linux-stable/drivers/dma/dma-axi-dmac.c
Nuno Sa 779a44831a dmaengine: axi-dmac: move to device managed probe
In axi_dmac_probe(), there's a mix in using device managed APIs and
explicitly cleaning things in the driver .remove() hook. Move to use
device managed APIs and thus drop the .remove() hook.

Signed-off-by: Nuno Sa <nuno.sa@analog.com>
Link: https://lore.kernel.org/r/20240328-axi-dmac-devm-probe-v3-2-523c0176df70@analog.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2024-04-07 17:10:20 +05:30

1153 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the Analog Devices AXI-DMAC core
*
* Copyright 2013-2019 Analog Devices Inc.
* Author: Lars-Peter Clausen <lars@metafoo.de>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/fpga/adi-axi-common.h>
#include <dt-bindings/dma/axi-dmac.h>
#include "dmaengine.h"
#include "virt-dma.h"
/*
* The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
* various instantiation parameters which decided the exact feature set support
* by the core.
*
* Each channel of the core has a source interface and a destination interface.
* The number of channels and the type of the channel interfaces is selected at
* configuration time. A interface can either be a connected to a central memory
* interconnect, which allows access to system memory, or it can be connected to
* a dedicated bus which is directly connected to a data port on a peripheral.
* Given that those are configuration options of the core that are selected when
* it is instantiated this means that they can not be changed by software at
* runtime. By extension this means that each channel is uni-directional. It can
* either be device to memory or memory to device, but not both. Also since the
* device side is a dedicated data bus only connected to a single peripheral
* there is no address than can or needs to be configured for the device side.
*/
#define AXI_DMAC_REG_INTERFACE_DESC 0x10
#define AXI_DMAC_DMA_SRC_TYPE_MSK GENMASK(13, 12)
#define AXI_DMAC_DMA_SRC_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
#define AXI_DMAC_DMA_SRC_WIDTH_MSK GENMASK(11, 8)
#define AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
#define AXI_DMAC_DMA_DST_TYPE_MSK GENMASK(5, 4)
#define AXI_DMAC_DMA_DST_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
#define AXI_DMAC_DMA_DST_WIDTH_MSK GENMASK(3, 0)
#define AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
#define AXI_DMAC_REG_COHERENCY_DESC 0x14
#define AXI_DMAC_DST_COHERENT_MSK BIT(0)
#define AXI_DMAC_DST_COHERENT_GET(x) FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
#define AXI_DMAC_REG_IRQ_MASK 0x80
#define AXI_DMAC_REG_IRQ_PENDING 0x84
#define AXI_DMAC_REG_IRQ_SOURCE 0x88
#define AXI_DMAC_REG_CTRL 0x400
#define AXI_DMAC_REG_TRANSFER_ID 0x404
#define AXI_DMAC_REG_START_TRANSFER 0x408
#define AXI_DMAC_REG_FLAGS 0x40c
#define AXI_DMAC_REG_DEST_ADDRESS 0x410
#define AXI_DMAC_REG_SRC_ADDRESS 0x414
#define AXI_DMAC_REG_X_LENGTH 0x418
#define AXI_DMAC_REG_Y_LENGTH 0x41c
#define AXI_DMAC_REG_DEST_STRIDE 0x420
#define AXI_DMAC_REG_SRC_STRIDE 0x424
#define AXI_DMAC_REG_TRANSFER_DONE 0x428
#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
#define AXI_DMAC_REG_STATUS 0x430
#define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434
#define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438
#define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c
#define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450
#define AXI_DMAC_REG_CURRENT_SG_ID 0x454
#define AXI_DMAC_REG_SG_ADDRESS 0x47c
#define AXI_DMAC_REG_SG_ADDRESS_HIGH 0x4bc
#define AXI_DMAC_CTRL_ENABLE BIT(0)
#define AXI_DMAC_CTRL_PAUSE BIT(1)
#define AXI_DMAC_CTRL_ENABLE_SG BIT(2)
#define AXI_DMAC_IRQ_SOT BIT(0)
#define AXI_DMAC_IRQ_EOT BIT(1)
#define AXI_DMAC_FLAG_CYCLIC BIT(0)
#define AXI_DMAC_FLAG_LAST BIT(1)
#define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2)
#define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
