linux-stable/include/linux/minmax.h
Linus Torvalds 21b136cc63 minmax: fix up min3() and max3() too
David Laight pointed out that we should deal with the min3() and max3()
mess too, which still does excessive expansion.

And our current macros are actually rather broken.

In particular, the macros did this:

  #define min3(x, y, z) min((typeof(x))min(x, y), z)
  #define max3(x, y, z) max((typeof(x))max(x, y), z)

and that not only is a nested expansion of possibly very complex
arguments with all that involves, the typing with that "typeof()" cast
is completely wrong.

For example, imagine what happens in max3() if 'x' happens to be a
'unsigned char', but 'y' and 'z' are 'unsigned long'.  The types are
compatible, and there's no warning - but the result is just random
garbage.

No, I don't think we've ever hit that issue in practice, but since we
now have sane infrastructure for doing this right, let's just use it.
It fixes any excessive expansion, and also avoids these kinds of broken
type issues.

Requested-by: David Laight <David.Laight@aculab.com>
Acked-by: Arnd Bergmann <arnd@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-07-31 09:57:18 -07:00

335 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MINMAX_H
#define _LINUX_MINMAX_H
#include <linux/build_bug.h>
#include <linux/compiler.h>
#include <linux/const.h>
#include <linux/types.h>
/*
* min()/max()/clamp() macros must accomplish three things:
*
* - Avoid multiple evaluations of the arguments (so side-effects like
* "x++" happen only once) when non-constant.
* - Retain result as a constant expressions when called with only
* constant expressions (to avoid tripping VLA warnings in stack
* allocation usage).
* - Perform signed v unsigned type-checking (to generate compile
* errors instead of nasty runtime surprises).
* - Unsigned char/short are always promoted to signed int and can be
* compared against signed or unsigned arguments.
* - Unsigned arguments can be compared against non-negative signed constants.
* - Comparison of a signed argument against an unsigned constant fails
* even if the constant is below __INT_MAX__ and could be cast to int.
*/
#define __typecheck(x, y) \
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
/*
* __sign_use for integer expressions:
* bit #0 set if ok for unsigned comparisons
* bit #1 set if ok for signed comparisons
*
* In particular, statically non-negative signed integer
* expressions are ok for both.
*
* NOTE! Unsigned types smaller than 'int' are implicitly
* converted to 'int' in expressions, and are accepted for
* signed conversions for now. This is debatable.
*
* Note that 'x' is the original expression, and 'ux' is
* the unique variable that contains the value.
*
* We use 'ux' for pure type checking, and 'x' for when
* we need to look at the value (but without evaluating
* it for side effects! Careful to only ever evaluate it
* with sizeof() or __builtin_constant_p() etc).
*
* Pointers end up being checked by the normal C type
* rules at the actual comparison, and these expressions
* only need to be careful to not cause warnings for
* pointer use.
*/
#define __signed_type_use(x,ux) (2+__is_nonneg(x,ux))
#define __unsigned_type_use(x,ux) (1+2*(sizeof(ux)<4))
#define __sign_use(x,ux) (is_signed_type(typeof(ux))? \
__signed_type_use(x,ux):__unsigned_type_use(x,ux))
/*
* To avoid warnings about casting pointers to integers
* of different sizes, we need that special sign type.
*
* On 64-bit we can just always use 'long', since any
* integer or pointer type can just be cast to that.
*
* This does not work for 128-bit signed integers since
* the cast would truncate them, but we do not use s128
* types in the kernel (we do use 'u128', but they will
* be handled by the !is_signed_type() case).
*
* NOTE! The cast is there only to avoid any warnings
* from when values that aren't signed integer types.
*/
#ifdef CONFIG_64BIT
#define __signed_type(ux) long
#else
#define __signed_type(ux) typeof(__builtin_choose_expr(sizeof(ux)>4,1LL,1L))
#endif
#define __is_nonneg(x,ux) statically_true((__signed_type(ux))(x)>=0)
#define __types_ok(x,y,ux,uy) \
(__sign_use(x,ux) & __sign_use(y,uy))
#define __types_ok3(x,y,z,ux,uy,uz) \
(__sign_use(x,ux) & __sign_use(y,uy) & __sign_use(z,uz))
#define __cmp_op_min <
#define __cmp_op_max >
#define __cmp(op, x, y) ((x) __cmp_op_##op (y) ? (x) : (y))
#define __cmp_once_unique(op, type, x, y, ux, uy) \
({ type ux = (x); type uy = (y); __cmp(op, ux, uy); })
#define __cmp_once(op, type, x, y) \
__cmp_once_unique(op, type, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
#define __careful_cmp_once(op, x, y, ux, uy) ({ \
__auto_type ux = (x); __auto_type uy = (y); \
BUILD_BUG_ON_MSG(!__types_ok(x,y,ux,uy), \
#op"("#x", "#y") signedness error"); \
__cmp(op, ux, uy); })
#define __careful_cmp(op, x, y) \
__careful_cmp_once(op, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
#define __clamp(val, lo, hi) \
((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
#define __clamp_once(val, lo, hi, uval, ulo, uhi) ({ \
__auto_type uval = (val); \
__auto_type ulo = (lo); \
__auto_type uhi = (hi); \
static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), \
(lo) <= (hi), true), \
"clamp() low limit " #lo " greater than high limit " #hi); \
BUILD_BUG_ON_MSG(!__types_ok3(val,lo,hi,uval,ulo,uhi), \
"clamp("#val", "#lo", "#hi") signedness error"); \
__clamp(uval, ulo, uhi); })
#define __careful_clamp(val, lo, hi) \
__clamp_once(val, lo, hi, __UNIQUE_ID(v_), __UNIQUE_ID(l_), __UNIQUE_ID(h_))
/**
* min - return minimum of two values of the same or compatible types
