mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-28 16:56:26 +00:00
4c8900bbf1
Teach the EFI mechanism how to free realtime extents. We're going to need this to enforce proper ordering of operations when we enable realtime rmap. Declare a new log intent item type (XFS_LI_EFI_RT) and a separate defer ops for rt extents. This keeps the ondisk artifacts and processing code completely separate between the rt and non-rt cases. Hopefully this will make it easier to debug filesystem problems. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
1004 lines
28 KiB
C
1004 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_extfree_item.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_log_recover.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_rtbitmap.h"
|
|
#include "xfs_rtgroup.h"
|
|
|
|
struct kmem_cache *xfs_efi_cache;
|
|
struct kmem_cache *xfs_efd_cache;
|
|
|
|
static const struct xfs_item_ops xfs_efi_item_ops;
|
|
|
|
static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efi_log_item, efi_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efi_item_free(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
kvfree(efip->efi_item.li_lv_shadow);
|
|
if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
|
|
kfree(efip);
|
|
else
|
|
kmem_cache_free(xfs_efi_cache, efip);
|
|
}
|
|
|
|
/*
|
|
* Freeing the efi requires that we remove it from the AIL if it has already
|
|
* been placed there. However, the EFI may not yet have been placed in the AIL
|
|
* when called by xfs_efi_release() from EFD processing due to the ordering of
|
|
* committed vs unpin operations in bulk insert operations. Hence the reference
|
|
* count to ensure only the last caller frees the EFI.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_release(
|
|
struct xfs_efi_log_item *efip)
|
|
{
|
|
ASSERT(atomic_read(&efip->efi_refcount) > 0);
|
|
if (!atomic_dec_and_test(&efip->efi_refcount))
|
|
return;
|
|
|
|
xfs_trans_ail_delete(&efip->efi_item, 0);
|
|
xfs_efi_item_free(efip);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efi_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efi log item. We use only 1 iovec, and we point that
|
|
* at the efi_log_format structure embedded in the efi item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efi item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(atomic_read(&efip->efi_next_extent) ==
|
|
efip->efi_format.efi_nextents);
|
|
ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
|
|
|
|
efip->efi_format.efi_type = lip->li_type;
|
|
efip->efi_format.efi_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format,
|
|
xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
|
|
}
|
|
|
|
/*
|
|
* The unpin operation is the last place an EFI is manipulated in the log. It is
|
|
* either inserted in the AIL or aborted in the event of a log I/O error. In
|
|
* either case, the EFI transaction has been successfully committed to make it
|
|
* this far. Therefore, we expect whoever committed the EFI to either construct
|
|
* and commit the EFD or drop the EFD's reference in the event of error. Simply
|
|
* drop the log's EFI reference now that the log is done with it.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_unpin(
|
|
struct xfs_log_item *lip,
|
|
int remove)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
xfs_efi_release(efip);
|
|
}
|
|
|
|
/*
|
|
* The EFI has been either committed or aborted if the transaction has been
|
|
* cancelled. If the transaction was cancelled, an EFD isn't going to be
|
|
* constructed and thus we free the EFI here directly.
|
|
*/
|
|
STATIC void
|
|
xfs_efi_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_efi_release(EFI_ITEM(lip));
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize an efi item with the given number of extents.
|
|
*/
|
|
STATIC struct xfs_efi_log_item *
|
|
xfs_efi_init(
|
|
struct xfs_mount *mp,
|
|
unsigned short item_type,
|
|
uint nextents)
|
|
{
|
|
struct xfs_efi_log_item *efip;
|
|
|
|
ASSERT(item_type == XFS_LI_EFI || item_type == XFS_LI_EFI_RT);
|
|
ASSERT(nextents > 0);
|
|
|
|
if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
|
|
efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
} else {
|
|
efip = kmem_cache_zalloc(xfs_efi_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
}
|
|
|
|
xfs_log_item_init(mp, &efip->efi_item, item_type, &xfs_efi_item_ops);
|
|
efip->efi_format.efi_nextents = nextents;
|
|
efip->efi_format.efi_id = (uintptr_t)(void *)efip;
|
|
atomic_set(&efip->efi_next_extent, 0);
|
|
atomic_set(&efip->efi_refcount, 2);
|
|
|
|
return efip;
|
|
}
|
|
|
|
/*
|
|
* Copy an EFI format buffer from the given buf, and into the destination
|
|
* EFI format structure.
