mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 15:10:38 +00:00
1042d60f91
No need to initialize "struct f2fs_gc_kthread *gc_th = NULL", as gc_th = NULL, will be taken care by the return values of kmalloc(). And fix codes in other places. Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com> Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com>
743 lines
18 KiB
C
743 lines
18 KiB
C
/*
|
|
* fs/f2fs/gc.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/module.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/init.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/blkdev.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "gc.h"
|
|
|
|
static struct kmem_cache *winode_slab;
|
|
|
|
static int gc_thread_func(void *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = data;
|
|
wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
|
|
long wait_ms;
|
|
|
|
wait_ms = GC_THREAD_MIN_SLEEP_TIME;
|
|
|
|
do {
|
|
if (try_to_freeze())
|
|
continue;
|
|
else
|
|
wait_event_interruptible_timeout(*wq,
|
|
kthread_should_stop(),
|
|
msecs_to_jiffies(wait_ms));
|
|
if (kthread_should_stop())
|
|
break;
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
if (!test_opt(sbi, BG_GC))
|
|
continue;
|
|
|
|
/*
|
|
* [GC triggering condition]
|
|
* 0. GC is not conducted currently.
|
|
* 1. There are enough dirty segments.
|
|
* 2. IO subsystem is idle by checking the # of writeback pages.
|
|
* 3. IO subsystem is idle by checking the # of requests in
|
|
* bdev's request list.
|
|
*
|
|
* Note) We have to avoid triggering GCs too much frequently.
|
|
* Because it is possible that some segments can be
|
|
* invalidated soon after by user update or deletion.
|
|
* So, I'd like to wait some time to collect dirty segments.
|
|
*/
|
|
if (!mutex_trylock(&sbi->gc_mutex))
|
|
continue;
|
|
|
|
if (!is_idle(sbi)) {
|
|
wait_ms = increase_sleep_time(wait_ms);
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
continue;
|
|
}
|
|
|
|
if (has_enough_invalid_blocks(sbi))
|
|
wait_ms = decrease_sleep_time(wait_ms);
|
|
else
|
|
wait_ms = increase_sleep_time(wait_ms);
|
|
|
|
sbi->bg_gc++;
|
|
|
|
if (f2fs_gc(sbi, 1) == GC_NONE)
|
|
wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
|
|
else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME)
|
|
wait_ms = GC_THREAD_MAX_SLEEP_TIME;
|
|
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
int start_gc_thread(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_gc_kthread *gc_th;
|
|
|
|
gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
|
|
if (!gc_th)
|
|
return -ENOMEM;
|
|
|
|
sbi->gc_thread = gc_th;
|
|
init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
|
|
sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
|
|
GC_THREAD_NAME);
|
|
if (IS_ERR(gc_th->f2fs_gc_task)) {
|
|
kfree(gc_th);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void stop_gc_thread(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
|
|
if (!gc_th)
|
|
return;
|
|
kthread_stop(gc_th->f2fs_gc_task);
|
|
kfree(gc_th);
|
|
sbi->gc_thread = NULL;
|
|
}
|
|
|
|
static int select_gc_type(int gc_type)
|
|
{
|
|
return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
|
|
}
|
|
|
|
static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
|
|
int type, struct victim_sel_policy *p)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
if (p->alloc_mode) {
|
|
p->gc_mode = GC_GREEDY;
|
|
p->dirty_segmap = dirty_i->dirty_segmap[type];
|
|
p->ofs_unit = 1;
|
|
} else {
|
|
p->gc_mode = select_gc_type(gc_type);
|
|
p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
|
|
p->ofs_unit = sbi->segs_per_sec;
|
|
}
|
|
p->offset = sbi->last_victim[p->gc_mode];
|
|
}
|
|
|
|
static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
|
|
struct victim_sel_policy *p)
|
|
{
|
|
if (p->gc_mode == GC_GREEDY)
|
|
return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
|
|
else if (p->gc_mode == GC_CB)
|
|
return UINT_MAX;
|
|
else /* No other gc_mode */
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned int segno;
|
|
|
|
/*
|
|
* If the gc_type is FG_GC, we can select victim segments
|
|
* selected by background GC before.
