mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-19 12:00:00 +00:00
01cf21e9e1
Extract all necessary operations that need to be completed after the vma maple tree is updated from a munmap() operation. Extracting this makes the later patch in the series easier to understand. Link: https://lkml.kernel.org/r/20240830040101.822209-4-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Cc: Bert Karwatzki <spasswolf@web.de> Cc: Jeff Xu <jeffxu@chromium.org> Cc: Jiri Olsa <olsajiri@gmail.com> Cc: Kees Cook <kees@kernel.org> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Mark Brown <broonie@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Paul Moore <paul@paul-moore.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1813 lines
50 KiB
C
1813 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
/*
|
|
* VMA-specific functions.
|
|
*/
|
|
|
|
#include "vma_internal.h"
|
|
#include "vma.h"
|
|
|
|
/*
|
|
* If the vma has a ->close operation then the driver probably needs to release
|
|
* per-vma resources, so we don't attempt to merge those if the caller indicates
|
|
* the current vma may be removed as part of the merge.
|
|
*/
|
|
static inline bool is_mergeable_vma(struct vm_area_struct *vma,
|
|
struct file *file, unsigned long vm_flags,
|
|
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
|
|
struct anon_vma_name *anon_name, bool may_remove_vma)
|
|
{
|
|
/*
|
|
* VM_SOFTDIRTY should not prevent from VMA merging, if we
|
|
* match the flags but dirty bit -- the caller should mark
|
|
* merged VMA as dirty. If dirty bit won't be excluded from
|
|
* comparison, we increase pressure on the memory system forcing
|
|
* the kernel to generate new VMAs when old one could be
|
|
* extended instead.
|
|
*/
|
|
if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
|
|
return false;
|
|
if (vma->vm_file != file)
|
|
return false;
|
|
if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
|
|
return false;
|
|
if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
|
|
return false;
|
|
if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
|
|
struct anon_vma *anon_vma2, struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* The list_is_singular() test is to avoid merging VMA cloned from
|
|
* parents. This can improve scalability caused by anon_vma lock.
|
|
*/
|
|
if ((!anon_vma1 || !anon_vma2) && (!vma ||
|
|
list_is_singular(&vma->anon_vma_chain)))
|
|
return true;
|
|
return anon_vma1 == anon_vma2;
|
|
}
|
|
|
|
/*
|
|
* init_multi_vma_prep() - Initializer for struct vma_prepare
|
|
* @vp: The vma_prepare struct
|
|
* @vma: The vma that will be altered once locked
|
|
* @next: The next vma if it is to be adjusted
|
|
* @remove: The first vma to be removed
|
|
* @remove2: The second vma to be removed
|
|
*/
|
|
static void init_multi_vma_prep(struct vma_prepare *vp,
|
|
struct vm_area_struct *vma,
|
|
struct vm_area_struct *next,
|
|
struct vm_area_struct *remove,
|
|
struct vm_area_struct *remove2)
|
|
{
|
|
memset(vp, 0, sizeof(struct vma_prepare));
|
|
vp->vma = vma;
|
|
vp->anon_vma = vma->anon_vma;
|
|
vp->remove = remove;
|
|
vp->remove2 = remove2;
|
|
vp->adj_next = next;
|
|
if (!vp->anon_vma && next)
|
|
vp->anon_vma = next->anon_vma;
|
|
|
|
vp->file = vma->vm_file;
|
|
if (vp->file)
|
|
vp->mapping = vma->vm_file->f_mapping;
|
|
|
|
}
|
|
|
|
/*
|
|
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
|
|
* in front of (at a lower virtual address and file offset than) the vma.
|
|
*
|
|
* We cannot merge two vmas if they have differently assigned (non-NULL)
|
|
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
|
|
*
|
|
* We don't check here for the merged mmap wrapping around the end of pagecache
|
|
* indices (16TB on ia32) because do_mmap() does not permit mmap's which
|
|
* wrap, nor mmaps which cover the final page at index -1UL.
|
|
*
|
|
* We assume the vma may be removed as part of the merge.
|
|
*/
|
|
bool
|
|
can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
|
|
struct anon_vma *anon_vma, struct file *file,
|
|
pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
|
|
struct anon_vma_name *anon_name)
|
|
{
|
|
if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
|
|
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
|
|
if (vma->vm_pgoff == vm_pgoff)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
|
|
* beyond (at a higher virtual address and file offset than) the vma.
|
|
*
|
|
* We cannot merge two vmas if they have differently assigned (non-NULL)
|
|
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
|
|
*
|
|
* We assume that vma is not removed as part of the merge.
|
|
*/
|
|
bool
|
|
can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
|
|
struct anon_vma *anon_vma, struct file *file,
|
|
pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
|
|
struct anon_vma_name *anon_name)
|
|
{
|
|
if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
|
|
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
|
|
pgoff_t vm_pglen;
|
|
|
|
vm_pglen = vma_pages(vma);
|
|
if (vma->vm_pgoff + vm_pglen == vm_pgoff)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Close a vm structure and free it.
|
|
*/
|
|
void remove_vma(struct vm_area_struct *vma, bool unreachable)
|
|
{
|
|
might_sleep();
|
|
if (vma->vm_ops && vma->vm_ops->close)
|
|
vma->vm_ops->close(vma);
|
|
if (vma->vm_file)
|
|
fput(vma->vm_file);
|
|
mpol_put(vma_policy(vma));
|
|
if (unreachable)
|
|
__vm_area_free(vma);
|
|
else
|
|
vm_area_free(vma);
|
|
}
|
|
|
|
/*
|
|
* Get rid of page table information in the indicated region.
|
|
*
|
|
* Called with the mm semaphore held.
|
|
*/
|
|
void unmap_region(struct mm_struct *mm, struct ma_state *mas,
|
|
struct vm_area_struct *vma, struct vm_area_struct *prev,
|
|
struct vm_area_struct *next, unsigned long start,
|
|
unsigned long end, unsigned long tree_end, bool mm_wr_locked)
|
|
{
|
|
struct mmu_gather tlb;
|
|
unsigned long mt_start = mas->index;
|
|
|
|
lru_add_drain();
|
|
tlb_gather_mmu(&tlb, mm);
|
|
update_hiwater_rss(mm);
|
|
unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
|
|
mas_set(mas, mt_start);
|
|
free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
|
|
next ? next->vm_start : USER_PGTABLES_CEILING,
|
|
mm_wr_locked);
|
|
tlb_finish_mmu(&tlb);
|
|
}
|
|
|
|
/*
|
|
* __split_vma() bypasses sysctl_max_map_count checking. We use this where it
|
|
* has already been checked or doesn't make sense to fail.
|
|
* VMA Iterator will point to the original VMA.