|
|
* The given buffer can be in 32 bit or 64 bit form (which has different padding),
|
|
* one of which will be the native format for this kernel.
|
|
* It will handle the conversion of formats if necessary.
|
|
*/
|
|
STATIC int
|
|
xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
|
|
{
|
|
xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
|
|
uint i;
|
|
uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
|
|
uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
|
|
uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
|
|
|
|
if (buf->i_len == len) {
|
|
memcpy(dst_efi_fmt, src_efi_fmt,
|
|
offsetof(struct xfs_efi_log_format, efi_extents));
|
|
for (i = 0; i < src_efi_fmt->efi_nextents; i++)
|
|
memcpy(&dst_efi_fmt->efi_extents[i],
|
|
&src_efi_fmt->efi_extents[i],
|
|
sizeof(struct xfs_extent));
|
|
return 0;
|
|
} else if (buf->i_len == len32) {
|
|
xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_32->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_32->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
} else if (buf->i_len == len64) {
|
|
xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
|
|
|
|
dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
|
|
dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
|
|
dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
|
|
dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
|
|
for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
|
|
dst_efi_fmt->efi_extents[i].ext_start =
|
|
src_efi_fmt_64->efi_extents[i].ext_start;
|
|
dst_efi_fmt->efi_extents[i].ext_len =
|
|
src_efi_fmt_64->efi_extents[i].ext_len;
|
|
}
|
|
return 0;
|
|
}
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
|
|
buf->i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
|
|
{
|
|
return container_of(lip, struct xfs_efd_log_item, efd_item);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_free(struct xfs_efd_log_item *efdp)
|
|
{
|
|
kvfree(efdp->efd_item.li_lv_shadow);
|
|
if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
|
|
kfree(efdp);
|
|
else
|
|
kmem_cache_free(xfs_efd_cache, efdp);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_efd_item_size(
|
|
struct xfs_log_item *lip,
|
|
int *nvecs,
|
|
int *nbytes)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
|
|
*nvecs += 1;
|
|
*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
|
|
}
|
|
|
|
/*
|
|
* This is called to fill in the vector of log iovecs for the
|
|
* given efd log item. We use only 1 iovec, and we point that
|
|
* at the efd_log_format structure embedded in the efd item.
|
|
* It is at this point that we assert that all of the extent
|
|
* slots in the efd item have been filled.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_format(
|
|
struct xfs_log_item *lip,
|
|
struct xfs_log_vec *lv)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
struct xfs_log_iovec *vecp = NULL;
|
|
|
|
ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
|
|
ASSERT(lip->li_type == XFS_LI_EFD || lip->li_type == XFS_LI_EFD_RT);
|
|
|
|
efdp->efd_format.efd_type = lip->li_type;
|
|
efdp->efd_format.efd_size = 1;
|
|
|
|
xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format,
|
|
xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
|
|
}
|
|
|
|
/*
|
|
* The EFD is either committed or aborted if the transaction is cancelled. If
|
|
* the transaction is cancelled, drop our reference to the EFI and free the EFD.
