commit_pass2,
};