Linus Torvalds 9c44575c78 bitmap-for-6.12
- switch all bitmamp APIs from inline to __always_inline from Brian Norris;
  - introduce GENMASK_U128() macro from Anshuman Khandual;
 -----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCgAdFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmb22isACgkQsUSA/Tof
 vsie2gwAl3l5vye90xnD6N8wFmKBKAWXMn8Iby7JyM9gAn6j1QuE5AppS+3JtIpZ
 rPRSgFZIVPOgBtiKjb6zAWj7KbtCmaSW+L5ZVaLQ+vtwBVNpWIWHsHKu0uIpuugT
 3wp/IeaE92bc/mioqb27pj2Gnv+lzYBmbK7Mu08a3q1Adwv0I7BJ4GvqxN1lLAEW
 xrFB86xztqdV7QC45J7Q5nIyUw7UBYK078elQ8iKSj5BR8MeaEJiavETwx9DHgAO
 Z8cG94ek3IpvLpiexNcgG+FTezZj9PnTVHxry9o7CIctafiqjYqXAJ9gks1Q4QUu
 q1IjPAdueLTAMPkpK67sI3fwC6zPyX5d8DVDUTuA6qhCsMyHW687gTRy4LPR14LL
 gd1Tzg+J9DQ5KBoG4TYN/g5VoP1hkKQqpetaJhdPqmYocfmqZuzyItb+gBjhyvSp
 3YOgLg/4lULy3sZ6Qd/q8CWglWlaNYXXzf13H8f2qUpVx4NLTDOwjj/CVjZR/D0C
 wje/8XU3
 =8jNc
 -----END PGP SIGNATURE-----

Merge tag 'bitmap-for-6.12' of https://github.com/norov/linux

Pull bitmap updates from Yury Norov:

 - switch all bitmamp APIs from inline to __always_inline (Brian Norris)

   The __always_inline series improves on code generation, and now with
   the latest compiler versions is required to avoid compilation
   warnings. It spent enough in my backlog, and I'm thankful to Brian
   Norris for taking over and moving it forward.

 - introduce GENMASK_U128() macro (Anshuman Khandual)

   GENMASK_U128() is a prerequisite needed for arm64 development

* tag 'bitmap-for-6.12' of https://github.com/norov/linux:
  lib/test_bits.c: Add tests for GENMASK_U128()
  uapi: Define GENMASK_U128
  nodemask: Switch from inline to __always_inline
  cpumask: Switch from inline to __always_inline
  bitmap: Switch from inline to __always_inline
  find: Switch from inline to __always_inline
2024-09-27 12:10:45 -07:00

835 lines
29 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_BITMAP_H
#define __LINUX_BITMAP_H
#ifndef __ASSEMBLY__
#include <linux/align.h>
#include <linux/bitops.h>
#include <linux/cleanup.h>
#include <linux/errno.h>
#include <linux/find.h>
#include <linux/limits.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/bitmap-str.h>
struct device;
/*
* bitmaps provide bit arrays that consume one or more unsigned
* longs. The bitmap interface and available operations are listed
* here, in bitmap.h
*
* Function implementations generic to all architectures are in
* lib/bitmap.c. Functions implementations that are architecture
* specific are in various include/asm-<arch>/bitops.h headers
* and other arch/<arch> specific files.
*
* See lib/bitmap.c for more details.
*/
/**
* DOC: bitmap overview
*
* The available bitmap operations and their rough meaning in the
* case that the bitmap is a single unsigned long are thus:
*
* The generated code is more efficient when nbits is known at
* compile-time and at most BITS_PER_LONG.
*
* ::
*
* bitmap_zero(dst, nbits) *dst = 0UL
* bitmap_fill(dst, nbits) *dst = ~0UL
* bitmap_copy(dst, src, nbits) *dst = *src
* bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
* bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
* bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
* bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
* bitmap_complement(dst, src, nbits) *dst = ~(*src)
* bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
* bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
* bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2?
* bitmap_empty(src, nbits) Are all bits zero in *src?
* bitmap_full(src, nbits) Are all bits set in *src?
