linux-stable/drivers/spi/spi-fsl-qspi.c
Michael Walle b0177aca7a
spi: spi-fsl-qspi: Ensure width is respected in spi-mem operations
Make use of a core helper to ensure the desired width is respected
when calling spi-mem operators.

Otherwise only the SPI controller will be matched with the flash chip,
which might lead to wrong widths. Also consider the width specified by
the user in the device tree.

Fixes: 84d043185dbe ("spi: Add a driver for the Freescale/NXP QuadSPI controller")
Signed-off-by: Michael Walle <michael@walle.cc>
Link: https://lore.kernel.org/r/20200114154613.8195-1-michael@walle.cc
Signed-off-by: Mark Brown <broonie@kernel.org>
2020-01-21 17:08:27 +00:00

1010 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale QuadSPI driver.
*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
* Copyright (C) 2018 Bootlin
* Copyright (C) 2018 exceet electronics GmbH
* Copyright (C) 2018 Kontron Electronics GmbH
*
* Transition to SPI MEM interface:
* Authors:
* Boris Brezillon <bbrezillon@kernel.org>
* Frieder Schrempf <frieder.schrempf@kontron.de>
* Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
* Suresh Gupta <suresh.gupta@nxp.com>
*
* Based on the original fsl-quadspi.c spi-nor driver:
* Author: Freescale Semiconductor, Inc.
*
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/sizes.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/*
* The driver only uses one single LUT entry, that is updated on
* each call of exec_op(). Index 0 is preset at boot with a basic
* read operation, so let's use the last entry (15).
*/
#define SEQID_LUT 15
/* Registers used by the driver */
#define QUADSPI_MCR 0x00
#define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
#define QUADSPI_MCR_MDIS_MASK BIT(14)
#define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
#define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
#define QUADSPI_MCR_DDR_EN_MASK BIT(7)
#define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
#define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
#define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
#define QUADSPI_IPCR 0x08
#define QUADSPI_IPCR_SEQID(x) ((x) << 24)
#define QUADSPI_FLSHCR 0x0c
#define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0)
#define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8)
#define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16)
#define QUADSPI_BUF0CR 0x10
#define QUADSPI_BUF1CR 0x14
#define QUADSPI_BUF2CR 0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
#define QUADSPI_BUF3CR 0x1c
#define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
#define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
#define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
#define QUADSPI_BFGENCR 0x20
#define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
#define QUADSPI_BUF0IND 0x30
#define QUADSPI_BUF1IND 0x34
#define QUADSPI_BUF2IND 0x38
#define QUADSPI_SFAR 0x100
#define QUADSPI_SMPR 0x108
#define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
#define QUADSPI_SMPR_FSDLY_MASK BIT(6)
#define QUADSPI_SMPR_FSPHS_MASK BIT(5)
#define QUADSPI_SMPR_HSENA_MASK BIT(0)
#define QUADSPI_RBCT 0x110
#define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
#define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
#define QUADSPI_TBDR 0x154
#define QUADSPI_SR 0x15c
#define QUADSPI_SR_IP_ACC_MASK BIT(1)
#define QUADSPI_SR_AHB_ACC_MASK BIT(2)
#define QUADSPI_FR 0x160
#define QUADSPI_FR_TFF_MASK BIT(0)
#define QUADSPI_RSER 0x164
#define QUADSPI_RSER_TFIE BIT(0)
#define QUADSPI_SPTRCLR 0x16c
#define QUADSPI_SPTRCLR_IPPTRC BIT(8)
#define QUADSPI_SPTRCLR_BFPTRC BIT(0)
#define QUADSPI_SFA1AD 0x180
#define QUADSPI_SFA2AD 0x184
#define QUADSPI_SFB1AD 0x188
#define QUADSPI_SFB2AD 0x18c
#define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
#define QUADSPI_LUTKEY 0x300
#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
#define QUADSPI_LCKCR 0x304
#define QUADSPI_LCKER_LOCK BIT(0)
#define QUADSPI_LCKER_UNLOCK BIT(1)
#define QUADSPI_LUT_BASE 0x310
#define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
#define QUADSPI_LUT_REG(idx) \
(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
/* Instruction set for the LUT register */
#define LUT_STOP 0
#define LUT_CMD 1
#define LUT_ADDR 2
#define LUT_DUMMY 3
#define LUT_MODE 4
#define LUT_MODE2 5
#define LUT_MODE4 6
#define LUT_FSL_READ 7
#define LUT_FSL_WRITE 8
#define LUT_JMP_ON_CS 9
#define LUT_ADDR_DDR 10
#define LUT_MODE_DDR 11
#define LUT_MODE2_DDR 12
#define LUT_MODE4_DDR 13
#define LUT_FSL_READ_DDR 14
#define LUT_FSL_WRITE_DDR 15
#define LUT_DATA_LEARN 16
/*
* The PAD definitions for LUT register.