|
|
* Those segments guarantee they have small valid blocks.
|
|
*/
|
|
segno = find_next_bit(dirty_i->victim_segmap[BG_GC],
|
|
TOTAL_SEGS(sbi), 0);
|
|
if (segno < TOTAL_SEGS(sbi)) {
|
|
clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
|
|
return segno;
|
|
}
|
|
return NULL_SEGNO;
|
|
}
|
|
|
|
static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int secno = GET_SECNO(sbi, segno);
|
|
unsigned int start = secno * sbi->segs_per_sec;
|
|
unsigned long long mtime = 0;
|
|
unsigned int vblocks;
|
|
unsigned char age = 0;
|
|
unsigned char u;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sbi->segs_per_sec; i++)
|
|
mtime += get_seg_entry(sbi, start + i)->mtime;
|
|
vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
|
|
|
|
mtime = div_u64(mtime, sbi->segs_per_sec);
|
|
vblocks = div_u64(vblocks, sbi->segs_per_sec);
|
|
|
|
u = (vblocks * 100) >> sbi->log_blocks_per_seg;
|
|
|
|
/* Handle if the system time is changed by user */
|
|
if (mtime < sit_i->min_mtime)
|
|
sit_i->min_mtime = mtime;
|
|
if (mtime > sit_i->max_mtime)
|
|
sit_i->max_mtime = mtime;
|
|
if (sit_i->max_mtime != sit_i->min_mtime)
|
|
age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
|
|
sit_i->max_mtime - sit_i->min_mtime);
|
|
|
|
return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
|
|
}
|
|
|
|
static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno,
|
|
struct victim_sel_policy *p)
|
|
{
|
|
if (p->alloc_mode == SSR)
|
|
return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
|
|
|
/* alloc_mode == LFS */
|
|
if (p->gc_mode == GC_GREEDY)
|
|
return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
|
|
else
|
|
return get_cb_cost(sbi, segno);
|
|
}
|
|
|
|
/*
|
|
* This function is called from two pathes.
|
|
* One is garbage collection and the other is SSR segment selection.
|
|
* When it is called during GC, it just gets a victim segment
|
|
* and it does not remove it from dirty seglist.
|
|
* When it is called from SSR segment selection, it finds a segment
|
|
* which has minimum valid blocks and removes it from dirty seglist.
|
|
*/
|
|
static int get_victim_by_default(struct f2fs_sb_info *sbi,
|
|
unsigned int *result, int gc_type, int type, char alloc_mode)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
struct victim_sel_policy p;
|
|
unsigned int segno;
|
|
int nsearched = 0;
|
|
|
|
p.alloc_mode = alloc_mode;
|
|
select_policy(sbi, gc_type, type, &p);
|
|
|
|
p.min_segno = NULL_SEGNO;
|
|
p.min_cost = get_max_cost(sbi, &p);
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
|
|
if (p.alloc_mode == LFS && gc_type == FG_GC) {
|
|
p.min_segno = check_bg_victims(sbi);
|
|
if (p.min_segno != NULL_SEGNO)
|
|
goto got_it;
|
|
}
|
|
|
|
while (1) {
|
|
unsigned long cost;
|
|
|
|
segno = find_next_bit(p.dirty_segmap,
|
|
TOTAL_SEGS(sbi), p.offset);
|
|
if (segno >= TOTAL_SEGS(sbi)) {
|
|
if (sbi->last_victim[p.gc_mode]) {
|
|
sbi->last_victim[p.gc_mode] = 0;
|
|
p.offset = 0;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit;
|
|
|
|
if (test_bit(segno, dirty_i->victim_segmap[FG_GC]))
|
|
continue;
|
|
if (gc_type == BG_GC &&
|
|