|
|
*/
|
|
STATIC void
|
|
xfs_efd_item_release(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
|
|
|
|
xfs_efi_release(efdp->efd_efip);
|
|
xfs_efd_item_free(efdp);
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_efd_item_intent(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
return &EFD_ITEM(lip)->efd_efip->efi_item;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_efd_item_ops = {
|
|
.flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
|
|
XFS_ITEM_INTENT_DONE,
|
|
.iop_size = xfs_efd_item_size,
|
|
.iop_format = xfs_efd_item_format,
|
|
.iop_release = xfs_efd_item_release,
|
|
.iop_intent = xfs_efd_item_intent,
|
|
};
|
|
|
|
static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
|
|
{
|
|
return list_entry(e, struct xfs_extent_free_item, xefi_list);
|
|
}
|
|
|
|
static inline bool
|
|
xfs_efi_item_isrt(const struct xfs_log_item *lip)
|
|
{
|
|
ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
|
|
|
|
return lip->li_type == XFS_LI_EFI_RT;
|
|
}
|
|
|
|
/*
|
|
* Fill the EFD with all extents from the EFI when we need to roll the
|
|
* transaction and continue with a new EFI.
|
|
*
|
|
* This simply copies all the extents in the EFI to the EFD rather than make
|
|
* assumptions about which extents in the EFI have already been processed. We
|
|
* currently keep the xefi list in the same order as the EFI extent list, but
|
|
* that may not always be the case. Copying everything avoids leaving a landmine
|
|
* were we fail to cancel all the extents in an EFI if the xefi list is
|
|
* processed in a different order to the extents in the EFI.
|
|
*/
|
|
static void
|
|
xfs_efd_from_efi(
|
|
struct xfs_efd_log_item *efdp)
|
|
{
|
|
struct xfs_efi_log_item *efip = efdp->efd_efip;
|
|
uint i;
|
|
|
|
ASSERT(efip->efi_format.efi_nextents > 0);
|
|
ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
|
|
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
efdp->efd_format.efd_extents[i] =
|
|
efip->efi_format.efi_extents[i];
|
|
}
|
|
efdp->efd_next_extent = efip->efi_format.efi_nextents;
|
|
}
|
|
|
|
static void
|
|
xfs_efd_add_extent(
|
|
struct xfs_efd_log_item *efdp,
|
|
struct xfs_extent_free_item *xefi)
|
|
{
|
|
struct xfs_extent *extp;
|
|
|
|
ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
|
|
|
|
extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
|
|
extp->ext_start = xefi->xefi_startblock;
|
|
extp->ext_len = xefi->xefi_blockcount;
|
|
|
|
efdp->efd_next_extent++;
|
|
}
|
|
|
|
/* Sort bmap items by AG. */
|
|
static int
|
|
xfs_extent_free_diff_items(
|
|
void *priv,
|
|
const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct xfs_extent_free_item *ra = xefi_entry(a);
|
|
struct xfs_extent_free_item *rb = xefi_entry(b);
|
|
|
|
return ra->xefi_group->xg_gno - rb->xefi_group->xg_gno;
|
|
}
|
|
|
|
/* Log a free extent to the intent item. */
|
|
STATIC void
|
|
xfs_extent_free_log_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_efi_log_item *efip,
|
|
struct xfs_extent_free_item *xefi)
|
|
{
|
|
uint next_extent;
|
|
struct xfs_extent *extp;
|
|
|
|
/*
|
|
* atomic_inc_return gives us the value after the increment;
|
|
* we want to use it as an array index so we need to subtract 1 from
|
|
* it.