*
* The pad stands for the number of IO lines [0:3].
* For example, the quad read needs four IO lines,
* so you should use LUT_PAD(4).
*/
#define LUT_PAD(x) (fls(x) - 1)
/*
* Macro for constructing the LUT entries with the following
* register layout:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define LUT_DEF(idx, ins, pad, opr) \
((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
/* Controller needs driver to swap endianness */
#define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
/*
* TKT253890, the controller needs the driver to fill the txfifo with
* 16 bytes at least to trigger a data transfer, even though the extra
* data won't be transferred.
*/
#define QUADSPI_QUIRK_TKT253890 BIT(2)
/* TKT245618, the controller cannot wake up from wait mode */
#define QUADSPI_QUIRK_TKT245618 BIT(3)
/*
* Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
* internally. No need to add it when setting SFXXAD and SFAR registers
*/
#define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
/*
* Controller uses TDH bits in register QUADSPI_FLSHCR.
* They need to be set in accordance with the DDR/SDR mode.
*/
#define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5)
struct fsl_qspi_devtype_data {
unsigned int rxfifo;
unsigned int txfifo;
int invalid_mstrid;
unsigned int ahb_buf_size;
unsigned int quirks;
bool little_endian;
};
static const struct fsl_qspi_devtype_data vybrid_data = {
.rxfifo = SZ_128,
.txfifo = SZ_64,
.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data imx6sx_data = {
.rxfifo = SZ_128,
.txfifo = SZ_512,
.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data imx7d_data = {
.rxfifo = SZ_128,
.txfifo = SZ_512,
.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
QUADSPI_QUIRK_USE_TDH_SETTING,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data imx6ul_data = {
.rxfifo = SZ_128,
.txfifo = SZ_512,
.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
.ahb_buf_size = SZ_1K,
.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
QUADSPI_QUIRK_USE_TDH_SETTING,
.little_endian = true,
};
static const struct fsl_qspi_devtype_data ls1021a_data = {
.rxfifo = SZ_128,
.txfifo = SZ_64,
.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
.ahb_buf_size = SZ_1K,
.quirks = 0,
.little_endian = false,
};
static const struct fsl_qspi_devtype_data ls2080a_data = {
.rxfifo = SZ_128,
.txfifo = SZ_64,
.ahb_buf_size = SZ_1K,
.invalid_mstrid = 0x0,
.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
.little_endian = true,
};
struct fsl_qspi {
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
struct clk *clk, *clk_en;
struct device *dev;
struct completion c;
const struct fsl_qspi_devtype_data *devtype_data;
struct mutex lock;
struct pm_qos_request pm_qos_req;
int selected;
};
static inline int needs_swap_endian(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
}
static inline int needs_4x_clock(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
}
static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
}
static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
}
static inline int needs_amba_base_offset(struct fsl_qspi *q)
{
return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
}
static inline int needs_tdh_setting(struct fsl_qspi *q)
{
return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
}
/*
* An IC bug makes it necessary to rearrange the 32-bit data.
* Later chips, such as IMX6SLX, have fixed this bug.
*/
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
return needs_swap_endian(q) ? __swab32(a) : a;
}
/*
* R/W functions for big- or little-endian registers:
* The QSPI controller's endianness is independent of
* the CPU core's endianness. So far, although the CPU
* core is little-endian the QSPI controller can use
* big-endian or little-endian.
*/
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
if (q->devtype_data->little_endian)
iowrite32(val, addr);
else
iowrite32be(val, addr);
}
static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
if (q->devtype_data->little_endian)
return ioread32(addr);
return ioread32be(addr);
}
static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
struct fsl_qspi *q = dev_id;
u32 reg;
/* clear interrupt */
reg = qspi_readl(q, q->iobase + QUADSPI_FR);
qspi_writel(q, reg, q->iobase + QUADSPI_FR);
if (reg & QUADSPI_FR_TFF_MASK)
complete(&q->c);
dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
return IRQ_HANDLED;
}
static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
{
switch (width) {
case 1:
case 2:
case 4:
return 0;
}
return -ENOTSUPP;
}
static bool fsl_qspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
int ret;
ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
if (op->addr.nbytes)
ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
if (op->dummy.nbytes)
ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
if (op->data.nbytes)
ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
if (ret)
return false;
/*
* The number of instructions needed for the op, needs
* to fit into a single LUT entry.