* bitmap_weight(src, nbits) Hamming Weight: number set bits
* bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap
* bitmap_weight_andnot(src1, src2, nbits) Hamming Weight of andnot'ed bitmap
* bitmap_set(dst, pos, nbits) Set specified bit area
* bitmap_clear(dst, pos, nbits) Clear specified bit area
* bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
* bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above
* bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
* bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
* bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest
* bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask)
* bitmap_scatter(dst, src, mask, nbits) *dst = map(dense, sparse)(src)
* bitmap_gather(dst, src, mask, nbits) *dst = map(sparse, dense)(src)
* bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
* bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
* bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap
* bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz
* bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf
* bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf
* bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf
* bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf
* bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region
* bitmap_release_region(bitmap, pos, order) Free specified bit region
* bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region
* bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst
* bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst
* bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst
* bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst
* bitmap_get_value8(map, start) Get 8bit value from map at start
* bitmap_set_value8(map, value, start) Set 8bit value to map at start
* bitmap_read(map, start, nbits) Read an nbits-sized value from
* map at start
* bitmap_write(map, value, start, nbits) Write an nbits-sized value to
* map at start
*
* Note, bitmap_zero() and bitmap_fill() operate over the region of
* unsigned longs, that is, bits behind bitmap till the unsigned long
* boundary will be zeroed or filled as well. Consider to use
* bitmap_clear() or bitmap_set() to make explicit zeroing or filling
* respectively.
*/
/**
* DOC: bitmap bitops
*
* Also the following operations in asm/bitops.h apply to bitmaps.::
*
* set_bit(bit, addr) *addr |= bit
* clear_bit(bit, addr) *addr &= ~bit
* change_bit(bit, addr) *addr ^= bit
* test_bit(bit, addr) Is bit set in *addr?
* test_and_set_bit(bit, addr) Set bit and return old value
* test_and_clear_bit(bit, addr) Clear bit and return old value
* test_and_change_bit(bit, addr) Change bit and return old value
* find_first_zero_bit(addr, nbits) Position first zero bit in *addr
* find_first_bit(addr, nbits) Position first set bit in *addr
* find_next_zero_bit(addr, nbits, bit)
* Position next zero bit in *addr >= bit
* find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
* find_next_and_bit(addr1, addr2, nbits, bit)
* Same as find_next_bit, but in
* (*addr1 & *addr2)
*
*/
/**
* DOC: declare bitmap
* The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
* to declare an array named 'name' of just enough unsigned longs to
* contain all bit positions from 0 to 'bits' - 1.
*/
/*
* Allocation and deallocation of bitmap.
* Provided in lib/bitmap.c to avoid circular dependency.
*/
unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
void bitmap_free(const unsigned long *bitmap);
DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
/* Managed variants of the above. */
unsigned long *devm_bitmap_alloc(struct device *dev,
unsigned int nbits, gfp_t flags);
unsigned long *devm_bitmap_zalloc(struct device *dev,
unsigned int nbits, gfp_t flags);
/*
* lib/bitmap.c provides these functions:
*/
bool __bitmap_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
bool __pure __bitmap_or_equal(const unsigned long *src1,
const unsigned long *src2,
const unsigned long *src3,
unsigned int nbits);
void __bitmap_complement(unsigned long *dst, const unsigned long *src,
unsigned int nbits);
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits);
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits);
void bitmap_cut(unsigned long *dst, const unsigned long *src,
unsigned int first, unsigned int cut, unsigned int nbits);
bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_replace(unsigned long *dst,
const unsigned long *old, const unsigned long *new,
const unsigned long *mask, unsigned int nbits);
bool __bitmap_intersects(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
bool __bitmap_subset(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits);
void __bitmap_set(unsigned long *map, unsigned int start, int len);
void __bitmap_clear(unsigned long *map, unsigned int start, int len);
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask,
unsigned long align_offset);
/**
* bitmap_find_next_zero_area - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @align_mask: Alignment mask for zero area
*
* The @align_mask should be one less than a power of 2; the effect is that
* the bit offset of all zero areas this function finds is multiples of that
* power of 2. A @align_mask of 0 means no alignment is required.
*/
static __always_inline
unsigned long bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask)
{
return bitmap_find_next_zero_area_off(map, size, start, nr,
align_mask, 0);
}
void bitmap_remap(unsigned long *dst, const unsigned long *src,
const unsigned long *old, const unsigned long *new, unsigned int nbits);
int bitmap_bitremap(int oldbit,
const unsigned long *old, const unsigned long *new, int bits);
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
const unsigned long *relmap, unsigned int bits);
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
unsigned int sz, unsigned int nbits);
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
#define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
{
unsigned int len = bitmap_size(nbits);
if (small_const_nbits(nbits))
*dst = 0;
else
memset(dst, 0, len);
}
static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
{
unsigned int len = bitmap_size(nbits);
if (small_const_nbits(nbits))
*dst = ~0UL;
else
memset(dst, 0xff, len);
}
static __always_inline
void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
unsigned int len = bitmap_size(nbits);
if (small_const_nbits(nbits))
*dst = *src;
else
memcpy(dst, src, len);
}
/*
* Copy bitmap and clear tail bits in last word.