test_bit(segno, dirty_i->victim_segmap[BG_GC]))
|
|
continue;
|
|
if (IS_CURSEC(sbi, GET_SECNO(sbi, segno)))
|
|
continue;
|
|
|
|
cost = get_gc_cost(sbi, segno, &p);
|
|
|
|
if (p.min_cost > cost) {
|
|
p.min_segno = segno;
|
|
p.min_cost = cost;
|
|
}
|
|
|
|
if (cost == get_max_cost(sbi, &p))
|
|
continue;
|
|
|
|
if (nsearched++ >= MAX_VICTIM_SEARCH) {
|
|
sbi->last_victim[p.gc_mode] = segno;
|
|
break;
|
|
}
|
|
}
|
|
got_it:
|
|
if (p.min_segno != NULL_SEGNO) {
|
|
*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
|
|
if (p.alloc_mode == LFS) {
|
|
int i;
|
|
for (i = 0; i < p.ofs_unit; i++)
|
|
set_bit(*result + i,
|
|
dirty_i->victim_segmap[gc_type]);
|
|
}
|
|
}
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
|
|
return (p.min_segno == NULL_SEGNO) ? 0 : 1;
|
|
}
|
|
|
|
static const struct victim_selection default_v_ops = {
|
|
.get_victim = get_victim_by_default,
|
|
};
|
|
|
|
static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
|
|
{
|
|
struct list_head *this;
|
|
struct inode_entry *ie;
|
|
|
|
list_for_each(this, ilist) {
|
|
ie = list_entry(this, struct inode_entry, list);
|
|
if (ie->inode->i_ino == ino)
|
|
return ie->inode;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void add_gc_inode(struct inode *inode, struct list_head *ilist)
|
|
{
|
|
struct list_head *this;
|
|
struct inode_entry *new_ie, *ie;
|
|
|
|
list_for_each(this, ilist) {
|
|
ie = list_entry(this, struct inode_entry, list);
|
|
if (ie->inode == inode) {
|
|
iput(inode);
|
|
return;
|
|
}
|
|
}
|
|
repeat:
|
|
new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS);
|
|
if (!new_ie) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
new_ie->inode = inode;
|
|
list_add_tail(&new_ie->list, ilist);
|
|
}
|
|
|
|
static void put_gc_inode(struct list_head *ilist)
|
|
{
|
|
struct inode_entry *ie, *next_ie;
|
|
list_for_each_entry_safe(ie, next_ie, ilist, list) {
|
|
iput(ie->inode);
|
|
list_del(&ie->list);
|
|
kmem_cache_free(winode_slab, ie);
|
|
}
|
|
}
|
|
|
|
static int check_valid_map(struct f2fs_sb_info *sbi,
|
|
unsigned int segno, int offset)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct seg_entry *sentry;
|
|
int ret;
|
|
|
|
mutex_lock(&sit_i->sentry_lock);
|
|
sentry = get_seg_entry(sbi, segno);
|
|
ret = f2fs_test_bit(offset, sentry->cur_valid_map);
|
|
mutex_unlock(&sit_i->sentry_lock);
|
|
return ret ? GC_OK : GC_NEXT;
|
|
}
|
|
|
|
/*
|
|
* This function compares node address got in summary with that in NAT.
|
|
* On validity, copy that node with cold status, otherwise (invalid node)
|
|
* ignore that.
|
|
*/
|
|
static int gc_node_segment(struct f2fs_sb_info *sbi,
|
|
struct f2fs_summary *sum, unsigned int segno, int gc_type)
|
|
{
|
|
bool initial = true;
|
|
struct f2fs_summary *entry;
|
|
int off;
|
|
|
|
next_step:
|
|
entry = sum;
|
|
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
|
nid_t nid = le32_to_cpu(entry->nid);
|
|
struct page *node_page;
|
|
int err;
|
|
|
|
/*
|
|
* It makes sure that free segments are able to write
|
|
* all the dirty node pages before CP after this CP.
|
|
* So let's check the space of dirty node pages.