*/
if (op->addr.nbytes +
(op->dummy.nbytes ? 1:0) +
(op->data.nbytes ? 1:0) > 6)
return false;
/* Max 64 dummy clock cycles supported */
if (op->dummy.nbytes &&
(op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
return false;
/* Max data length, check controller limits and alignment */
if (op->data.dir == SPI_MEM_DATA_IN &&
(op->data.nbytes > q->devtype_data->ahb_buf_size ||
(op->data.nbytes > q->devtype_data->rxfifo - 4 &&
!IS_ALIGNED(op->data.nbytes, 8))))
return false;
if (op->data.dir == SPI_MEM_DATA_OUT &&
op->data.nbytes > q->devtype_data->txfifo)
return false;
return spi_mem_default_supports_op(mem, op);
}
static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
u32 lutval[4] = {};
int lutidx = 1, i;
lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
op->cmd.opcode);
/*
* For some unknown reason, using LUT_ADDR doesn't work in some
* cases (at least with only one byte long addresses), so
* let's use LUT_MODE to write the address bytes one by one
*/
for (i = 0; i < op->addr.nbytes; i++) {
u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
LUT_PAD(op->addr.buswidth),
addrbyte);
lutidx++;
}
if (op->dummy.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
LUT_PAD(op->dummy.buswidth),
op->dummy.nbytes * 8 /
op->dummy.buswidth);
lutidx++;
}
if (op->data.nbytes) {
lutval[lutidx / 2] |= LUT_DEF(lutidx,
op->data.dir == SPI_MEM_DATA_IN ?
LUT_FSL_READ : LUT_FSL_WRITE,
LUT_PAD(op->data.buswidth),
0);
lutidx++;
}
lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
/* unlock LUT */
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
/* fill LUT */
for (i = 0; i < ARRAY_SIZE(lutval); i++)
qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
/* lock LUT */
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
int ret;
ret = clk_prepare_enable(q->clk_en);
if (ret)
return ret;
ret = clk_prepare_enable(q->clk);
if (ret) {
clk_disable_unprepare(q->clk_en);
return ret;
}
if (needs_wakeup_wait_mode(q))
pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
return 0;
}
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
if (needs_wakeup_wait_mode(q))
pm_qos_remove_request(&q->pm_qos_req);
clk_disable_unprepare(q->clk);
clk_disable_unprepare(q->clk_en);
}
/*
* If we have changed the content of the flash by writing or erasing, or if we
* read from flash with a different offset into the page buffer, we need to
* invalidate the AHB buffer. If we do not do so, we may read out the wrong
* data. The spec tells us reset the AHB domain and Serial Flash domain at
* the same time.
*/
static void fsl_qspi_invalidate(struct fsl_qspi *q)
{
u32 reg;
reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
udelay(1);
reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
}
static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
{
unsigned long rate = spi->max_speed_hz;
int ret;
if (q->selected == spi->chip_select)
return;
if (needs_4x_clock(q))
rate *= 4;
fsl_qspi_clk_disable_unprep(q);
ret = clk_set_rate(q->clk, rate);
if (ret)
return;
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
return;
q->selected = spi->chip_select;
fsl_qspi_invalidate(q);
}
static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
{
memcpy_fromio(op->data.buf.in,
q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
op->data.nbytes);
}
static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
int i;
u32 val;
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
memcpy(&val, op->data.buf.out + i, 4);
val = fsl_qspi_endian_xchg(q, val);
qspi_writel(q, val, base + QUADSPI_TBDR);
}
if (i < op->data.nbytes) {
memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
val = fsl_qspi_endian_xchg(q, val);
qspi_writel(q, val, base + QUADSPI_TBDR);
}
if (needs_fill_txfifo(q)) {
for (i = op->data.nbytes; i < 16; i += 4)
qspi_writel(q, 0, base + QUADSPI_TBDR);
}
}
static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
int i;
u8 *buf = op->data.buf.in;
u32 val;
for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
val = fsl_qspi_endian_xchg(q, val);
memcpy(buf + i, &val, 4);
}
if (i < op->data.nbytes) {
val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
val = fsl_qspi_endian_xchg(q, val);
memcpy(buf + i, &val, op->data.nbytes - i);
}
}
static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
{
void __iomem *base = q->iobase;
int err = 0;
init_completion(&q->c);
/*
* Always start the sequence at the same index since we update
* the LUT at each exec_op() call. And also specify the DATA
* length, since it's has not been specified in the LUT.