|
|
*/
|
|
next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
|
|
ASSERT(next_extent < efip->efi_format.efi_nextents);
|
|
extp = &efip->efi_format.efi_extents[next_extent];
|
|
extp->ext_start = xefi->xefi_startblock;
|
|
extp->ext_len = xefi->xefi_blockcount;
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
__xfs_extent_free_create_intent(
|
|
struct xfs_trans *tp,
|
|
struct list_head *items,
|
|
unsigned int count,
|
|
bool sort,
|
|
unsigned short item_type)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_efi_log_item *efip;
|
|
struct xfs_extent_free_item *xefi;
|
|
|
|
ASSERT(count > 0);
|
|
|
|
efip = xfs_efi_init(mp, item_type, count);
|
|
if (sort)
|
|
list_sort(mp, items, xfs_extent_free_diff_items);
|
|
list_for_each_entry(xefi, items, xefi_list)
|
|
xfs_extent_free_log_item(tp, efip, xefi);
|
|
return &efip->efi_item;
|
|
}
|
|
|
|
static struct xfs_log_item *
|
|
xfs_extent_free_create_intent(
|
|
struct xfs_trans *tp,
|
|
struct list_head *items,
|
|
unsigned int count,
|
|
bool sort)
|
|
{
|
|
return __xfs_extent_free_create_intent(tp, items, count, sort,
|
|
XFS_LI_EFI);
|
|
}
|
|
|
|
static inline unsigned short
|
|
xfs_efd_type_from_efi(const struct xfs_efi_log_item *efip)
|
|
{
|
|
return xfs_efi_item_isrt(&efip->efi_item) ? XFS_LI_EFD_RT : XFS_LI_EFD;
|
|
}
|
|
|
|
/* Get an EFD so we can process all the free extents. */
|
|
static struct xfs_log_item *
|
|
xfs_extent_free_create_done(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *intent,
|
|
unsigned int count)
|
|
{
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(intent);
|
|
struct xfs_efd_log_item *efdp;
|
|
|
|
ASSERT(count > 0);
|
|
|
|
if (count > XFS_EFD_MAX_FAST_EXTENTS) {
|
|
efdp = kzalloc(xfs_efd_log_item_sizeof(count),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
} else {
|
|
efdp = kmem_cache_zalloc(xfs_efd_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
}
|
|
|
|
xfs_log_item_init(tp->t_mountp, &efdp->efd_item,
|
|
xfs_efd_type_from_efi(efip), &xfs_efd_item_ops);
|
|
efdp->efd_efip = efip;
|
|
efdp->efd_format.efd_nextents = count;
|
|
efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
|
|
|
|
return &efdp->efd_item;
|
|
}
|
|
|
|
static inline const struct xfs_defer_op_type *
|
|
xefi_ops(
|
|
struct xfs_extent_free_item *xefi)
|
|
{
|
|
if (xfs_efi_is_realtime(xefi))
|
|
return &xfs_rtextent_free_defer_type;
|
|
if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
|
|
return &xfs_agfl_free_defer_type;
|
|
return &xfs_extent_free_defer_type;
|
|
}
|
|
|
|
/* Add this deferred EFI to the transaction. */
|
|
void
|
|
xfs_extent_free_defer_add(
|
|
struct xfs_trans *tp,
|
|
struct xfs_extent_free_item *xefi,
|
|
struct xfs_defer_pending **dfpp)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
|
|
xefi->xefi_group = xfs_group_intent_get(mp, xefi->xefi_startblock,
|
|
xfs_efi_is_realtime(xefi) ? XG_TYPE_RTG : XG_TYPE_AG);
|
|
|
|
trace_xfs_extent_free_defer(mp, xefi);
|
|
*dfpp = xfs_defer_add(tp, &xefi->xefi_list, xefi_ops(xefi));
|
|
}
|
|
|
|
/* Cancel a free extent. */
|
|
STATIC void
|
|
xfs_extent_free_cancel_item(
|
|
struct list_head *item)
|
|
{
|
|
struct xfs_extent_free_item *xefi = xefi_entry(item);
|
|
|
|
xfs_group_intent_put(xefi->xefi_group);
|
|
kmem_cache_free(xfs_extfree_item_cache, xefi);
|
|
}
|
|
|
|
/* Process a free extent. */
|
|
STATIC int
|
|
xfs_extent_free_finish_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *done,
|
|
struct list_head *item,
|
|
struct xfs_btree_cur **state)
|
|
{
|
|
struct xfs_owner_info oinfo = { };
|
|
struct xfs_extent_free_item *xefi = xefi_entry(item);
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_agblock_t agbno;
|
|
int error = 0;
|
|
|
|
agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
|
|
|
|
oinfo.oi_owner = xefi->xefi_owner;
|
|
if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
|
|
oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
|
|
if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
|
|
oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
|
|
|
|
trace_xfs_extent_free_deferred(mp, xefi);
|
|
|
|
/*
|
|
* If we need a new transaction to make progress, the caller will log a
|
|
* new EFI with the current contents. It will also log an EFD to cancel
|
|
* the existing EFI, and so we need to copy all the unprocessed extents
|
|
* in this EFI to the EFD so this works correctly.