|
|
*/
|
|
static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
|
|
unsigned long addr, int new_below)
|
|
{
|
|
struct vma_prepare vp;
|
|
struct vm_area_struct *new;
|
|
int err;
|
|
|
|
WARN_ON(vma->vm_start >= addr);
|
|
WARN_ON(vma->vm_end <= addr);
|
|
|
|
if (vma->vm_ops && vma->vm_ops->may_split) {
|
|
err = vma->vm_ops->may_split(vma, addr);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
new = vm_area_dup(vma);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
if (new_below) {
|
|
new->vm_end = addr;
|
|
} else {
|
|
new->vm_start = addr;
|
|
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
|
|
}
|
|
|
|
err = -ENOMEM;
|
|
vma_iter_config(vmi, new->vm_start, new->vm_end);
|
|
if (vma_iter_prealloc(vmi, new))
|
|
goto out_free_vma;
|
|
|
|
err = vma_dup_policy(vma, new);
|
|
if (err)
|
|
goto out_free_vmi;
|
|
|
|
err = anon_vma_clone(new, vma);
|
|
if (err)
|
|
goto out_free_mpol;
|
|
|
|
if (new->vm_file)
|
|
get_file(new->vm_file);
|
|
|
|
if (new->vm_ops && new->vm_ops->open)
|
|
new->vm_ops->open(new);
|
|
|
|
vma_start_write(vma);
|
|
vma_start_write(new);
|
|
|
|
init_vma_prep(&vp, vma);
|
|
vp.insert = new;
|
|
vma_prepare(&vp);
|
|
vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
|
|
|
|
if (new_below) {
|
|
vma->vm_start = addr;
|
|
vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
|
|
} else {
|
|
vma->vm_end = addr;
|
|
}
|
|
|
|
/* vma_complete stores the new vma */
|
|
vma_complete(&vp, vmi, vma->vm_mm);
|
|
|
|
/* Success. */
|
|
if (new_below)
|
|
vma_next(vmi);
|
|
else
|
|
vma_prev(vmi);
|
|
|
|
return 0;
|
|
|
|
out_free_mpol:
|
|
mpol_put(vma_policy(new));
|
|
out_free_vmi:
|
|
vma_iter_free(vmi);
|
|
out_free_vma:
|
|
vm_area_free(new);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Split a vma into two pieces at address 'addr', a new vma is allocated
|
|
* either for the first part or the tail.
|
|
*/
|
|
static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
|
|
unsigned long addr, int new_below)
|
|
{
|
|
if (vma->vm_mm->map_count >= sysctl_max_map_count)
|
|
return -ENOMEM;
|
|
|
|
return __split_vma(vmi, vma, addr, new_below);
|
|
}
|
|
|
|
/*
|
|
* Ok - we have the memory areas we should free on a maple tree so release them,
|
|
* and do the vma updates.
|
|
*
|
|
* Called with the mm semaphore held.
|
|
*/
|
|
static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
|
|
{
|
|
unsigned long nr_accounted = 0;
|
|
struct vm_area_struct *vma;
|
|
|
|
/* Update high watermark before we lower total_vm */
|
|
update_hiwater_vm(mm);
|
|
mas_for_each(mas, vma, ULONG_MAX) {
|
|
long nrpages = vma_pages(vma);
|
|
|
|
if (vma->vm_flags & VM_ACCOUNT)
|
|
nr_accounted += nrpages;
|
|
vm_stat_account(mm, vma->vm_flags, -nrpages);
|
|
remove_vma(vma, false);
|
|
}
|
|
vm_unacct_memory(nr_accounted);
|
|
}
|
|
|
|
/*
|
|
* init_vma_prep() - Initializer wrapper for vma_prepare struct
|
|
* @vp: The vma_prepare struct
|
|
* @vma: The vma that will be altered once locked
|
|
*/
|
|
void init_vma_prep(struct vma_prepare *vp,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Requires inode->i_mapping->i_mmap_rwsem
|
|
*/
|
|
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
|
|
struct address_space *mapping)
|
|
{
|
|
if (vma_is_shared_maywrite(vma))
|
|
mapping_unmap_writable(mapping);
|
|
|
|
flush_dcache_mmap_lock(mapping);
|
|
vma_interval_tree_remove(vma, &mapping->i_mmap);
|
|
flush_dcache_mmap_unlock(mapping);
|
|
}
|
|
|
|
/*
|
|
* vma has some anon_vma assigned, and is already inserted on that
|
|
* anon_vma's interval trees.
|
|
*
|
|
* Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
|
|
* vma must be removed from the anon_vma's interval trees using
|
|
* anon_vma_interval_tree_pre_update_vma().
|
|
*
|
|
* After the update, the vma will be reinserted using
|
|
* anon_vma_interval_tree_post_update_vma().
|
|
*
|
|
* The entire update must be protected by exclusive mmap_lock and by
|
|
* the root anon_vma's mutex.
|
|
*/
|
|
void
|
|
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
|
|
{
|
|
struct anon_vma_chain *avc;
|
|
|
|
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
|
|
anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
|
|
}
|
|
|
|
void
|
|
anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
|
|
{
|
|
struct anon_vma_chain *avc;
|
|
|
|
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
|
|
anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
|
|
}
|
|
|
|
static void __vma_link_file(struct vm_area_struct *vma,
|
|
struct address_space *mapping)
|
|
{
|
|
if (vma_is_shared_maywrite(vma))
|
|
mapping_allow_writable(mapping);
|
|
|
|
flush_dcache_mmap_lock(mapping);
|
|
vma_interval_tree_insert(vma, &mapping->i_mmap);
|
|
flush_dcache_mmap_unlock(mapping);
|
|
}
|
|
|
|
/*
|
|
* vma_prepare() - Helper function for handling locking VMAs prior to altering
|
|
* @vp: The initialized vma_prepare struct
|
|
*/
|
|
void vma_prepare(struct vma_prepare *vp)
|
|
{
|
|
if (vp->file) {
|
|
uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
|
|
|
|
if (vp->adj_next)
|
|
uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
|
|
vp->adj_next->vm_end);
|
|
|
|
i_mmap_lock_write(vp->mapping);
|
|
if (vp->insert && vp->insert->vm_file) {
|
|
/*
|
|
* Put into interval tree now, so instantiated pages
|
|
* are visible to arm/parisc __flush_dcache_page
|
|
* throughout; but we cannot insert into address
|
|
* space until vma start or end is updated.
|
|
*/
|
|
__vma_link_file(vp->insert,
|
|
vp->insert->vm_file->f_mapping);
|
|
}
|
|
}
|
|
|
|
if (vp->anon_vma) {
|
|
anon_vma_lock_write(vp->anon_vma);
|
|
anon_vma_interval_tree_pre_update_vma(vp->vma);
|
|
if (vp->adj_next)
|
|
anon_vma_interval_tree_pre_update_vma(vp->adj_next);
|
|
}
|
|
|
|
if (vp->file) {
|
|
flush_dcache_mmap_lock(vp->mapping);
|
|
vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
|
|
if (vp->adj_next)
|
|
vma_interval_tree_remove(vp->adj_next,
|
|
&vp->mapping->i_mmap);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* dup_anon_vma() - Helper function to duplicate anon_vma
|
|
* @dst: The destination VMA
|
|
* @src: The source VMA
|
|
* @dup: Pointer to the destination VMA when successful.
|
|
*
|
|
* Returns: 0 on success.
|
|
*/
|
|
static int dup_anon_vma(struct vm_area_struct *dst,
|
|
struct vm_area_struct *src, struct vm_area_struct **dup)
|
|
{
|
|
/*
|
|
* Easily overlooked: when mprotect shifts the boundary, make sure the
|
|
* expanding vma has anon_vma set if the shrinking vma had, to cover any
|
|
* anon pages imported.
|
|
*/
|
|
if (src->anon_vma && !dst->anon_vma) {
|
|
int ret;
|
|
|
|
vma_assert_write_locked(dst);
|
|
dst->anon_vma = src->anon_vma;
|
|
ret = anon_vma_clone(dst, src);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*dup = dst;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
|
|
void validate_mm(struct mm_struct *mm)
|
|
{
|
|
int bug = 0;
|
|
int i = 0;
|
|
struct vm_area_struct *vma;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
mt_validate(&mm->mm_mt);
|
|
for_each_vma(vmi, vma) {
|
|
#ifdef CONFIG_DEBUG_VM_RB
|
|
struct anon_vma *anon_vma = vma->anon_vma;
|
|
struct anon_vma_chain *avc;
|
|
#endif
|
|
unsigned long vmi_start, vmi_end;
|
|
bool warn = 0;
|
|
|
|
vmi_start = vma_iter_addr(&vmi);
|
|
vmi_end = vma_iter_end(&vmi);
|
|
if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
|
|
warn = 1;
|
|
|
|
if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
|
|
warn = 1;
|
|
|
|
if (warn) {
|
|
pr_emerg("issue in %s\n", current->comm);
|
|
dump_stack();
|
|
dump_vma(vma);
|
|
pr_emerg("tree range: %px start %lx end %lx\n", vma,
|
|
vmi_start, vmi_end - 1);
|
|
vma_iter_dump_tree(&vmi);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_VM_RB
|
|
if (anon_vma) {
|
|
anon_vma_lock_read(anon_vma);
|
|
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
|
|
anon_vma_interval_tree_verify(avc);
|
|
anon_vma_unlock_read(anon_vma);
|
|
}
|
|
#endif
|
|
i++;
|
|
}
|
|
if (i != mm->map_count) {
|
|
pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
|
|
bug = 1;
|
|
}
|
|
VM_BUG_ON_MM(bug, mm);
|
|
}
|
|
#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
|
|
|
|
/*
|
|
* vma_expand - Expand an existing VMA
|
|
*
|
|
* @vmi: The vma iterator
|
|
* @vma: The vma to expand
|
|
* @start: The start of the vma
|
|
* @end: The exclusive end of the vma
|
|
* @pgoff: The page offset of vma
|
|
* @next: The current of next vma.