*/
qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
base + QUADSPI_IPCR);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
fsl_qspi_read_rxfifo(q, op);
return err;
}
static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
u32 mask, u32 delay_us, u32 timeout_us)
{
u32 reg;
if (!q->devtype_data->little_endian)
mask = (u32)cpu_to_be32(mask);
return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
timeout_us);
}
static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
void __iomem *base = q->iobase;
u32 addr_offset = 0;
int err = 0;
int invalid_mstrid = q->devtype_data->invalid_mstrid;
mutex_lock(&q->lock);
/* wait for the controller being ready */
fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
fsl_qspi_select_mem(q, mem->spi);
if (needs_amba_base_offset(q))
addr_offset = q->memmap_phy;
qspi_writel(q,
q->selected * q->devtype_data->ahb_buf_size + addr_offset,
base + QUADSPI_SFAR);
qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
base + QUADSPI_MCR);
qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
base + QUADSPI_SPTRCLR);
qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
fsl_qspi_prepare_lut(q, op);
/*
* If we have large chunks of data, we read them through the AHB bus
* by accessing the mapped memory. In all other cases we use
* IP commands to access the flash.
*/
if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
op->data.dir == SPI_MEM_DATA_IN) {
fsl_qspi_read_ahb(q, op);
} else {
qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
fsl_qspi_fill_txfifo(q, op);
err = fsl_qspi_do_op(q, op);
}
/* Invalidate the data in the AHB buffer. */
fsl_qspi_invalidate(q);
mutex_unlock(&q->lock);
return err;
}
static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes > q->devtype_data->txfifo)
op->data.nbytes = q->devtype_data->txfifo;
} else {
if (op->data.nbytes > q->devtype_data->ahb_buf_size)
op->data.nbytes = q->devtype_data->ahb_buf_size;
else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
}
return 0;
}
static int fsl_qspi_default_setup(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
u32 reg, addr_offset = 0;
int ret;
/* disable and unprepare clock to avoid glitch pass to controller */
fsl_qspi_clk_disable_unprep(q);
/* the default frequency, we will change it later if necessary. */
ret = clk_set_rate(q->clk, 66000000);
if (ret)
return ret;
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
return ret;
/* Reset the module */
qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
base + QUADSPI_MCR);
udelay(1);
/* Disable the module */
qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
base + QUADSPI_MCR);
/*
* Previous boot stages (BootROM, bootloader) might have used DDR
* mode and did not clear the TDH bits. As we currently use SDR mode
* only, clear the TDH bits if necessary.
*/
if (needs_tdh_setting(q))
qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
~QUADSPI_FLSHCR_TDH_MASK,
base + QUADSPI_FLSHCR);
reg = qspi_readl(q, base + QUADSPI_SMPR);
qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
| QUADSPI_SMPR_FSPHS_MASK
| QUADSPI_SMPR_HSENA_MASK
| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
/* We only use the buffer3 for AHB read */
qspi_writel(q, 0, base + QUADSPI_BUF0IND);
qspi_writel(q, 0, base + QUADSPI_BUF1IND);
qspi_writel(q, 0, base + QUADSPI_BUF2IND);
qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
q->iobase + QUADSPI_BFGENCR);
qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
base + QUADSPI_BUF3CR);
if (needs_amba_base_offset(q))
addr_offset = q->memmap_phy;
/*
* In HW there can be a maximum of four chips on two buses with
* two chip selects on each bus. We use four chip selects in SW
* to differentiate between the four chips.
* We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
* SFB2AD accordingly.
*/
qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
base + QUADSPI_SFA1AD);
qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
base + QUADSPI_SFA2AD);
qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
base + QUADSPI_SFB1AD);
qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
base + QUADSPI_SFB2AD);
q->selected = -1;
/* Enable the module */
qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
base + QUADSPI_MCR);
/* clear all interrupt status */
qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
/* enable the interrupt */
qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
return 0;
}
static const char *fsl_qspi_get_name(struct spi_mem *mem)
{
struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
struct device *dev = &mem->spi->dev;
const char *name;
/*
* In order to keep mtdparts compatible with the old MTD driver at
* mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
* platform_device of the controller.