|
|
*/
|
|
if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
|
|
error = __xfs_free_extent(tp, to_perag(xefi->xefi_group), agbno,
|
|
xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
|
|
xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
|
|
if (error == -EAGAIN) {
|
|
xfs_efd_from_efi(efdp);
|
|
return error;
|
|
}
|
|
|
|
xfs_efd_add_extent(efdp, xefi);
|
|
xfs_extent_free_cancel_item(item);
|
|
return error;
|
|
}
|
|
|
|
/* Abort all pending EFIs. */
|
|
STATIC void
|
|
xfs_extent_free_abort_intent(
|
|
struct xfs_log_item *intent)
|
|
{
|
|
xfs_efi_release(EFI_ITEM(intent));
|
|
}
|
|
|
|
/*
|
|
* AGFL blocks are accounted differently in the reserve pools and are not
|
|
* inserted into the busy extent list.
|
|
*/
|
|
STATIC int
|
|
xfs_agfl_free_finish_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *done,
|
|
struct list_head *item,
|
|
struct xfs_btree_cur **state)
|
|
{
|
|
struct xfs_owner_info oinfo = { };
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
|
|
struct xfs_extent_free_item *xefi = xefi_entry(item);
|
|
struct xfs_buf *agbp;
|
|
int error;
|
|
xfs_agblock_t agbno;
|
|
|
|
ASSERT(xefi->xefi_blockcount == 1);
|
|
agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
|
|
oinfo.oi_owner = xefi->xefi_owner;
|
|
|
|
trace_xfs_agfl_free_deferred(mp, xefi);
|
|
|
|
error = xfs_alloc_read_agf(to_perag(xefi->xefi_group), tp, 0, &agbp);
|
|
if (!error)
|
|
error = xfs_free_ag_extent(tp, agbp, agbno, 1, &oinfo,
|
|
XFS_AG_RESV_AGFL);
|
|
|
|
xfs_efd_add_extent(efdp, xefi);
|
|
xfs_extent_free_cancel_item(&xefi->xefi_list);
|
|
return error;
|
|
}
|
|
|
|
/* Is this recovered EFI ok? */
|
|
static inline bool
|
|
xfs_efi_validate_ext(
|
|
struct xfs_mount *mp,
|
|
bool isrt,
|
|
struct xfs_extent *extp)
|
|
{
|
|
if (isrt)
|
|
return xfs_verify_rtbext(mp, extp->ext_start, extp->ext_len);
|
|
|
|
return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
|
|
}
|
|
|
|
static inline void
|
|
xfs_efi_recover_work(
|
|
struct xfs_mount *mp,
|
|
struct xfs_defer_pending *dfp,
|
|
bool isrt,
|
|
struct xfs_extent *extp)
|
|
{
|
|
struct xfs_extent_free_item *xefi;
|
|
|
|
xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
xefi->xefi_startblock = extp->ext_start;
|
|
xefi->xefi_blockcount = extp->ext_len;
|
|
xefi->xefi_agresv = XFS_AG_RESV_NONE;
|
|
xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
|
|
xefi->xefi_group = xfs_group_intent_get(mp, extp->ext_start,
|
|
isrt ? XG_TYPE_RTG : XG_TYPE_AG);
|
|
if (isrt)
|
|
xefi->xefi_flags |= XFS_EFI_REALTIME;
|
|
|
|
xfs_defer_add_item(dfp, &xefi->xefi_list);
|
|
}
|
|
|
|
/*
|
|
* Process an extent free intent item that was recovered from
|
|
* the log. We need to free the extents that it describes.