|
|
*
|
|
* Expand @vma to @start and @end. Can expand off the start and end. Will
|
|
* expand over @next if it's different from @vma and @end == @next->vm_end.
|
|
* Checking if the @vma can expand and merge with @next needs to be handled by
|
|
* the caller.
|
|
*
|
|
* Returns: 0 on success
|
|
*/
|
|
int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end, pgoff_t pgoff,
|
|
struct vm_area_struct *next)
|
|
{
|
|
struct vm_area_struct *anon_dup = NULL;
|
|
bool remove_next = false;
|
|
struct vma_prepare vp;
|
|
|
|
vma_start_write(vma);
|
|
if (next && (vma != next) && (end == next->vm_end)) {
|
|
int ret;
|
|
|
|
remove_next = true;
|
|
vma_start_write(next);
|
|
ret = dup_anon_vma(vma, next, &anon_dup);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
|
|
/* Not merging but overwriting any part of next is not handled. */
|
|
VM_WARN_ON(next && !vp.remove &&
|
|
next != vma && end > next->vm_start);
|
|
/* Only handles expanding */
|
|
VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
|
|
|
|
/* Note: vma iterator must be pointing to 'start' */
|
|
vma_iter_config(vmi, start, end);
|
|
if (vma_iter_prealloc(vmi, vma))
|
|
goto nomem;
|
|
|
|
vma_prepare(&vp);
|
|
vma_adjust_trans_huge(vma, start, end, 0);
|
|
vma_set_range(vma, start, end, pgoff);
|
|
vma_iter_store(vmi, vma);
|
|
|
|
vma_complete(&vp, vmi, vma->vm_mm);
|
|
return 0;
|
|
|
|
nomem:
|
|
if (anon_dup)
|
|
unlink_anon_vmas(anon_dup);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* vma_shrink() - Reduce an existing VMAs memory area
|
|
* @vmi: The vma iterator
|
|
* @vma: The VMA to modify
|
|
* @start: The new start
|
|
* @end: The new end
|
|
*
|
|
* Returns: 0 on success, -ENOMEM otherwise
|
|
*/
|
|
int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end, pgoff_t pgoff)
|
|
{
|
|
struct vma_prepare vp;
|
|
|
|
WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
|
|
|
|
if (vma->vm_start < start)
|
|
vma_iter_config(vmi, vma->vm_start, start);
|
|
else
|
|
vma_iter_config(vmi, end, vma->vm_end);
|
|
|
|
if (vma_iter_prealloc(vmi, NULL))
|
|
return -ENOMEM;
|
|
|
|
vma_start_write(vma);
|
|
|
|
init_vma_prep(&vp, vma);
|
|
vma_prepare(&vp);
|
|
vma_adjust_trans_huge(vma, start, end, 0);
|
|
|
|
vma_iter_clear(vmi);
|
|
vma_set_range(vma, start, end, pgoff);
|
|
vma_complete(&vp, vmi, vma->vm_mm);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vma_complete- Helper function for handling the unlocking after altering VMAs,
|
|
* or for inserting a VMA.
|
|
*
|
|
* @vp: The vma_prepare struct
|
|
* @vmi: The vma iterator
|
|
* @mm: The mm_struct
|
|
*/
|
|
void vma_complete(struct vma_prepare *vp,
|
|
struct vma_iterator *vmi, struct mm_struct *mm)
|
|
{
|
|
if (vp->file) {
|
|
if (vp->adj_next)
|
|
vma_interval_tree_insert(vp->adj_next,
|
|
&vp->mapping->i_mmap);
|
|
vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
|
|
flush_dcache_mmap_unlock(vp->mapping);
|
|
}
|
|
|
|
if (vp->remove && vp->file) {
|
|
__remove_shared_vm_struct(vp->remove, vp->mapping);
|
|
if (vp->remove2)
|
|
__remove_shared_vm_struct(vp->remove2, vp->mapping);
|
|
} else if (vp->insert) {
|
|
/*
|
|
* split_vma has split insert from vma, and needs
|
|
* us to insert it before dropping the locks
|
|
* (it may either follow vma or precede it).
|
|
*/
|
|
vma_iter_store(vmi, vp->insert);
|
|
mm->map_count++;
|
|
}
|
|
|
|
if (vp->anon_vma) {
|
|
anon_vma_interval_tree_post_update_vma(vp->vma);
|
|
if (vp->adj_next)
|
|
anon_vma_interval_tree_post_update_vma(vp->adj_next);
|
|
anon_vma_unlock_write(vp->anon_vma);
|
|
}
|
|
|
|
if (vp->file) {
|
|
i_mmap_unlock_write(vp->mapping);
|
|
uprobe_mmap(vp->vma);
|
|
|
|
if (vp->adj_next)
|
|
uprobe_mmap(vp->adj_next);
|
|
}
|
|
|
|
if (vp->remove) {
|
|
again:
|
|
vma_mark_detached(vp->remove, true);
|
|
if (vp->file) {
|
|
uprobe_munmap(vp->remove, vp->remove->vm_start,
|
|
vp->remove->vm_end);
|
|
fput(vp->file);
|
|
}
|
|
if (vp->remove->anon_vma)
|
|
anon_vma_merge(vp->vma, vp->remove);
|
|
mm->map_count--;
|
|
mpol_put(vma_policy(vp->remove));
|
|
if (!vp->remove2)
|
|
WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
|
|
vm_area_free(vp->remove);
|
|
|
|
/*
|
|
* In mprotect's case 6 (see comments on vma_merge),
|
|
* we are removing both mid and next vmas
|
|
*/
|
|
if (vp->remove2) {
|
|
vp->remove = vp->remove2;
|
|
vp->remove2 = NULL;
|
|
goto again;
|
|
}
|
|
}
|
|
if (vp->insert && vp->file)
|
|
uprobe_mmap(vp->insert);
|
|
validate_mm(mm);
|
|
}
|
|
|
|
/*
|
|
* abort_munmap_vmas - Undo any munmap work and free resources
|
|
*
|
|
* Reattach any detached vmas and free up the maple tree used to track the vmas.
|
|
*/
|
|
static inline void abort_munmap_vmas(struct ma_state *mas_detach)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
mas_set(mas_detach, 0);
|
|
mas_for_each(mas_detach, vma, ULONG_MAX)
|
|
vma_mark_detached(vma, false);
|
|
|
|
__mt_destroy(mas_detach->tree);
|
|
}
|
|
|
|
/*
|
|
* vmi_complete_munmap_vmas() - Finish the munmap() operation
|
|
* @vmi: The vma iterator
|
|
* @vma: The first vma to be munmapped
|
|
* @mm: The mm struct
|
|
* @start: The start address
|
|
* @end: The end address
|
|
* @unlock: Unlock the mm or not
|
|
* @mas_detach: them maple state of the detached vma maple tree
|
|
* @locked_vm: The locked_vm count in the detached vmas
|
|
*
|
|
* This function updates the mm_struct, unmaps the region, frees the resources
|
|
* used for the munmap() and may downgrade the lock - if requested. Everything
|
|
* needed to be done once the vma maple tree is updated.