/* The maximum ID allocated by the hardware is 31 */
#define AXI_DMAC_SG_UNUSED 32U
/* Flags for axi_dmac_hw_desc.flags */
#define AXI_DMAC_HW_FLAG_LAST BIT(0)
#define AXI_DMAC_HW_FLAG_IRQ BIT(1)
struct axi_dmac_hw_desc {
u32 flags;
u32 id;
u64 dest_addr;
u64 src_addr;
u64 next_sg_addr;
u32 y_len;
u32 x_len;
u32 src_stride;
u32 dst_stride;
u64 __pad[2];
};
struct axi_dmac_sg {
unsigned int partial_len;
bool schedule_when_free;
struct axi_dmac_hw_desc *hw;
dma_addr_t hw_phys;
};
struct axi_dmac_desc {
struct virt_dma_desc vdesc;
struct axi_dmac_chan *chan;
bool cyclic;
bool have_partial_xfer;
unsigned int num_submitted;
unsigned int num_completed;
unsigned int num_sgs;
struct axi_dmac_sg sg[] __counted_by(num_sgs);
};
struct axi_dmac_chan {
struct virt_dma_chan vchan;
struct axi_dmac_desc *next_desc;
struct list_head active_descs;
enum dma_transfer_direction direction;
unsigned int src_width;
unsigned int dest_width;
unsigned int src_type;
unsigned int dest_type;
unsigned int max_length;
unsigned int address_align_mask;
unsigned int length_align_mask;
bool hw_partial_xfer;
bool hw_cyclic;
bool hw_2d;
bool hw_sg;
};
struct axi_dmac {
void __iomem *base;
int irq;
struct clk *clk;
struct dma_device dma_dev;
struct axi_dmac_chan chan;
};
static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
{
return container_of(chan->vchan.chan.device, struct axi_dmac,
dma_dev);
}
static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
{
return container_of(c, struct axi_dmac_chan, vchan.chan);
}
static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct axi_dmac_desc, vdesc);
}
static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
unsigned int val)
{
writel(val, axi_dmac->base + reg);
}
static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
{
return readl(axi_dmac->base + reg);
}
static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
{
return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
}
static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
{
return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
}
static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
{
if (len == 0)
return false;
if ((len & chan->length_align_mask) != 0) /* Not aligned */
return false;
return true;
}
static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
{
if ((addr & chan->address_align_mask) != 0) /* Not aligned */
return false;
return true;
}
static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
{
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
struct virt_dma_desc *vdesc;
struct axi_dmac_desc *desc;
struct axi_dmac_sg *sg;
unsigned int flags = 0;
unsigned int val;
if (!chan->hw_sg) {
val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
if (val) /* Queue is full, wait for the next SOT IRQ */
return;
}
desc = chan->next_desc;
if (!desc) {
vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc)
return;
list_move_tail(&vdesc->node, &chan->active_descs);
desc = to_axi_dmac_desc(vdesc);
}
sg = &desc->sg[desc->num_submitted];
/* Already queued in cyclic mode. Wait for it to finish */
if (sg->hw->id != AXI_DMAC_SG_UNUSED) {
sg->schedule_when_free = true;
return;
}
if (chan->hw_sg) {
chan->next_desc = NULL;
} else if (++desc->num_submitted == desc->num_sgs ||
desc->have_partial_xfer) {
if (desc->cyclic)
desc->num_submitted = 0; /* Start again */
else
chan->next_desc = NULL;
flags |= AXI_DMAC_FLAG_LAST;
} else {
chan->next_desc = desc;
}
sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
if (!chan->hw_sg) {
if (axi_dmac_dest_is_mem(chan)) {
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr);
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride);
}
if (axi_dmac_src_is_mem(chan)) {
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr);
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride);
}
}
/*
* If the hardware supports cyclic transfers and there is no callback to
* call, enable hw cyclic mode to avoid unnecessary interrupts.