|
|
*/
|
|
if (should_do_checkpoint(sbi)) {
|
|
mutex_lock(&sbi->cp_mutex);
|
|
block_operations(sbi);
|
|
return GC_BLOCKED;
|
|
}
|
|
|
|
err = check_valid_map(sbi, segno, off);
|
|
if (err == GC_ERROR)
|
|
return err;
|
|
else if (err == GC_NEXT)
|
|
continue;
|
|
|
|
if (initial) {
|
|
ra_node_page(sbi, nid);
|
|
continue;
|
|
}
|
|
node_page = get_node_page(sbi, nid);
|
|
if (IS_ERR(node_page))
|
|
continue;
|
|
|
|
/* set page dirty and write it */
|
|
if (!PageWriteback(node_page))
|
|
set_page_dirty(node_page);
|
|
f2fs_put_page(node_page, 1);
|
|
stat_inc_node_blk_count(sbi, 1);
|
|
}
|
|
if (initial) {
|
|
initial = false;
|
|
goto next_step;
|
|
}
|
|
|
|
if (gc_type == FG_GC) {
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = LONG_MAX,
|
|
.for_reclaim = 0,
|
|
};
|
|
sync_node_pages(sbi, 0, &wbc);
|
|
}
|
|
return GC_DONE;
|
|
}
|
|
|
|
/*
|
|
* Calculate start block index that this node page contains
|
|
*/
|
|
block_t start_bidx_of_node(unsigned int node_ofs)
|
|
{
|
|
block_t start_bidx;
|
|
unsigned int bidx, indirect_blks;
|
|
int dec;
|
|
|
|
indirect_blks = 2 * NIDS_PER_BLOCK + 4;
|
|
|
|
start_bidx = 1;
|
|
if (node_ofs == 0) {
|
|
start_bidx = 0;
|
|
} else if (node_ofs <= 2) {
|
|
bidx = node_ofs - 1;
|
|
} else if (node_ofs <= indirect_blks) {
|
|
dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
|
|
bidx = node_ofs - 2 - dec;
|
|
} else {
|
|
dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
|
|
bidx = node_ofs - 5 - dec;
|
|
}
|
|
|
|
if (start_bidx)
|
|
start_bidx = bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
|
|
return start_bidx;
|
|
}
|
|
|
|
static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
|
struct node_info *dni, block_t blkaddr, unsigned int *nofs)
|
|
{
|
|
struct page *node_page;
|
|
nid_t nid;
|
|
unsigned int ofs_in_node;
|
|
block_t source_blkaddr;
|
|
|
|
nid = le32_to_cpu(sum->nid);
|
|
ofs_in_node = le16_to_cpu(sum->ofs_in_node);
|
|
|
|
node_page = get_node_page(sbi, nid);
|
|
if (IS_ERR(node_page))
|
|
return GC_NEXT;
|
|
|
|
get_node_info(sbi, nid, dni);
|
|
|
|
if (sum->version != dni->version) {
|
|
f2fs_put_page(node_page, 1);
|
|
return GC_NEXT;
|
|
}
|
|
|
|
*nofs = ofs_of_node(node_page);
|
|
source_blkaddr = datablock_addr(node_page, ofs_in_node);
|
|
f2fs_put_page(node_page, 1);
|
|
|
|
if (source_blkaddr != blkaddr)
|
|
return GC_NEXT;
|
|
return GC_OK;
|
|
}
|
|
|
|
static void move_data_page(struct inode *inode, struct page *page, int gc_type)
|
|
{
|
|
if (page->mapping != inode->i_mapping)
|
|
goto out;
|
|
|
|
if (inode != page->mapping->host)
|
|
goto out;
|
|
|
|
if (PageWriteback(page))
|
|
goto out;
|
|
|
|
if (gc_type == BG_GC) {
|
|
set_page_dirty(page);
|
|
set_cold_data(page);
|
|
} else {
|
|
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
|
mutex_lock_op(sbi, DATA_WRITE);
|
|
if (clear_page_dirty_for_io(page) &&
|
|
S_ISDIR(inode->i_mode)) {
|
|
dec_page_count(sbi, F2FS_DIRTY_DENTS);
|
|
inode_dec_dirty_dents(inode);
|
|
}
|
|
set_cold_data(page);
|
|
do_write_data_page(page);
|
|
mutex_unlock_op(sbi, DATA_WRITE);
|
|
clear_cold_data(page);
|
|
}
|
|
out:
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
/*
|
|
* This function tries to get parent node of victim data block, and identifies
|
|
* data block validity. If the block is valid, copy that with cold status and
|
|
* modify parent node.