|
|
*/
|
|
static void
|
|
vmi_complete_munmap_vmas(struct vma_iterator *vmi, struct vm_area_struct *vma,
|
|
struct mm_struct *mm, unsigned long start, unsigned long end,
|
|
bool unlock, struct ma_state *mas_detach,
|
|
unsigned long locked_vm)
|
|
{
|
|
struct vm_area_struct *prev, *next;
|
|
int count;
|
|
|
|
count = mas_detach->index + 1;
|
|
mm->map_count -= count;
|
|
mm->locked_vm -= locked_vm;
|
|
if (unlock)
|
|
mmap_write_downgrade(mm);
|
|
|
|
prev = vma_iter_prev_range(vmi);
|
|
next = vma_next(vmi);
|
|
if (next)
|
|
vma_iter_prev_range(vmi);
|
|
|
|
/*
|
|
* We can free page tables without write-locking mmap_lock because VMAs
|
|
* were isolated before we downgraded mmap_lock.
|
|
*/
|
|
mas_set(mas_detach, 1);
|
|
unmap_region(mm, mas_detach, vma, prev, next, start, end, count,
|
|
!unlock);
|
|
/* Statistics and freeing VMAs */
|
|
mas_set(mas_detach, 0);
|
|
remove_mt(mm, mas_detach);
|
|
validate_mm(mm);
|
|
if (unlock)
|
|
mmap_read_unlock(mm);
|
|
|
|
__mt_destroy(mas_detach->tree);
|
|
}
|
|
|
|
/*
|
|
* do_vmi_align_munmap() - munmap the aligned region from @start to @end.
|
|
* @vmi: The vma iterator
|
|
* @vma: The starting vm_area_struct
|
|
* @mm: The mm_struct
|
|
* @start: The aligned start address to munmap.
|
|
* @end: The aligned end address to munmap.
|
|
* @uf: The userfaultfd list_head
|
|
* @unlock: Set to true to drop the mmap_lock. unlocking only happens on
|
|
* success.
|
|
*
|
|
* Return: 0 on success and drops the lock if so directed, error and leaves the
|
|
* lock held otherwise.
|
|
*/
|
|
int
|
|
do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
|
|
struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, struct list_head *uf, bool unlock)
|
|
{
|
|
struct vm_area_struct *next = NULL;
|
|
struct maple_tree mt_detach;
|
|
int count = 0;
|
|
int error = -ENOMEM;
|
|
unsigned long locked_vm = 0;
|
|
MA_STATE(mas_detach, &mt_detach, 0, 0);
|
|
mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
|
|
mt_on_stack(mt_detach);
|
|
|
|
/*
|
|
* If we need to split any vma, do it now to save pain later.
|
|
*
|
|
* Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
|
|
* unmapped vm_area_struct will remain in use: so lower split_vma
|
|
* places tmp vma above, and higher split_vma places tmp vma below.
|
|
*/
|
|
|
|
/* Does it split the first one? */
|
|
if (start > vma->vm_start) {
|
|
|
|
/*
|
|
* Make sure that map_count on return from munmap() will
|
|
* not exceed its limit; but let map_count go just above
|
|
* its limit temporarily, to help free resources as expected.
|
|
*/
|
|
if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
|
|
goto map_count_exceeded;
|
|
|
|
/* Don't bother splitting the VMA if we can't unmap it anyway */
|
|
if (!can_modify_vma(vma)) {
|
|
error = -EPERM;
|
|
goto start_split_failed;
|
|
}
|
|
|
|
error = __split_vma(vmi, vma, start, 1);
|
|
if (error)
|
|
goto start_split_failed;
|
|
}
|
|
|
|
/*
|
|
* Detach a range of VMAs from the mm. Using next as a temp variable as
|
|
* it is always overwritten.
|
|
*/
|
|
next = vma;
|
|
do {
|
|
if (!can_modify_vma(next)) {
|
|
error = -EPERM;
|
|
goto modify_vma_failed;
|
|
}
|
|
|
|
/* Does it split the end? */
|
|
if (next->vm_end > end) {
|
|
error = __split_vma(vmi, next, end, 0);
|
|
if (error)
|
|
goto end_split_failed;
|
|
}
|
|
vma_start_write(next);
|
|
mas_set(&mas_detach, count);
|
|
error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
|
|
if (error)
|
|
goto munmap_gather_failed;
|
|
vma_mark_detached(next, true);
|
|
if (next->vm_flags & VM_LOCKED)
|
|
locked_vm += vma_pages(next);
|
|
|
|
count++;
|
|
if (unlikely(uf)) {
|
|
/*
|
|
* If userfaultfd_unmap_prep returns an error the vmas
|
|
* will remain split, but userland will get a
|
|
* highly unexpected error anyway. This is no
|
|
* different than the case where the first of the two
|
|
* __split_vma fails, but we don't undo the first
|
|
* split, despite we could. This is unlikely enough
|
|
* failure that it's not worth optimizing it for.
|
|
*/
|
|
error = userfaultfd_unmap_prep(next, start, end, uf);
|
|
|
|
if (error)
|
|
goto userfaultfd_error;
|
|
}
|
|
#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
|
|
BUG_ON(next->vm_start < start);
|
|
BUG_ON(next->vm_start > end);
|
|
#endif
|
|
} for_each_vma_range(*vmi, next, end);
|
|
|
|
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
|
|
/* Make sure no VMAs are about to be lost. */
|
|
{
|
|
MA_STATE(test, &mt_detach, 0, 0);
|
|
struct vm_area_struct *vma_mas, *vma_test;
|
|
int test_count = 0;
|
|
|
|
vma_iter_set(vmi, start);
|
|
rcu_read_lock();
|
|
vma_test = mas_find(&test, count - 1);
|
|
for_each_vma_range(*vmi, vma_mas, end) {
|
|
BUG_ON(vma_mas != vma_test);
|
|
test_count++;
|
|
vma_test = mas_next(&test, count - 1);
|
|
}
|
|
rcu_read_unlock();
|
|
BUG_ON(count != test_count);
|
|
}
|
|
#endif
|
|
|
|
while (vma_iter_addr(vmi) > start)
|
|
vma_iter_prev_range(vmi);
|
|
|
|
error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
|
|
if (error)
|
|
goto clear_tree_failed;
|
|
|
|
/* Point of no return */
|
|
vmi_complete_munmap_vmas(vmi, vma, mm, start, end, unlock, &mas_detach,
|
|
locked_vm);
|
|
|
|
return 0;
|
|
|
|
modify_vma_failed:
|
|
clear_tree_failed:
|
|
userfaultfd_error:
|
|
munmap_gather_failed:
|
|
end_split_failed:
|
|
abort_munmap_vmas(&mas_detach);
|
|
start_split_failed:
|
|
map_count_exceeded:
|
|
validate_mm(mm);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* do_vmi_munmap() - munmap a given range.
|
|
* @vmi: The vma iterator
|
|
* @mm: The mm_struct
|
|
* @start: The start address to munmap
|
|
* @len: The length of the range to munmap
|
|
* @uf: The userfaultfd list_head
|
|
* @unlock: set to true if the user wants to drop the mmap_lock on success
|
|
*
|
|
* This function takes a @mas that is either pointing to the previous VMA or set
|
|
* to MA_START and sets it up to remove the mapping(s). The @len will be
|
|
* aligned.
|
|
*
|
|
* Return: 0 on success and drops the lock if so directed, error and leaves the
|
|
* lock held otherwise.