*/
static __always_inline
void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
bitmap_copy(dst, src, nbits);
if (nbits % BITS_PER_LONG)
dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
}
static inline void bitmap_copy_and_extend(unsigned long *to,
const unsigned long *from,
unsigned int count, unsigned int size)
{
unsigned int copy = BITS_TO_LONGS(count);
memcpy(to, from, copy * sizeof(long));
if (count % BITS_PER_LONG)
to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
}
/*
* On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
* machines the order of hi and lo parts of numbers match the bitmap structure.
* In both cases conversion is not needed when copying data from/to arrays of
* u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
* to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
* architectures are not using bitmap_copy_clear_tail().
*/
#if BITS_PER_LONG == 64
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
unsigned int nbits);
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
unsigned int nbits);
#else
#define bitmap_from_arr32(bitmap, buf, nbits) \
bitmap_copy_clear_tail((unsigned long *) (bitmap), \
(const unsigned long *) (buf), (nbits))
#define bitmap_to_arr32(buf, bitmap, nbits) \
bitmap_copy_clear_tail((unsigned long *) (buf), \
(const unsigned long *) (bitmap), (nbits))
#endif
/*
* On 64-bit systems bitmaps are represented as u64 arrays internally. So,
* the conversion is not needed when copying data from/to arrays of u64.
*/
#if BITS_PER_LONG == 32
void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
#else
#define bitmap_from_arr64(bitmap, buf, nbits) \
bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
#define bitmap_to_arr64(buf, bitmap, nbits) \
bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
#endif
static __always_inline
bool bitmap_and(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
return __bitmap_and(dst, src1, src2, nbits);
}
static __always_inline
void bitmap_or(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
*dst = *src1 | *src2;
else
__bitmap_or(dst, src1, src2, nbits);
}
static __always_inline
void bitmap_xor(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
*dst = *src1 ^ *src2;
else
__bitmap_xor(dst, src1, src2, nbits);
}
static __always_inline
bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
return __bitmap_andnot(dst, src1, src2, nbits);
}
static __always_inline
void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
if (small_const_nbits(nbits))
*dst = ~(*src);
else
__bitmap_complement(dst, src, nbits);
}
#ifdef __LITTLE_ENDIAN
#define BITMAP_MEM_ALIGNMENT 8
#else
#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
#endif
#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
static __always_inline
bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
return !memcmp(src1, src2, nbits / 8);
return __bitmap_equal(src1, src2, nbits);
}
/**
* bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
* @src1: Pointer to bitmap 1
* @src2: Pointer to bitmap 2 will be or'ed with bitmap 1
* @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
* @nbits: number of bits in each of these bitmaps
*
* Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
*/
static __always_inline
bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2,
const unsigned long *src3, unsigned int nbits)
{
if (!small_const_nbits(nbits))
return __bitmap_or_equal(src1, src2, src3, nbits);
return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
}
static __always_inline
bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
else
return __bitmap_intersects(src1, src2, nbits);
}
static __always_inline
bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
else
return __bitmap_subset(src1, src2, nbits);
}
static __always_inline
bool bitmap_empty(const unsigned long *src, unsigned nbits)
{
if (small_const_nbits(nbits))
return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
return find_first_bit(src, nbits) == nbits;
}
static __always_inline
bool bitmap_full(const unsigned long *src, unsigned int nbits)
{
if (small_const_nbits(nbits))
return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
return find_first_zero_bit(src, nbits) == nbits;
}
static __always_inline
unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
{
if (small_const_nbits(nbits))
return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
return __bitmap_weight(src, nbits);
}
static __always_inline
unsigned long bitmap_weight_and(const unsigned long *src1,
const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
return __bitmap_weight_and(src1, src2, nbits);
}
static __always_inline
unsigned long bitmap_weight_andnot(const unsigned long *src1,
const unsigned long *src2, unsigned int nbits)
{
if (small_const_nbits(nbits))
return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
return __bitmap_weight_andnot(src1, src2, nbits);