|
|
* If the parent node is not valid or the data block address is different,
|
|
* the victim data block is ignored.
|
|
*/
|
|
static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
|
struct list_head *ilist, unsigned int segno, int gc_type)
|
|
{
|
|
struct super_block *sb = sbi->sb;
|
|
struct f2fs_summary *entry;
|
|
block_t start_addr;
|
|
int err, off;
|
|
int phase = 0;
|
|
|
|
start_addr = START_BLOCK(sbi, segno);
|
|
|
|
next_step:
|
|
entry = sum;
|
|
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
|
struct page *data_page;
|
|
struct inode *inode;
|
|
struct node_info dni; /* dnode info for the data */
|
|
unsigned int ofs_in_node, nofs;
|
|
block_t start_bidx;
|
|
|
|
/*
|
|
* It makes sure that free segments are able to write
|
|
* all the dirty node pages before CP after this CP.
|
|
* So let's check the space of dirty node pages.
|
|
*/
|
|
if (should_do_checkpoint(sbi)) {
|
|
mutex_lock(&sbi->cp_mutex);
|
|
block_operations(sbi);
|
|
err = GC_BLOCKED;
|
|
goto stop;
|
|
}
|
|
|
|
err = check_valid_map(sbi, segno, off);
|
|
if (err == GC_ERROR)
|
|
goto stop;
|
|
else if (err == GC_NEXT)
|
|
continue;
|
|
|
|
if (phase == 0) {
|
|
ra_node_page(sbi, le32_to_cpu(entry->nid));
|
|
continue;
|
|
}
|
|
|
|
/* Get an inode by ino with checking validity */
|
|
err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs);
|
|
if (err == GC_ERROR)
|
|
goto stop;
|
|
else if (err == GC_NEXT)
|
|
continue;
|
|
|
|
if (phase == 1) {
|
|
ra_node_page(sbi, dni.ino);
|
|
continue;
|
|
}
|
|
|
|
start_bidx = start_bidx_of_node(nofs);
|
|
ofs_in_node = le16_to_cpu(entry->ofs_in_node);
|
|
|
|
if (phase == 2) {
|
|
inode = f2fs_iget_nowait(sb, dni.ino);
|
|
if (IS_ERR(inode))
|
|
continue;
|
|
|
|
data_page = find_data_page(inode,
|
|
start_bidx + ofs_in_node);
|
|
if (IS_ERR(data_page))
|
|
goto next_iput;
|
|
|
|
f2fs_put_page(data_page, 0);
|
|
add_gc_inode(inode, ilist);
|
|
} else {
|
|
inode = find_gc_inode(dni.ino, ilist);
|
|
if (inode) {
|
|
data_page = get_lock_data_page(inode,
|
|
start_bidx + ofs_in_node);
|
|
if (IS_ERR(data_page))
|
|
continue;
|
|
move_data_page(inode, data_page, gc_type);
|
|
stat_inc_data_blk_count(sbi, 1);
|
|
}
|
|
}
|
|
continue;
|
|
next_iput:
|
|
iput(inode);
|
|
}
|
|
if (++phase < 4)
|
|
goto next_step;
|
|
err = GC_DONE;
|
|
stop:
|
|
if (gc_type == FG_GC)
|
|
f2fs_submit_bio(sbi, DATA, true);
|
|
return err;
|
|
}
|
|
|
|
static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
|
|
int gc_type, int type)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
int ret;
|
|
mutex_lock(&sit_i->sentry_lock);
|
|
ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
|
|
mutex_unlock(&sit_i->sentry_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
|
|
struct list_head *ilist, int gc_type)
|
|
{
|
|
struct page *sum_page;
|
|
struct f2fs_summary_block *sum;
|
|
int ret = GC_DONE;
|
|
|
|
/* read segment summary of victim */
|
|
sum_page = get_sum_page(sbi, segno);
|
|
if (IS_ERR(sum_page))
|
|
return GC_ERROR;
|
|
|
|
/*
|
|
* CP needs to lock sum_page. In this time, we don't need
|
|
* to lock this page, because this summary page is not gone anywhere.