|
|
*/
|
|
int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
|
|
unsigned long start, size_t len, struct list_head *uf,
|
|
bool unlock)
|
|
{
|
|
unsigned long end;
|
|
struct vm_area_struct *vma;
|
|
|
|
if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
|
|
return -EINVAL;
|
|
|
|
end = start + PAGE_ALIGN(len);
|
|
if (end == start)
|
|
return -EINVAL;
|
|
|
|
/* Find the first overlapping VMA */
|
|
vma = vma_find(vmi, end);
|
|
if (!vma) {
|
|
if (unlock)
|
|
mmap_write_unlock(mm);
|
|
return 0;
|
|
}
|
|
|
|
return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
|
|
}
|
|
|
|
/*
|
|
* Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
|
|
* figure out whether that can be merged with its predecessor or its
|
|
* successor. Or both (it neatly fills a hole).
|
|
*
|
|
* In most cases - when called for mmap, brk or mremap - [addr,end) is
|
|
* certain not to be mapped by the time vma_merge is called; but when
|
|
* called for mprotect, it is certain to be already mapped (either at
|
|
* an offset within prev, or at the start of next), and the flags of
|
|
* this area are about to be changed to vm_flags - and the no-change
|
|
* case has already been eliminated.
|
|
*
|
|
* The following mprotect cases have to be considered, where **** is
|
|
* the area passed down from mprotect_fixup, never extending beyond one
|
|
* vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
|
|
* at the same address as **** and is of the same or larger span, and
|
|
* NNNN the next vma after ****:
|
|
*
|
|
* **** **** ****
|
|
* PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
|
|
* cannot merge might become might become
|
|
* PPNNNNNNNNNN PPPPPPPPPPCC
|
|
* mmap, brk or case 4 below case 5 below
|
|
* mremap move:
|
|
* **** ****
|
|
* PPPP NNNN PPPPCCCCNNNN
|
|
* might become might become
|
|
* PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
|
|
* PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
|
|
* PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
|
|
*
|
|
* It is important for case 8 that the vma CCCC overlapping the
|
|
* region **** is never going to extended over NNNN. Instead NNNN must
|
|
* be extended in region **** and CCCC must be removed. This way in
|
|
* all cases where vma_merge succeeds, the moment vma_merge drops the
|
|
* rmap_locks, the properties of the merged vma will be already
|
|
* correct for the whole merged range. Some of those properties like
|
|
* vm_page_prot/vm_flags may be accessed by rmap_walks and they must
|
|
* be correct for the whole merged range immediately after the
|
|
* rmap_locks are released. Otherwise if NNNN would be removed and
|
|
* CCCC would be extended over the NNNN range, remove_migration_ptes
|
|
* or other rmap walkers (if working on addresses beyond the "end"
|
|
* parameter) may establish ptes with the wrong permissions of CCCC
|
|
* instead of the right permissions of NNNN.
|
|
*
|
|
* In the code below:
|
|
* PPPP is represented by *prev
|
|
* CCCC is represented by *curr or not represented at all (NULL)
|
|
* NNNN is represented by *next or not represented at all (NULL)
|
|
* **** is not represented - it will be merged and the vma containing the
|
|
* area is returned, or the function will return NULL
|
|
*/
|
|
static struct vm_area_struct
|
|
*vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
|
|
struct vm_area_struct *src, unsigned long addr, unsigned long end,
|
|
unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
|
|
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
|
|
struct anon_vma_name *anon_name)
|
|
{
|
|
struct mm_struct *mm = src->vm_mm;
|
|
struct anon_vma *anon_vma = src->anon_vma;
|
|
struct file *file = src->vm_file;
|
|
struct vm_area_struct *curr, *next, *res;
|
|
struct vm_area_struct *vma, *adjust, *remove, *remove2;
|
|
struct vm_area_struct *anon_dup = NULL;
|
|
struct vma_prepare vp;
|
|
pgoff_t vma_pgoff;
|
|
int err = 0;
|
|
bool merge_prev = false;
|
|
bool merge_next = false;
|
|
bool vma_expanded = false;
|
|
unsigned long vma_start = addr;
|
|
unsigned long vma_end = end;
|
|
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
|
|
long adj_start = 0;
|
|
|
|
/*
|
|
* We later require that vma->vm_flags == vm_flags,
|
|
* so this tests vma->vm_flags & VM_SPECIAL, too.
|
|
*/
|
|
if (vm_flags & VM_SPECIAL)
|
|
return NULL;
|
|
|
|
/* Does the input range span an existing VMA? (cases 5 - 8) */
|
|
curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
|
|
|
|
if (!curr || /* cases 1 - 4 */
|
|
end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
|
|
next = vma_lookup(mm, end);
|
|
else
|
|
next = NULL; /* case 5 */
|
|
|
|
if (prev) {
|
|
vma_start = prev->vm_start;
|
|
vma_pgoff = prev->vm_pgoff;
|
|
|
|
/* Can we merge the predecessor? */
|
|
if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
|
|
&& can_vma_merge_after(prev, vm_flags, anon_vma, file,
|
|
pgoff, vm_userfaultfd_ctx, anon_name)) {
|
|
merge_prev = true;
|
|
vma_prev(vmi);
|
|
}
|
|
}
|
|
|
|
/* Can we merge the successor? */
|
|
if (next && mpol_equal(policy, vma_policy(next)) &&
|
|
can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
|
|
vm_userfaultfd_ctx, anon_name)) {
|
|
merge_next = true;
|
|
}
|
|
|
|
/* Verify some invariant that must be enforced by the caller. */
|
|
VM_WARN_ON(prev && addr <= prev->vm_start);
|
|
VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
|
|
VM_WARN_ON(addr >= end);
|
|
|
|
if (!merge_prev && !merge_next)
|
|
return NULL; /* Not mergeable. */
|
|
|
|
if (merge_prev)
|
|
vma_start_write(prev);
|
|
|
|
res = vma = prev;
|
|
remove = remove2 = adjust = NULL;
|
|
|
|
/* Can we merge both the predecessor and the successor? */
|
|
if (merge_prev && merge_next &&
|
|
is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
|
|
vma_start_write(next);
|
|
remove = next; /* case 1 */
|
|
vma_end = next->vm_end;
|
|
err = dup_anon_vma(prev, next, &anon_dup);
|
|
if (curr) { /* case 6 */
|
|
vma_start_write(curr);
|
|
remove = curr;
|
|
remove2 = next;
|
|
/*
|
|
* Note that the dup_anon_vma below cannot overwrite err
|
|
* since the first caller would do nothing unless next
|
|
* has an anon_vma.
|
|
*/
|
|
if (!next->anon_vma)
|
|
err = dup_anon_vma(prev, curr, &anon_dup);
|
|
}
|
|
} else if (merge_prev) { /* case 2 */
|
|
if (curr) {
|
|
vma_start_write(curr);
|
|
if (end == curr->vm_end) { /* case 7 */
|
|
/*
|
|
* can_vma_merge_after() assumed we would not be
|
|
* removing prev vma, so it skipped the check
|
|
* for vm_ops->close, but we are removing curr
|
|
*/
|
|
if (curr->vm_ops && curr->vm_ops->close)
|
|
err = -EINVAL;
|
|
remove = curr;
|
|
} else { /* case 5 */
|
|
adjust = curr;
|
|
adj_start = (end - curr->vm_start);
|
|
}
|
|
if (!err)
|
|
err = dup_anon_vma(prev, curr, &anon_dup);
|
|
}
|
|
} else { /* merge_next */
|
|
vma_start_write(next);
|
|
res = next;
|
|
if (prev && addr < prev->vm_end) { /* case 4 */
|
|
vma_start_write(prev);
|
|
vma_end = addr;
|
|
adjust = next;
|
|
adj_start = -(prev->vm_end - addr);
|
|
err = dup_anon_vma(next, prev, &anon_dup);
|
|
} else {
|
|
/*
|
|
* Note that cases 3 and 8 are the ONLY ones where prev
|
|
* is permitted to be (but is not necessarily) NULL.