* @x: first value
* @y: second value
*/
#define min(x, y) __careful_cmp(min, x, y)
/**
* max - return maximum of two values of the same or compatible types
* @x: first value
* @y: second value
*/
#define max(x, y) __careful_cmp(max, x, y)
/**
* umin - return minimum of two non-negative values
* Signed types are zero extended to match a larger unsigned type.
* @x: first value
* @y: second value
*/
#define umin(x, y) \
__careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
/**
* umax - return maximum of two non-negative values
* @x: first value
* @y: second value
*/
#define umax(x, y) \
__careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
#define __careful_op3(op, x, y, z, ux, uy, uz) ({ \
__auto_type ux = (x); __auto_type uy = (y);__auto_type uz = (z);\
BUILD_BUG_ON_MSG(!__types_ok3(x,y,z,ux,uy,uz), \
#op"3("#x", "#y", "#z") signedness error"); \
__cmp(op, ux, __cmp(op, uy, uz)); })
/**
* min3 - return minimum of three values
* @x: first value
* @y: second value
* @z: third value
*/
#define min3(x, y, z) \
__careful_op3(min, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
/**
* max3 - return maximum of three values
* @x: first value
* @y: second value
* @z: third value
*/
#define max3(x, y, z) \
__careful_op3(max, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
/**
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
* @x: value1
* @y: value2
*/
#define min_not_zero(x, y) ({ \
typeof(x) __x = (x); \
typeof(y) __y = (y); \
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
/**
* clamp - return a value clamped to a given range with strict typechecking
* @val: current value
* @lo: lowest allowable value
* @hi: highest allowable value
*
* This macro does strict typechecking of @lo/@hi to make sure they are of the
* same type as @val. See the unnecessary pointer comparisons.
*/
#define clamp(val, lo, hi) __careful_clamp(val, lo, hi)
/*
* ..and if you can't take the strict
* types, you can specify one yourself.
*
* Or not use min/max/clamp at all, of course.
*/
/**
* min_t - return minimum of two values, using the specified type
* @type: data type to use
* @x: first value
* @y: second value
*/
#define min_t(type, x, y) __cmp_once(min, type, x, y)
/**
* max_t - return maximum of two values, using the specified type
* @type: data type to use
* @x: first value
* @y: second value
*/
#define max_t(type, x, y) __cmp_once(max, type, x, y)
/*
* Do not check the array parameter using __must_be_array().
* In the following legit use-case where the "array" passed is a simple pointer,
* __must_be_array() will return a failure.
* --- 8< ---
* int *buff
* ...
* min = min_array(buff, nb_items);
* --- 8< ---
*
* The first typeof(&(array)[0]) is needed in order to support arrays of both
* 'int *buff' and 'int buff[N]' types.
*
* The array can be an array of const items.
* typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order
* to discard the const qualifier for the __element variable.
*/
#define __minmax_array(op, array, len) ({ \
typeof(&(array)[0]) __array = (array); \
typeof(len) __len = (len); \
__unqual_scalar_typeof(__array[0]) __element = __array[--__len];\
while (__len--) \
__element = op(__element, __array[__len]); \
__element; })
/**
* min_array - return minimum of values present in an array
* @array: array
* @len: array length
*
* Note that @len must not be zero (empty array).
*/
#define min_array(array, len) __minmax_array(min, array, len)
/**
* max_array - return maximum of values present in an array
* @array: array
* @len: array length
*
* Note that @len must not be zero (empty array).
*/
#define max_array(array, len) __minmax_array(max, array, len)
/**
* clamp_t - return a value clamped to a given range using a given type
* @type: the type of variable to use
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of type
* @type to make all the comparisons.
*/
#define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi))
/**
* clamp_val - return a value clamped to a given range using val's type
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of whatever
* type the input argument @val is. This is useful when @val is an unsigned
* type and @lo and @hi are literals that will otherwise be assigned a signed
* integer type.
*/
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
static inline bool in_range64(u64 val, u64 start, u64 len)
{
return (val - start) < len;
}
static inline bool in_range32(u32 val, u32 start, u32 len)
{
return (val - start) < len;
}
/**
* in_range - Determine if a value lies within a range.
* @val: Value to test.
* @start: First value in range.
* @len: Number of values in range.
*
* This is more efficient than "if (start <= val && val < (start + len))".
* It also gives a different answer if @start + @len overflows the size of
* the type by a sufficient amount to encompass @val. Decide for yourself
* which behaviour you want, or prove that start + len never overflow.
* Do not blindly replace one form with the other.
*/
#define in_range(val, start, len) \
((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ? \
in_range32(val, start, len) : in_range64(val, start, len))
/**
* swap - swap values of @a and @b
* @a: first value
* @b: second value
*/
#define swap(a, b) \
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
/*
* Use these carefully: no type checking, and uses the arguments
* multiple times. Use for obvious constants only.
*/
#define MIN(a,b) __cmp(min,a,b)
#define MAX(a,b) __cmp(max,a,b)
#define MIN_T(type,a,b) __cmp(min,(type)(a),(type)(b))
#define MAX_T(type,a,b) __cmp(max,(type)(a),(type)(b))
#endif /* _LINUX_MINMAX_H */