*/
if (of_get_available_child_count(q->dev->of_node) == 1)
return dev_name(q->dev);
name = devm_kasprintf(dev, GFP_KERNEL,
"%s-%d", dev_name(q->dev),
mem->spi->chip_select);
if (!name) {
dev_err(dev, "failed to get memory for custom flash name\n");
return ERR_PTR(-ENOMEM);
}
return name;
}
static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
.adjust_op_size = fsl_qspi_adjust_op_size,
.supports_op = fsl_qspi_supports_op,
.exec_op = fsl_qspi_exec_op,
.get_name = fsl_qspi_get_name,
};
static int fsl_qspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctlr;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct resource *res;
struct fsl_qspi *q;
int ret;
ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
if (!ctlr)
return -ENOMEM;
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
SPI_TX_DUAL | SPI_TX_QUAD;
q = spi_controller_get_devdata(ctlr);
q->dev = dev;
q->devtype_data = of_device_get_match_data(dev);
if (!q->devtype_data) {
ret = -ENODEV;
goto err_put_ctrl;
}
platform_set_drvdata(pdev, q);
/* find the resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
q->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(q->iobase)) {
ret = PTR_ERR(q->iobase);
goto err_put_ctrl;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"QuadSPI-memory");
q->ahb_addr = devm_ioremap_resource(dev, res);
if (IS_ERR(q->ahb_addr)) {
ret = PTR_ERR(q->ahb_addr);
goto err_put_ctrl;
}
q->memmap_phy = res->start;
/* find the clocks */
q->clk_en = devm_clk_get(dev, "qspi_en");
if (IS_ERR(q->clk_en)) {
ret = PTR_ERR(q->clk_en);
goto err_put_ctrl;
}
q->clk = devm_clk_get(dev, "qspi");
if (IS_ERR(q->clk)) {
ret = PTR_ERR(q->clk);
goto err_put_ctrl;
}
ret = fsl_qspi_clk_prep_enable(q);
if (ret) {
dev_err(dev, "can not enable the clock\n");
goto err_put_ctrl;
}
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_disable_clk;
ret = devm_request_irq(dev, ret,
fsl_qspi_irq_handler, 0, pdev->name, q);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
goto err_disable_clk;
}
mutex_init(&q->lock);
ctlr->bus_num = -1;
ctlr->num_chipselect = 4;
ctlr->mem_ops = &fsl_qspi_mem_ops;
fsl_qspi_default_setup(q);
ctlr->dev.of_node = np;
ret = devm_spi_register_controller(dev, ctlr);
if (ret)
goto err_destroy_mutex;
return 0;
err_destroy_mutex:
mutex_destroy(&q->lock);
err_disable_clk:
fsl_qspi_clk_disable_unprep(q);
err_put_ctrl:
spi_controller_put(ctlr);
dev_err(dev, "Freescale QuadSPI probe failed\n");
return ret;
}
static int fsl_qspi_remove(struct platform_device *pdev)
{
struct fsl_qspi *q = platform_get_drvdata(pdev);
/* disable the hardware */
qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
fsl_qspi_clk_disable_unprep(q);
mutex_destroy(&q->lock);
return 0;
}
static int fsl_qspi_suspend(struct device *dev)
{
return 0;
}
static int fsl_qspi_resume(struct device *dev)
{
struct fsl_qspi *q = dev_get_drvdata(dev);
fsl_qspi_default_setup(q);
return 0;
}
static const struct of_device_id fsl_qspi_dt_ids[] = {
{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
{ .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
static const struct dev_pm_ops fsl_qspi_pm_ops = {
.suspend = fsl_qspi_suspend,
.resume = fsl_qspi_resume,
};
static struct platform_driver fsl_qspi_driver = {
.driver = {
.name = "fsl-quadspi",
.of_match_table = fsl_qspi_dt_ids,
.pm = &fsl_qspi_pm_ops,
},
.probe = fsl_qspi_probe,
.remove = fsl_qspi_remove,
};
module_platform_driver(fsl_qspi_driver);
MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
MODULE_LICENSE("GPL v2");