|
|
* Also, this page is not gonna be updated before GC is done.
|
|
*/
|
|
unlock_page(sum_page);
|
|
sum = page_address(sum_page);
|
|
|
|
switch (GET_SUM_TYPE((&sum->footer))) {
|
|
case SUM_TYPE_NODE:
|
|
ret = gc_node_segment(sbi, sum->entries, segno, gc_type);
|
|
break;
|
|
case SUM_TYPE_DATA:
|
|
ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
|
|
break;
|
|
}
|
|
stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
|
|
stat_inc_call_count(sbi->stat_info);
|
|
|
|
f2fs_put_page(sum_page, 0);
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_gc(struct f2fs_sb_info *sbi, int nGC)
|
|
{
|
|
unsigned int segno;
|
|
int old_free_secs, cur_free_secs;
|
|
int gc_status, nfree;
|
|
struct list_head ilist;
|
|
int gc_type = BG_GC;
|
|
|
|
INIT_LIST_HEAD(&ilist);
|
|
gc_more:
|
|
nfree = 0;
|
|
gc_status = GC_NONE;
|
|
|
|
if (has_not_enough_free_secs(sbi))
|
|
old_free_secs = reserved_sections(sbi);
|
|
else
|
|
old_free_secs = free_sections(sbi);
|
|
|
|
while (sbi->sb->s_flags & MS_ACTIVE) {
|
|
int i;
|
|
if (has_not_enough_free_secs(sbi))
|
|
gc_type = FG_GC;
|
|
|
|
cur_free_secs = free_sections(sbi) + nfree;
|
|
|
|
/* We got free space successfully. */
|
|
if (nGC < cur_free_secs - old_free_secs)
|
|
break;
|
|
|
|
if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
|
|
break;
|
|
|
|
for (i = 0; i < sbi->segs_per_sec; i++) {
|
|
/*
|
|
* do_garbage_collect will give us three gc_status:
|
|
* GC_ERROR, GC_DONE, and GC_BLOCKED.
|
|
* If GC is finished uncleanly, we have to return
|
|
* the victim to dirty segment list.
|
|
*/
|
|
gc_status = do_garbage_collect(sbi, segno + i,
|
|
&ilist, gc_type);
|
|
if (gc_status != GC_DONE)
|
|
goto stop;
|
|
nfree++;
|
|
}
|
|
}
|
|
stop:
|
|
if (has_not_enough_free_secs(sbi) || gc_status == GC_BLOCKED) {
|
|
write_checkpoint(sbi, (gc_status == GC_BLOCKED), false);
|
|
if (nfree)
|
|
goto gc_more;
|
|
}
|
|
mutex_unlock(&sbi->gc_mutex);
|
|
|
|
put_gc_inode(&ilist);
|
|
BUG_ON(!list_empty(&ilist));
|
|
return gc_status;
|
|
}
|
|
|
|
void build_gc_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
DIRTY_I(sbi)->v_ops = &default_v_ops;
|
|
}
|
|
|
|
int create_gc_caches(void)
|
|
{
|
|
winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
|
|
sizeof(struct inode_entry), NULL);
|
|
if (!winode_slab)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void destroy_gc_caches(void)
|
|
{
|
|
kmem_cache_destroy(winode_slab);
|
|
}
|