|
|
*/
|
|
vma = next; /* case 3 */
|
|
vma_start = addr;
|
|
vma_end = next->vm_end;
|
|
vma_pgoff = next->vm_pgoff - pglen;
|
|
if (curr) { /* case 8 */
|
|
vma_pgoff = curr->vm_pgoff;
|
|
vma_start_write(curr);
|
|
remove = curr;
|
|
err = dup_anon_vma(next, curr, &anon_dup);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Error in anon_vma clone. */
|
|
if (err)
|
|
goto anon_vma_fail;
|
|
|
|
if (vma_start < vma->vm_start || vma_end > vma->vm_end)
|
|
vma_expanded = true;
|
|
|
|
if (vma_expanded) {
|
|
vma_iter_config(vmi, vma_start, vma_end);
|
|
} else {
|
|
vma_iter_config(vmi, adjust->vm_start + adj_start,
|
|
adjust->vm_end);
|
|
}
|
|
|
|
if (vma_iter_prealloc(vmi, vma))
|
|
goto prealloc_fail;
|
|
|
|
init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
|
|
VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
|
|
vp.anon_vma != adjust->anon_vma);
|
|
|
|
vma_prepare(&vp);
|
|
vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
|
|
vma_set_range(vma, vma_start, vma_end, vma_pgoff);
|
|
|
|
if (vma_expanded)
|
|
vma_iter_store(vmi, vma);
|
|
|
|
if (adj_start) {
|
|
adjust->vm_start += adj_start;
|
|
adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
|
|
if (adj_start < 0) {
|
|
WARN_ON(vma_expanded);
|
|
vma_iter_store(vmi, next);
|
|
}
|
|
}
|
|
|
|
vma_complete(&vp, vmi, mm);
|
|
khugepaged_enter_vma(res, vm_flags);
|
|
return res;
|
|
|
|
prealloc_fail:
|
|
if (anon_dup)
|
|
unlink_anon_vmas(anon_dup);
|
|
|
|
anon_vma_fail:
|
|
vma_iter_set(vmi, addr);
|
|
vma_iter_load(vmi);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
|
|
* context and anonymous VMA name within the range [start, end).
|
|
*
|
|
* As a result, we might be able to merge the newly modified VMA range with an
|
|
* adjacent VMA with identical properties.
|
|
*
|
|
* If no merge is possible and the range does not span the entirety of the VMA,
|
|
* we then need to split the VMA to accommodate the change.
|
|
*
|
|
* The function returns either the merged VMA, the original VMA if a split was
|
|
* required instead, or an error if the split failed.
|
|
*/
|
|
struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
|
|
struct vm_area_struct *prev,
|
|
struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long vm_flags,
|
|
struct mempolicy *policy,
|
|
struct vm_userfaultfd_ctx uffd_ctx,
|
|
struct anon_vma_name *anon_name)
|
|
{
|
|
pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
|
|
struct vm_area_struct *merged;
|
|
|
|
merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
|
|
pgoff, policy, uffd_ctx, anon_name);
|
|
if (merged)
|
|
return merged;
|
|
|
|
if (vma->vm_start < start) {
|
|
int err = split_vma(vmi, vma, start, 1);
|
|
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
if (vma->vm_end > end) {
|
|
int err = split_vma(vmi, vma, end, 0);
|
|
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return vma;
|
|
}
|
|
|
|
/*
|
|
* Attempt to merge a newly mapped VMA with those adjacent to it. The caller
|
|
* must ensure that [start, end) does not overlap any existing VMA.
|
|
*/
|
|
struct vm_area_struct
|
|
*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
|
|
struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgoff_t pgoff)
|
|
{
|
|
return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
|
|
vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
|
|
}
|
|
|
|
/*
|
|
* Expand vma by delta bytes, potentially merging with an immediately adjacent
|
|
* VMA with identical properties.
|
|
*/
|
|
struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma,
|
|
unsigned long delta)
|
|
{
|
|
pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
|
|
|
|
/* vma is specified as prev, so case 1 or 2 will apply. */
|
|
return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
|
|
vma->vm_flags, pgoff, vma_policy(vma),
|
|
vma->vm_userfaultfd_ctx, anon_vma_name(vma));
|
|
}
|
|
|
|
void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
|
|
{
|
|
vb->count = 0;
|
|
}
|
|
|
|
static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
|
|
{
|
|
struct address_space *mapping;
|
|
int i;
|
|
|
|
mapping = vb->vmas[0]->vm_file->f_mapping;
|
|
i_mmap_lock_write(mapping);
|
|
for (i = 0; i < vb->count; i++) {
|
|
VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
|
|
__remove_shared_vm_struct(vb->vmas[i], mapping);
|
|
}
|
|
i_mmap_unlock_write(mapping);
|
|
|
|
unlink_file_vma_batch_init(vb);
|
|
}
|
|
|
|
void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
if (vma->vm_file == NULL)
|
|
return;
|
|
|
|
if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
|
|
vb->count == ARRAY_SIZE(vb->vmas))
|
|
unlink_file_vma_batch_process(vb);
|
|
|
|
vb->vmas[vb->count] = vma;
|
|
vb->count++;
|
|
}
|
|
|
|
void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
|
|
{
|
|
if (vb->count > 0)
|
|
unlink_file_vma_batch_process(vb);
|
|
}
|
|
|
|
/*
|
|
* Unlink a file-based vm structure from its interval tree, to hide
|
|
* vma from rmap and vmtruncate before freeing its page tables.
|
|
*/
|
|
void unlink_file_vma(struct vm_area_struct *vma)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
|
|
if (file) {
|
|
struct address_space *mapping = file->f_mapping;
|
|
|
|
i_mmap_lock_write(mapping);
|
|
__remove_shared_vm_struct(vma, mapping);
|
|
i_mmap_unlock_write(mapping);
|
|
}
|
|
}
|
|
|
|
void vma_link_file(struct vm_area_struct *vma)
|
|
{
|
|
struct file *file = vma->vm_file;
|
|
struct address_space *mapping;
|
|
|
|
if (file) {
|
|
mapping = file->f_mapping;
|
|
i_mmap_lock_write(mapping);
|
|
__vma_link_file(vma, mapping);
|
|
i_mmap_unlock_write(mapping);
|
|
}
|
|
}
|
|
|
|
int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
|
|
{
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
|
|
if (vma_iter_prealloc(&vmi, vma))
|
|
return -ENOMEM;
|
|
|
|
vma_start_write(vma);
|
|
vma_iter_store(&vmi, vma);
|
|
vma_link_file(vma);
|
|
mm->map_count++;
|
|
validate_mm(mm);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the vma structure to a new location in the same mm,
|
|
* prior to moving page table entries, to effect an mremap move.
|
|
*/
|
|
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
|
|
unsigned long addr, unsigned long len, pgoff_t pgoff,
|
|
bool *need_rmap_locks)
|
|
{
|
|
struct vm_area_struct *vma = *vmap;
|
|
unsigned long vma_start = vma->vm_start;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct vm_area_struct *new_vma, *prev;
|
|
bool faulted_in_anon_vma = true;
|
|
VMA_ITERATOR(vmi, mm, addr);
|
|
|
|
/*
|
|
* If anonymous vma has not yet been faulted, update new pgoff
|
|
* to match new location, to increase its chance of merging.