|
|
*/
|
|
STATIC int
|
|
xfs_extent_free_recover_work(
|
|
struct xfs_defer_pending *dfp,
|
|
struct list_head *capture_list)
|
|
{
|
|
struct xfs_trans_res resv;
|
|
struct xfs_log_item *lip = dfp->dfp_intent;
|
|
struct xfs_efi_log_item *efip = EFI_ITEM(lip);
|
|
struct xfs_mount *mp = lip->li_log->l_mp;
|
|
struct xfs_trans *tp;
|
|
int i;
|
|
int error = 0;
|
|
bool isrt = xfs_efi_item_isrt(lip);
|
|
|
|
/*
|
|
* First check the validity of the extents described by the EFI. If
|
|
* any are bad, then assume that all are bad and just toss the EFI.
|
|
* Mixing RT and non-RT extents in the same EFI item is not allowed.
|
|
*/
|
|
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
|
|
if (!xfs_efi_validate_ext(mp, isrt,
|
|
&efip->efi_format.efi_extents[i])) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
&efip->efi_format,
|
|
sizeof(efip->efi_format));
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xfs_efi_recover_work(mp, dfp, isrt,
|
|
&efip->efi_format.efi_extents[i]);
|
|
}
|
|
|
|
resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
|
|
error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xlog_recover_finish_intent(tp, dfp);
|
|
if (error == -EFSCORRUPTED)
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
&efip->efi_format,
|
|
sizeof(efip->efi_format));
|
|
if (error)
|
|
goto abort_error;
|
|
|
|
return xfs_defer_ops_capture_and_commit(tp, capture_list);
|
|
|
|
abort_error:
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
/* Relog an intent item to push the log tail forward. */
|
|
static struct xfs_log_item *
|
|
xfs_extent_free_relog_intent(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *intent,
|
|
struct xfs_log_item *done_item)
|
|
{
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(done_item);
|
|
struct xfs_efi_log_item *efip;
|
|
struct xfs_extent *extp;
|
|
unsigned int count;
|
|
|
|
count = EFI_ITEM(intent)->efi_format.efi_nextents;
|
|
extp = EFI_ITEM(intent)->efi_format.efi_extents;
|
|
|
|
ASSERT(intent->li_type == XFS_LI_EFI || intent->li_type == XFS_LI_EFI_RT);
|
|
|
|
efdp->efd_next_extent = count;
|
|
memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
|
|
|
|
efip = xfs_efi_init(tp->t_mountp, intent->li_type, count);
|
|
memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
|
|
atomic_set(&efip->efi_next_extent, count);
|
|
|
|
return &efip->efi_item;
|
|
}
|
|
|
|
const struct xfs_defer_op_type xfs_extent_free_defer_type = {
|
|
.name = "extent_free",
|
|
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
|
|
.create_intent = xfs_extent_free_create_intent,
|
|
.abort_intent = xfs_extent_free_abort_intent,
|
|
.create_done = xfs_extent_free_create_done,
|
|
.finish_item = xfs_extent_free_finish_item,
|
|
.cancel_item = xfs_extent_free_cancel_item,
|
|
.recover_work = xfs_extent_free_recover_work,
|
|
.relog_intent = xfs_extent_free_relog_intent,
|
|
};
|
|
|
|
/* sub-type with special handling for AGFL deferred frees */
|
|
const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
|
|
.name = "agfl_free",
|
|