*/
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) {
if (chan->hw_sg)
desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ;
else if (desc->num_sgs == 1)
flags |= AXI_DMAC_FLAG_CYCLIC;
}
if (chan->hw_partial_xfer)
flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
if (chan->hw_sg) {
axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys);
axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH,
(u64)sg->hw_phys >> 32);
} else {
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len);
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len);
}
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
}
static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
{
return list_first_entry_or_null(&chan->active_descs,
struct axi_dmac_desc, vdesc.node);
}
static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
struct axi_dmac_sg *sg)
{
if (chan->hw_2d)
return (sg->hw->x_len + 1) * (sg->hw->y_len + 1);
else
return (sg->hw->x_len + 1);
}
static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
{
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
struct axi_dmac_desc *desc;
struct axi_dmac_sg *sg;
u32 xfer_done, len, id, i;
bool found_sg;
do {
len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
id = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
found_sg = false;
list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
for (i = 0; i < desc->num_sgs; i++) {
sg = &desc->sg[i];
if (sg->hw->id == AXI_DMAC_SG_UNUSED)
continue;
if (sg->hw->id == id) {
desc->have_partial_xfer = true;
sg->partial_len = len;
found_sg = true;
break;
}
}
if (found_sg)
break;
}
if (found_sg) {
dev_dbg(dmac->dma_dev.dev,
"Found partial segment id=%u, len=%u\n",
id, len);
} else {
dev_warn(dmac->dma_dev.dev,
"Not found partial segment id=%u, len=%u\n",
id, len);
}
/* Check if we have any more partial transfers */
xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
} while (!xfer_done);
}
static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
struct axi_dmac_desc *active)
{
struct dmaengine_result *rslt = &active->vdesc.tx_result;
unsigned int start = active->num_completed - 1;
struct axi_dmac_sg *sg;
unsigned int i, total;
rslt->result = DMA_TRANS_NOERROR;
rslt->residue = 0;
if (chan->hw_sg)
return;
/*
* We get here if the last completed segment is partial, which
* means we can compute the residue from that segment onwards
*/
for (i = start; i < active->num_sgs; i++) {
sg = &active->sg[i];
total = axi_dmac_total_sg_bytes(chan, sg);
rslt->residue += (total - sg->partial_len);
}
}
static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
unsigned int completed_transfers)
{
struct axi_dmac_desc *active;
struct axi_dmac_sg *sg;
bool start_next = false;
active = axi_dmac_active_desc(chan);
if (!active)
return false;
if (chan->hw_partial_xfer &&
(completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
axi_dmac_dequeue_partial_xfers(chan);
if (chan->hw_sg) {
if (active->cyclic) {
vchan_cyclic_callback(&active->vdesc);
} else {
list_del(&active->vdesc.node);
vchan_cookie_complete(&active->vdesc);
active = axi_dmac_active_desc(chan);
start_next = !!active;
}
} else {
do {
sg = &active->sg[active->num_completed];
if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
break;
if (!(BIT(sg->hw->id) & completed_transfers))
break;
active->num_completed++;
sg->hw->id = AXI_DMAC_SG_UNUSED;
if (sg->schedule_when_free) {
sg->schedule_when_free = false;
start_next = true;
}
if (sg->partial_len)
axi_dmac_compute_residue(chan, active);
if (active->cyclic)
vchan_cyclic_callback(&active->vdesc);
if (active->num_completed == active->num_sgs ||
sg->partial_len) {
if (active->cyclic) {
active->num_completed = 0; /* wrap around */
} else {
list_del(&active->vdesc.node);
vchan_cookie_complete(&active->vdesc);
active = axi_dmac_active_desc(chan);
}
}
} while (active);
}
return start_next;
}
static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
{
struct axi_dmac *dmac = devid;
unsigned int pending;
bool start_next = false;
pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
if (!pending)
return IRQ_NONE;
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
spin_lock(&dmac->chan.vchan.lock);
/* One or more transfers have finished */
if (pending & AXI_DMAC_IRQ_EOT) {
unsigned int completed;
completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
start_next = axi_dmac_transfer_done(&dmac->chan, completed);
}
/* Space has become available in the descriptor queue */
if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
axi_dmac_start_transfer(&dmac->chan);
spin_unlock(&dmac->chan.vchan.lock);
return IRQ_HANDLED;
}
static int axi_dmac_terminate_all(struct dma_chan *c)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&chan->vchan.lock, flags);
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
chan->next_desc = NULL;
vchan_get_all_descriptors(&chan->vchan, &head);
list_splice_tail_init(&chan->active_descs, &head);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_dma_desc_free_list(&chan->vchan, &head);
return 0;
}
static void axi_dmac_synchronize(struct dma_chan *c)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
vchan_synchronize(&chan->vchan);
}
static void axi_dmac_issue_pending(struct dma_chan *c)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
unsigned long flags;
u32 ctrl = AXI_DMAC_CTRL_ENABLE;
if (chan->hw_sg)
ctrl |= AXI_DMAC_CTRL_ENABLE_SG;
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl);
spin_lock_irqsave(&chan->vchan.lock, flags);
if (vchan_issue_pending(&chan->vchan))
axi_dmac_start_transfer(chan);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static struct axi_dmac_desc *
axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs)
{
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
struct device *dev = dmac->dma_dev.dev;
struct axi_dmac_hw_desc *hws;
struct axi_dmac_desc *desc;
dma_addr_t hw_phys;
unsigned int i;
desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
if (!desc)
return NULL;
desc->num_sgs = num_sgs;
desc->chan = chan;
hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)),
&hw_phys, GFP_ATOMIC);
if (!hws) {
kfree(desc);
return NULL;
}
for (i = 0; i < num_sgs; i++) {
desc->sg[i].hw = &hws[i];
desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws);
hws[i].id = AXI_DMAC_SG_UNUSED;
hws[i].flags = 0;
/* Link hardware descriptors */
hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws);
}
/* The last hardware descriptor will trigger an interrupt */
desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ;
return desc;
}
static void axi_dmac_free_desc(struct axi_dmac_desc *desc)
{
struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan);
struct device *dev = dmac->dma_dev.dev;
struct axi_dmac_hw_desc *hw = desc->sg[0].hw;
dma_addr_t hw_phys = desc->sg[0].hw_phys;
dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)),
hw, hw_phys);
kfree(desc);
}
static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
enum dma_transfer_direction direction, dma_addr_t addr,
unsigned int num_periods, unsigned int period_len,
struct axi_dmac_sg *sg)
{
unsigned int num_segments, i;
unsigned int segment_size;
unsigned int len;
/* Split into multiple equally sized segments if necessary */
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
segment_size = DIV_ROUND_UP(period_len, num_segments);
/* Take care of alignment */
segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
for (i = 0; i < num_periods; i++) {
for (len = period_len; len > segment_size; sg++) {
if (direction == DMA_DEV_TO_MEM)
sg->hw->dest_addr = addr;
else
sg->hw->src_addr = addr;
sg->hw->x_len = segment_size - 1;
sg->hw->y_len = 0;
sg->hw->flags = 0;
addr += segment_size;
len -= segment_size;
}
if (direction == DMA_DEV_TO_MEM)
sg->hw->dest_addr = addr;
else
sg->hw->src_addr = addr;
sg->hw->x_len = len - 1;
sg->hw->y_len = 0;
sg++;
addr += len;
}
return sg;
}
static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
struct dma_chan *c, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac_desc *desc;
struct axi_dmac_sg *dsg;