|
|
*/
|
|
if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
|
|
pgoff = addr >> PAGE_SHIFT;
|
|
faulted_in_anon_vma = false;
|
|
}
|
|
|
|
new_vma = find_vma_prev(mm, addr, &prev);
|
|
if (new_vma && new_vma->vm_start < addr + len)
|
|
return NULL; /* should never get here */
|
|
|
|
new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
|
|
if (new_vma) {
|
|
/*
|
|
* Source vma may have been merged into new_vma
|
|
*/
|
|
if (unlikely(vma_start >= new_vma->vm_start &&
|
|
vma_start < new_vma->vm_end)) {
|
|
/*
|
|
* The only way we can get a vma_merge with
|
|
* self during an mremap is if the vma hasn't
|
|
* been faulted in yet and we were allowed to
|
|
* reset the dst vma->vm_pgoff to the
|
|
* destination address of the mremap to allow
|
|
* the merge to happen. mremap must change the
|
|
* vm_pgoff linearity between src and dst vmas
|
|
* (in turn preventing a vma_merge) to be
|
|
* safe. It is only safe to keep the vm_pgoff
|
|
* linear if there are no pages mapped yet.
|
|
*/
|
|
VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
|
|
*vmap = vma = new_vma;
|
|
}
|
|
*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
|
|
} else {
|
|
new_vma = vm_area_dup(vma);
|
|
if (!new_vma)
|
|
goto out;
|
|
vma_set_range(new_vma, addr, addr + len, pgoff);
|
|
if (vma_dup_policy(vma, new_vma))
|
|
goto out_free_vma;
|
|
if (anon_vma_clone(new_vma, vma))
|
|
goto out_free_mempol;
|
|
if (new_vma->vm_file)
|
|
get_file(new_vma->vm_file);
|
|
if (new_vma->vm_ops && new_vma->vm_ops->open)
|
|
new_vma->vm_ops->open(new_vma);
|
|
if (vma_link(mm, new_vma))
|
|
goto out_vma_link;
|
|
*need_rmap_locks = false;
|
|
}
|
|
return new_vma;
|
|
|
|
out_vma_link:
|
|
if (new_vma->vm_ops && new_vma->vm_ops->close)
|
|
new_vma->vm_ops->close(new_vma);
|
|
|
|
if (new_vma->vm_file)
|
|
fput(new_vma->vm_file);
|
|
|
|
unlink_anon_vmas(new_vma);
|
|
out_free_mempol:
|
|
mpol_put(vma_policy(new_vma));
|
|
out_free_vma:
|
|
vm_area_free(new_vma);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Rough compatibility check to quickly see if it's even worth looking
|
|
* at sharing an anon_vma.
|
|
*
|
|
* They need to have the same vm_file, and the flags can only differ
|
|
* in things that mprotect may change.
|
|
*
|
|
* NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
|
|
* we can merge the two vma's. For example, we refuse to merge a vma if
|
|
* there is a vm_ops->close() function, because that indicates that the
|
|
* driver is doing some kind of reference counting. But that doesn't
|
|
* really matter for the anon_vma sharing case.
|
|
*/
|
|
static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
|
|
{
|
|
return a->vm_end == b->vm_start &&
|
|
mpol_equal(vma_policy(a), vma_policy(b)) &&
|
|
a->vm_file == b->vm_file &&
|
|
!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
|
|
b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Do some basic sanity checking to see if we can re-use the anon_vma
|
|
* from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
|
|
* the same as 'old', the other will be the new one that is trying
|
|
* to share the anon_vma.
|
|
*
|
|
* NOTE! This runs with mmap_lock held for reading, so it is possible that
|
|
* the anon_vma of 'old' is concurrently in the process of being set up
|
|
* by another page fault trying to merge _that_. But that's ok: if it
|
|
* is being set up, that automatically means that it will be a singleton
|
|
* acceptable for merging, so we can do all of this optimistically. But
|
|
* we do that READ_ONCE() to make sure that we never re-load the pointer.
|
|
*
|
|
* IOW: that the "list_is_singular()" test on the anon_vma_chain only
|
|
* matters for the 'stable anon_vma' case (ie the thing we want to avoid
|
|
* is to return an anon_vma that is "complex" due to having gone through
|
|
* a fork).
|
|
*
|
|
* We also make sure that the two vma's are compatible (adjacent,
|
|
* and with the same memory policies). That's all stable, even with just
|
|
* a read lock on the mmap_lock.
|
|
*/
|
|
static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
|
|
struct vm_area_struct *a,
|
|
struct vm_area_struct *b)
|
|
{
|
|
if (anon_vma_compatible(a, b)) {
|
|
struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
|
|
|
|
if (anon_vma && list_is_singular(&old->anon_vma_chain))
|
|
return anon_vma;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
|
|
* neighbouring vmas for a suitable anon_vma, before it goes off
|
|
* to allocate a new anon_vma. It checks because a repetitive
|
|
* sequence of mprotects and faults may otherwise lead to distinct
|
|
* anon_vmas being allocated, preventing vma merge in subsequent
|
|
* mprotect.
|
|
*/
|
|
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
|
|
{
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct vm_area_struct *prev, *next;
|
|
VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
|
|
|
|
/* Try next first. */
|
|
next = vma_iter_load(&vmi);
|
|
if (next) {
|
|
anon_vma = reusable_anon_vma(next, vma, next);
|
|
if (anon_vma)
|
|
return anon_vma;
|
|
}
|
|
|
|
prev = vma_prev(&vmi);
|
|
VM_BUG_ON_VMA(prev != vma, vma);
|
|
prev = vma_prev(&vmi);
|
|
/* Try prev next. */
|
|
if (prev)
|
|
anon_vma = reusable_anon_vma(prev, prev, vma);
|
|
|
|
/*
|
|
* We might reach here with anon_vma == NULL if we can't find
|
|
* any reusable anon_vma.
|
|
* There's no absolute need to look only at touching neighbours:
|
|
* we could search further afield for "compatible" anon_vmas.
|
|
* But it would probably just be a waste of time searching,
|
|
* or lead to too many vmas hanging off the same anon_vma.
|
|
* We're trying to allow mprotect remerging later on,
|
|
* not trying to minimize memory used for anon_vmas.
|
|
*/
|
|
return anon_vma;
|
|
}
|
|
|
|
static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
|
|
{
|
|
return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
|
|
}
|
|
|
|
static bool vma_is_shared_writable(struct vm_area_struct *vma)
|
|
{
|
|
return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
|
|
(VM_WRITE | VM_SHARED);
|
|
}
|
|
|
|
static bool vma_fs_can_writeback(struct vm_area_struct *vma)
|
|
{
|
|
/* No managed pages to writeback. */
|
|
if (vma->vm_flags & VM_PFNMAP)
|
|
return false;
|
|
|
|
return vma->vm_file && vma->vm_file->f_mapping &&
|
|
mapping_can_writeback(vma->vm_file->f_mapping);
|
|
}
|
|
|
|
/*
|
|
* Does this VMA require the underlying folios to have their dirty state
|
|
* tracked?
|
|
*/
|
|
bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
|
|
{
|
|
/* Only shared, writable VMAs require dirty tracking. */
|
|
if (!vma_is_shared_writable(vma))
|
|
return false;
|
|
|
|
/* Does the filesystem need to be notified? */
|
|
if (vm_ops_needs_writenotify(vma->vm_ops))
|
|
return true;
|
|
|
|
/*
|
|
* Even if the filesystem doesn't indicate a need for writenotify, if it
|
|
* can writeback, dirty tracking is still required.
|
|
*/
|
|
return vma_fs_can_writeback(vma);
|
|
}
|
|
|
|
/*
|
|
* Some shared mappings will want the pages marked read-only
|
|
* to track write events. If so, we'll downgrade vm_page_prot
|
|
* to the private version (using protection_map[] without the
|
|
* VM_SHARED bit).
|
|
*/
|
|
bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
|
|
{
|
|
/* If it was private or non-writable, the write bit is already clear */
|
|
if (!vma_is_shared_writable(vma))
|
|
return false;
|
|
|
|
/* The backer wishes to know when pages are first written to? */
|
|
if (vm_ops_needs_writenotify(vma->vm_ops))
|
|
return true;
|
|
|
|
/* The open routine did something to the protections that pgprot_modify
|
|
* won't preserve? */
|
|
if (pgprot_val(vm_page_prot) !=
|
|
pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
|
|
return false;
|
|
|
|
/*
|
|
* Do we need to track softdirty? hugetlb does not support softdirty
|
|
* tracking yet.