}
static __always_inline
void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits)
{
if (__builtin_constant_p(nbits) && nbits == 1)
__set_bit(start, map);
else if (small_const_nbits(start + nbits))
*map |= GENMASK(start + nbits - 1, start);
else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
memset((char *)map + start / 8, 0xff, nbits / 8);
else
__bitmap_set(map, start, nbits);
}
static __always_inline
void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits)
{
if (__builtin_constant_p(nbits) && nbits == 1)
__clear_bit(start, map);
else if (small_const_nbits(start + nbits))
*map &= ~GENMASK(start + nbits - 1, start);
else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
memset((char *)map + start / 8, 0, nbits / 8);
else
__bitmap_clear(map, start, nbits);
}
static __always_inline
void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits)
{
if (small_const_nbits(nbits))
*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
else
__bitmap_shift_right(dst, src, shift, nbits);
}
static __always_inline
void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits)
{
if (small_const_nbits(nbits))
*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
else
__bitmap_shift_left(dst, src, shift, nbits);
}
static __always_inline
void bitmap_replace(unsigned long *dst,
const unsigned long *old,
const unsigned long *new,
const unsigned long *mask,
unsigned int nbits)
{
if (small_const_nbits(nbits))
*dst = (*old & ~(*mask)) | (*new & *mask);
else
__bitmap_replace(dst, old, new, mask, nbits);
}
/**
* bitmap_scatter - Scatter a bitmap according to the given mask
* @dst: scattered bitmap
* @src: gathered bitmap
* @mask: mask representing bits to assign to in the scattered bitmap
* @nbits: number of bits in each of these bitmaps
*
* Scatters bitmap with sequential bits according to the given @mask.
*
* Example:
* If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
*
* Or in binary form
* @src @mask @dst
* 0000000001011010 0001001100010011 0000001100000010
*
* (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
*
* A more 'visual' description of the operation::
*
* src: 0000000001011010
* ||||||
* +------+|||||
* | +----+||||
* | |+----+|||
* | || +-+||
* | || | ||
* mask: ...v..vv...v..vv
* ...0..11...0..10
* dst: 0000001100000010
*
* A relationship exists between bitmap_scatter() and bitmap_gather().
* bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
* See bitmap_scatter() for details related to this relationship.
*/
static __always_inline
void bitmap_scatter(unsigned long *dst, const unsigned long *src,
const unsigned long *mask, unsigned int nbits)
{
unsigned int n = 0;
unsigned int bit;
bitmap_zero(dst, nbits);
for_each_set_bit(bit, mask, nbits)
__assign_bit(bit, dst, test_bit(n++, src));
}
/**
* bitmap_gather - Gather a bitmap according to given mask
* @dst: gathered bitmap
* @src: scattered bitmap
* @mask: mask representing bits to extract from in the scattered bitmap
* @nbits: number of bits in each of these bitmaps
*
* Gathers bitmap with sparse bits according to the given @mask.
*
* Example:
* If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
*
* Or in binary form
* @src @mask @dst
* 0000001100000010 0001001100010011 0000000000011010
*
* (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
*
* A more 'visual' description of the operation::
*
* mask: ...v..vv...v..vv
* src: 0000001100000010
* ^ ^^ ^ 0
* | || | 10
* | || > 010
* | |+--> 1010
* | +--> 11010
* +----> 011010
* dst: 0000000000011010
*
* A relationship exists between bitmap_gather() and bitmap_scatter(). See
* bitmap_scatter() for the bitmap scatter detailed operations.
* Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
* The operation bitmap_gather(result, scattered, mask, n) leads to a result
* equal or equivalent to src.
*
* The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
* are not bijective.
* The result and src values are equivalent in that sense that a call to
* bitmap_scatter(res, src, mask, n) and a call to
* bitmap_scatter(res, result, mask, n) will lead to the same res value.
*/
static __always_inline
void bitmap_gather(unsigned long *dst, const unsigned long *src,
const unsigned long *mask, unsigned int nbits)
{
unsigned int n = 0;
unsigned int bit;
bitmap_zero(dst, nbits);
for_each_set_bit(bit, mask, nbits)
__assign_bit(n++, dst, test_bit(bit, src));
}
static __always_inline
void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs,
unsigned int *re, unsigned int end)
{
*rs = find_next_bit(bitmap, end, *rs);
*re = find_next_zero_bit(bitmap, end, *rs + 1);
}
/**
* bitmap_release_region - release allocated bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to release
* @order: region size (log base 2 of number of bits) to release
*
* This is the complement to __bitmap_find_free_region() and releases
* the found region (by clearing it in the bitmap).