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
|
|
.create_intent = xfs_extent_free_create_intent,
|
|
.abort_intent = xfs_extent_free_abort_intent,
|
|
.create_done = xfs_extent_free_create_done,
|
|
.finish_item = xfs_agfl_free_finish_item,
|
|
.cancel_item = xfs_extent_free_cancel_item,
|
|
.recover_work = xfs_extent_free_recover_work,
|
|
.relog_intent = xfs_extent_free_relog_intent,
|
|
};
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
/* Create a realtime extent freeing */
|
|
static struct xfs_log_item *
|
|
xfs_rtextent_free_create_intent(
|
|
struct xfs_trans *tp,
|
|
struct list_head *items,
|
|
unsigned int count,
|
|
bool sort)
|
|
{
|
|
return __xfs_extent_free_create_intent(tp, items, count, sort,
|
|
XFS_LI_EFI_RT);
|
|
}
|
|
|
|
/* Process a free realtime extent. */
|
|
STATIC int
|
|
xfs_rtextent_free_finish_item(
|
|
struct xfs_trans *tp,
|
|
struct xfs_log_item *done,
|
|
struct list_head *item,
|
|
struct xfs_btree_cur **state)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_extent_free_item *xefi = xefi_entry(item);
|
|
struct xfs_efd_log_item *efdp = EFD_ITEM(done);
|
|
struct xfs_rtgroup **rtgp = (struct xfs_rtgroup **)state;
|
|
int error = 0;
|
|
|
|
trace_xfs_extent_free_deferred(mp, xefi);
|
|
|
|
if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) {
|
|
if (*rtgp != to_rtg(xefi->xefi_group)) {
|
|
*rtgp = to_rtg(xefi->xefi_group);
|
|
xfs_rtgroup_lock(*rtgp, XFS_RTGLOCK_BITMAP);
|
|
xfs_rtgroup_trans_join(tp, *rtgp,
|
|
XFS_RTGLOCK_BITMAP);
|
|
}
|
|
error = xfs_rtfree_blocks(tp, *rtgp,
|
|
xefi->xefi_startblock, xefi->xefi_blockcount);
|
|
}
|
|
if (error == -EAGAIN) {
|
|
xfs_efd_from_efi(efdp);
|
|
return error;
|
|
}
|
|
|
|
xfs_efd_add_extent(efdp, xefi);
|
|
xfs_extent_free_cancel_item(item);
|
|
return error;
|
|
}
|
|
|
|
const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
|
|
.name = "rtextent_free",
|
|
.max_items = XFS_EFI_MAX_FAST_EXTENTS,
|
|
.create_intent = xfs_rtextent_free_create_intent,
|
|
.abort_intent = xfs_extent_free_abort_intent,
|
|
.create_done = xfs_extent_free_create_done,
|
|
.finish_item = xfs_rtextent_free_finish_item,
|
|
.cancel_item = xfs_extent_free_cancel_item,
|
|
.recover_work = xfs_extent_free_recover_work,
|
|
.relog_intent = xfs_extent_free_relog_intent,
|
|
};
|
|
#else
|
|
const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
|
|
.name = "rtextent_free",
|
|
};
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
STATIC bool
|
|
xfs_efi_item_match(
|
|
struct xfs_log_item *lip,
|
|
uint64_t intent_id)
|
|
{
|
|
return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
|
|
}
|
|
|
|
static const struct xfs_item_ops xfs_efi_item_ops = {
|
|
.flags = XFS_ITEM_INTENT,
|
|
.iop_size = xfs_efi_item_size,
|
|
.iop_format = xfs_efi_item_format,
|
|
.iop_unpin = xfs_efi_item_unpin,
|
|
.iop_release = xfs_efi_item_release,
|
|
.iop_match = xfs_efi_item_match,
|
|
};
|
|
|
|
/*
|
|
* This routine is called to create an in-core extent free intent
|
|
* item from the efi format structure which was logged on disk.