|
|
*/
|
|
if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
|
|
return true;
|
|
|
|
/* Do we need write faults for uffd-wp tracking? */
|
|
if (userfaultfd_wp(vma))
|
|
return true;
|
|
|
|
/* Can the mapping track the dirty pages? */
|
|
return vma_fs_can_writeback(vma);
|
|
}
|
|
|
|
unsigned long count_vma_pages_range(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long end)
|
|
{
|
|
VMA_ITERATOR(vmi, mm, addr);
|
|
struct vm_area_struct *vma;
|
|
unsigned long nr_pages = 0;
|
|
|
|
for_each_vma_range(vmi, vma, end) {
|
|
unsigned long vm_start = max(addr, vma->vm_start);
|
|
unsigned long vm_end = min(end, vma->vm_end);
|
|
|
|
nr_pages += PHYS_PFN(vm_end - vm_start);
|
|
}
|
|
|
|
return nr_pages;
|
|
}
|
|
|
|
static DEFINE_MUTEX(mm_all_locks_mutex);
|
|
|
|
static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
|
|
{
|
|
if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
|
|
/*
|
|
* The LSB of head.next can't change from under us
|
|
* because we hold the mm_all_locks_mutex.
|
|
*/
|
|
down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
|
|
/*
|
|
* We can safely modify head.next after taking the
|
|
* anon_vma->root->rwsem. If some other vma in this mm shares
|
|
* the same anon_vma we won't take it again.
|
|
*
|
|
* No need of atomic instructions here, head.next
|
|
* can't change from under us thanks to the
|
|
* anon_vma->root->rwsem.
|
|
*/
|
|
if (__test_and_set_bit(0, (unsigned long *)
|
|
&anon_vma->root->rb_root.rb_root.rb_node))
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
|
|
{
|
|
if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
|
|
/*
|
|
* AS_MM_ALL_LOCKS can't change from under us because
|
|
* we hold the mm_all_locks_mutex.
|
|
*
|
|
* Operations on ->flags have to be atomic because
|
|
* even if AS_MM_ALL_LOCKS is stable thanks to the
|
|
* mm_all_locks_mutex, there may be other cpus
|
|
* changing other bitflags in parallel to us.
|
|
*/
|
|
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
|
|
BUG();
|
|
down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This operation locks against the VM for all pte/vma/mm related
|
|
* operations that could ever happen on a certain mm. This includes
|
|
* vmtruncate, try_to_unmap, and all page faults.
|
|
*
|
|
* The caller must take the mmap_lock in write mode before calling
|
|
* mm_take_all_locks(). The caller isn't allowed to release the
|
|
* mmap_lock until mm_drop_all_locks() returns.
|
|
*
|
|
* mmap_lock in write mode is required in order to block all operations
|
|
* that could modify pagetables and free pages without need of
|
|
* altering the vma layout. It's also needed in write mode to avoid new
|
|
* anon_vmas to be associated with existing vmas.
|
|
*
|
|
* A single task can't take more than one mm_take_all_locks() in a row
|
|
* or it would deadlock.
|
|
*
|
|
* The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
|
|
* mapping->flags avoid to take the same lock twice, if more than one
|
|
* vma in this mm is backed by the same anon_vma or address_space.
|
|
*
|
|
* We take locks in following order, accordingly to comment at beginning
|
|
* of mm/rmap.c:
|
|
* - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
|
|
* hugetlb mapping);
|
|
* - all vmas marked locked
|
|
* - all i_mmap_rwsem locks;
|
|
* - all anon_vma->rwseml
|
|
*
|
|
* We can take all locks within these types randomly because the VM code
|
|
* doesn't nest them and we protected from parallel mm_take_all_locks() by
|
|
* mm_all_locks_mutex.
|
|
*
|
|
* mm_take_all_locks() and mm_drop_all_locks are expensive operations
|
|
* that may have to take thousand of locks.
|
|
*
|
|
* mm_take_all_locks() can fail if it's interrupted by signals.
|
|
*/
|
|
int mm_take_all_locks(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct anon_vma_chain *avc;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
mmap_assert_write_locked(mm);
|
|
|
|
mutex_lock(&mm_all_locks_mutex);
|
|
|
|
/*
|
|
* vma_start_write() does not have a complement in mm_drop_all_locks()
|
|
* because vma_start_write() is always asymmetrical; it marks a VMA as
|
|
* being written to until mmap_write_unlock() or mmap_write_downgrade()
|
|
* is reached.
|
|
*/
|
|
for_each_vma(vmi, vma) {
|
|
if (signal_pending(current))
|
|
goto out_unlock;
|
|
vma_start_write(vma);
|
|
}
|
|
|
|
vma_iter_init(&vmi, mm, 0);
|
|
for_each_vma(vmi, vma) {
|
|
if (signal_pending(current))
|
|
goto out_unlock;
|
|
if (vma->vm_file && vma->vm_file->f_mapping &&
|
|
is_vm_hugetlb_page(vma))
|
|
vm_lock_mapping(mm, vma->vm_file->f_mapping);
|
|
}
|
|
|
|
vma_iter_init(&vmi, mm, 0);
|
|
for_each_vma(vmi, vma) {
|
|
if (signal_pending(current))
|
|
goto out_unlock;
|
|
if (vma->vm_file && vma->vm_file->f_mapping &&
|
|
!is_vm_hugetlb_page(vma))
|
|
vm_lock_mapping(mm, vma->vm_file->f_mapping);
|
|
}
|
|
|
|
vma_iter_init(&vmi, mm, 0);
|
|
for_each_vma(vmi, vma) {
|
|
if (signal_pending(current))
|
|
goto out_unlock;
|
|
if (vma->anon_vma)
|
|
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
|
|
vm_lock_anon_vma(mm, avc->anon_vma);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unlock:
|
|
mm_drop_all_locks(mm);
|
|
return -EINTR;
|
|
}
|
|
|
|
static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
|
|
{
|
|
if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
|
|
/*
|
|
* The LSB of head.next can't change to 0 from under
|
|
* us because we hold the mm_all_locks_mutex.
|
|
*
|
|
* We must however clear the bitflag before unlocking
|
|
* the vma so the users using the anon_vma->rb_root will
|
|
* never see our bitflag.
|
|
*
|
|
* No need of atomic instructions here, head.next
|
|
* can't change from under us until we release the
|
|
* anon_vma->root->rwsem.
|
|
*/
|
|
if (!__test_and_clear_bit(0, (unsigned long *)
|
|
&anon_vma->root->rb_root.rb_root.rb_node))
|
|
BUG();
|
|
anon_vma_unlock_write(anon_vma);
|
|
}
|
|
}
|
|
|
|
static void vm_unlock_mapping(struct address_space *mapping)
|
|
{
|
|
if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
|
|
/*
|
|
* AS_MM_ALL_LOCKS can't change to 0 from under us
|
|
* because we hold the mm_all_locks_mutex.
|
|
*/
|
|
i_mmap_unlock_write(mapping);
|
|
if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
|
|
&mapping->flags))
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The mmap_lock cannot be released by the caller until
|
|
* mm_drop_all_locks() returns.
|
|
*/
|
|
void mm_drop_all_locks(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct anon_vma_chain *avc;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
mmap_assert_write_locked(mm);
|
|
BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
|
|
|
|
for_each_vma(vmi, vma) {
|
|
if (vma->anon_vma)
|
|
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
|
|
vm_unlock_anon_vma(avc->anon_vma);
|
|
if (vma->vm_file && vma->vm_file->f_mapping)
|
|
vm_unlock_mapping(vma->vm_file->f_mapping);
|
|
}
|
|
|
|
mutex_unlock(&mm_all_locks_mutex);
|
|
}
|