*/
static __always_inline
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
{
bitmap_clear(bitmap, pos, BIT(order));
}
/**
* bitmap_allocate_region - allocate bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to allocate
* @order: region size (log base 2 of number of bits) to allocate
*
* Allocate (set bits in) a specified region of a bitmap.
*
* Returns: 0 on success, or %-EBUSY if specified region wasn't
* free (not all bits were zero).
*/
static __always_inline
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
{
unsigned int len = BIT(order);
if (find_next_bit(bitmap, pos + len, pos) < pos + len)
return -EBUSY;
bitmap_set(bitmap, pos, len);
return 0;
}
/**
* bitmap_find_free_region - find a contiguous aligned mem region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @bits: number of bits in the bitmap
* @order: region size (log base 2 of number of bits) to find
*
* Find a region of free (zero) bits in a @bitmap of @bits bits and
* allocate them (set them to one). Only consider regions of length
* a power (@order) of two, aligned to that power of two, which
* makes the search algorithm much faster.
*
* Returns: the bit offset in bitmap of the allocated region,
* or -errno on failure.
*/
static __always_inline
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
{
unsigned int pos, end; /* scans bitmap by regions of size order */
for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
if (!bitmap_allocate_region(bitmap, pos, order))
return pos;
}
return -ENOMEM;
}
/**
* BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
* @n: u64 value
*
* Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
* integers in 32-bit environment, and 64-bit integers in 64-bit one.
*
* There are four combinations of endianness and length of the word in linux
* ABIs: LE64, BE64, LE32 and BE32.
*
* On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
* bitmaps and therefore don't require any special handling.
*
* On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
* prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
* other hand is represented as an array of 32-bit words and the position of
* bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
* word. For example, bit #42 is located at 10th position of 2nd word.
* It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
* values in memory as it usually does. But for BE we need to swap hi and lo
* words manually.
*
* With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
* lo parts of u64. For LE32 it does nothing, and for BE environment it swaps
* hi and lo words, as is expected by bitmap.
*/
#if __BITS_PER_LONG == 64
#define BITMAP_FROM_U64(n) (n)
#else
#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
((unsigned long) ((u64)(n) >> 32))
#endif
/**
* bitmap_from_u64 - Check and swap words within u64.
* @mask: source bitmap
* @dst: destination bitmap
*
* In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
* to read u64 mask, we will get the wrong word.
* That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
* but we expect the lower 32-bits of u64.
*/
static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask)
{
bitmap_from_arr64(dst, &mask, 64);
}
/**
* bitmap_read - read a value of n-bits from the memory region
* @map: address to the bitmap memory region
* @start: bit offset of the n-bit value
* @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
*
* Returns: value of @nbits bits located at the @start bit offset within the
* @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
* value is undefined.
*/
static __always_inline
unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits)
{
size_t index = BIT_WORD(start);
unsigned long offset = start % BITS_PER_LONG;
unsigned long space = BITS_PER_LONG - offset;
unsigned long value_low, value_high;
if (unlikely(!nbits || nbits > BITS_PER_LONG))
return 0;
if (space >= nbits)
return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
return (value_low >> offset) | (value_high << space);
}
/**
* bitmap_write - write n-bit value within a memory region
* @map: address to the bitmap memory region
* @value: value to write, clamped to nbits
* @start: bit offset of the n-bit value
* @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
*
* bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
* i.e. bits beyond @nbits are ignored:
*
* for (bit = 0; bit < nbits; bit++)
* __assign_bit(start + bit, bitmap, val & BIT(bit));
*
* For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
*/
static __always_inline
void bitmap_write(unsigned long *map, unsigned long value,
unsigned long start, unsigned long nbits)
{
size_t index;
unsigned long offset;
unsigned long space;
unsigned long mask;
bool fit;
if (unlikely(!nbits || nbits > BITS_PER_LONG))
return;
mask = BITMAP_LAST_WORD_MASK(nbits);
value &= mask;
offset = start % BITS_PER_LONG;
space = BITS_PER_LONG - offset;
fit = space >= nbits;
index = BIT_WORD(start);
map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
map[index] |= value << offset;
if (fit)
return;
map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
map[index + 1] |= (value >> space);
}
#define bitmap_get_value8(map, start) \
bitmap_read(map, start, BITS_PER_BYTE)
#define bitmap_set_value8(map, value, start) \
bitmap_write(map, value, start, BITS_PER_BYTE)
#endif /* __ASSEMBLY__ */
#endif /* __LINUX_BITMAP_H */