|
|
* It allocates an in-core efi, copies the extents from the format
|
|
* structure into it, and adds the efi to the AIL with the given
|
|
* LSN.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_efi_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_efi_log_item *efip;
|
|
struct xfs_efi_log_format *efi_formatp;
|
|
int error;
|
|
|
|
efi_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
|
|
error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
|
|
if (error) {
|
|
xfs_efi_item_free(efip);
|
|
return error;
|
|
}
|
|
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
|
|
|
|
xlog_recover_intent_item(log, &efip->efi_item, lsn,
|
|
&xfs_extent_free_defer_type);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_efi_item_ops = {
|
|
.item_type = XFS_LI_EFI,
|
|
.commit_pass2 = xlog_recover_efi_commit_pass2,
|
|
};
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
STATIC int
|
|
xlog_recover_rtefi_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
struct xfs_efi_log_item *efip;
|
|
struct xfs_efi_log_format *efi_formatp;
|
|
int error;
|
|
|
|
efi_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
|
|
error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
|
|
if (error) {
|
|
xfs_efi_item_free(efip);
|
|
return error;
|
|
}
|
|
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
|
|
|
|
xlog_recover_intent_item(log, &efip->efi_item, lsn,
|
|
&xfs_rtextent_free_defer_type);
|
|
return 0;
|
|
}
|
|
#else
|
|
STATIC int
|
|
xlog_recover_rtefi_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
#endif
|
|
|
|
const struct xlog_recover_item_ops xlog_rtefi_item_ops = {
|
|
.item_type = XFS_LI_EFI_RT,
|
|
.commit_pass2 = xlog_recover_rtefi_commit_pass2,
|
|
};
|
|
|
|
/*
|
|
* This routine is called when an EFD format structure is found in a committed
|
|
* transaction in the log. Its purpose is to cancel the corresponding EFI if it
|
|
* was still in the log. To do this it searches the AIL for the EFI with an id
|
|
* equal to that in the EFD format structure. If we find it we drop the EFD
|
|
* reference, which removes the EFI from the AIL and frees it.
|
|
*/
|
|
STATIC int
|
|
xlog_recover_efd_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_efd_log_format *efd_formatp;
|
|
int buflen = item->ri_buf[0].i_len;
|
|
|
|
efd_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (buflen < sizeof(struct xfs_efd_log_format)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
efd_formatp, buflen);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
|
|
efd_formatp->efd_nextents) &&
|
|
item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
|
|
efd_formatp->efd_nextents)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
efd_formatp, buflen);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
|
|
return 0;
|
|
}
|
|
|
|
const struct xlog_recover_item_ops xlog_efd_item_ops = {
|
|
.item_type = XFS_LI_EFD,
|
|
.commit_pass2 = xlog_recover_efd_commit_pass2,
|
|
};
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
STATIC int
|
|
xlog_recover_rtefd_commit_pass2(
|
|
struct xlog *log,
|
|
struct list_head *buffer_list,
|
|
struct xlog_recover_item *item,
|
|
xfs_lsn_t lsn)
|
|
{
|
|
struct xfs_efd_log_format *efd_formatp;
|
|
int buflen = item->ri_buf[0].i_len;
|
|
|
|
efd_formatp = item->ri_buf[0].i_addr;
|
|
|
|
if (buflen < sizeof(struct xfs_efd_log_format)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
efd_formatp, buflen);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
|
|
efd_formatp->efd_nextents) &&
|
|
item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
|
|
efd_formatp->efd_nextents)) {
|
|
XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
|
|
efd_formatp, buflen);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
xlog_recover_release_intent(log, XFS_LI_EFI_RT,
|
|
efd_formatp->efd_efi_id);
|
|
return 0;
|
|
}
|
|
#else
|
|
# define xlog_recover_rtefd_commit_pass2 xlog_recover_rtefi_commit_pass2
|
|
#endif
|
|
|
|
const struct xlog_recover_item_ops xlog_rtefd_item_ops = {
|
|
.item_type = XFS_LI_EFD_RT,
|
|
.commit_pass2 = xlog_recover_rtefd_commit_pass2,
|
|
};
|