struct scatterlist *sg;
unsigned int num_sgs;
unsigned int i;
if (direction != chan->direction)
return NULL;
num_sgs = 0;
for_each_sg(sgl, sg, sg_len, i)
num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
desc = axi_dmac_alloc_desc(chan, num_sgs);
if (!desc)
return NULL;
dsg = desc->sg;
for_each_sg(sgl, sg, sg_len, i) {
if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
!axi_dmac_check_len(chan, sg_dma_len(sg))) {
axi_dmac_free_desc(desc);
return NULL;
}
dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
sg_dma_len(sg), dsg);
}
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac_desc *desc;
unsigned int num_periods, num_segments, num_sgs;
if (direction != chan->direction)
return NULL;
if (!axi_dmac_check_len(chan, buf_len) ||
!axi_dmac_check_addr(chan, buf_addr))
return NULL;
if (period_len == 0 || buf_len % period_len)
return NULL;
num_periods = buf_len / period_len;
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
num_sgs = num_periods * num_segments;
desc = axi_dmac_alloc_desc(chan, num_sgs);
if (!desc)
return NULL;
/* Chain the last descriptor to the first, and remove its "last" flag */
desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys;
desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST;
axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
period_len, desc->sg);
desc->cyclic = true;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
struct dma_chan *c, struct dma_interleaved_template *xt,
unsigned long flags)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac_desc *desc;
size_t dst_icg, src_icg;
if (xt->frame_size != 1)
return NULL;
if (xt->dir != chan->direction)
return NULL;
if (axi_dmac_src_is_mem(chan)) {
if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
return NULL;
}
if (axi_dmac_dest_is_mem(chan)) {
if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
return NULL;
}
dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
if (chan->hw_2d) {
if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
xt->numf == 0)
return NULL;
if (xt->sgl[0].size + dst_icg > chan->max_length ||
xt->sgl[0].size + src_icg > chan->max_length)
return NULL;
} else {
if (dst_icg != 0 || src_icg != 0)
return NULL;
if (chan->max_length / xt->sgl[0].size < xt->numf)
return NULL;
if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
return NULL;
}
desc = axi_dmac_alloc_desc(chan, 1);
if (!desc)
return NULL;
if (axi_dmac_src_is_mem(chan)) {
desc->sg[0].hw->src_addr = xt->src_start;
desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg;
}
if (axi_dmac_dest_is_mem(chan)) {
desc->sg[0].hw->dest_addr = xt->dst_start;
desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg;
}
if (chan->hw_2d) {
desc->sg[0].hw->x_len = xt->sgl[0].size - 1;
desc->sg[0].hw->y_len = xt->numf - 1;
} else {
desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1;
desc->sg[0].hw->y_len = 0;
}
if (flags & DMA_CYCLIC)
desc->cyclic = true;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static void axi_dmac_free_chan_resources(struct dma_chan *c)
{
vchan_free_chan_resources(to_virt_chan(c));
}
static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
{
axi_dmac_free_desc(to_axi_dmac_desc(vdesc));
}
static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
{
switch (reg) {
case AXI_DMAC_REG_IRQ_MASK:
case AXI_DMAC_REG_IRQ_SOURCE:
case AXI_DMAC_REG_IRQ_PENDING:
case AXI_DMAC_REG_CTRL:
case AXI_DMAC_REG_TRANSFER_ID:
case AXI_DMAC_REG_START_TRANSFER:
case AXI_DMAC_REG_FLAGS:
case AXI_DMAC_REG_DEST_ADDRESS:
case AXI_DMAC_REG_SRC_ADDRESS:
case AXI_DMAC_REG_X_LENGTH:
case AXI_DMAC_REG_Y_LENGTH:
case AXI_DMAC_REG_DEST_STRIDE:
case AXI_DMAC_REG_SRC_STRIDE:
case AXI_DMAC_REG_TRANSFER_DONE:
case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
case AXI_DMAC_REG_STATUS:
case AXI_DMAC_REG_CURRENT_SRC_ADDR:
case AXI_DMAC_REG_CURRENT_DEST_ADDR:
case AXI_DMAC_REG_PARTIAL_XFER_LEN:
case AXI_DMAC_REG_PARTIAL_XFER_ID:
case AXI_DMAC_REG_CURRENT_SG_ID:
case AXI_DMAC_REG_SG_ADDRESS:
case AXI_DMAC_REG_SG_ADDRESS_HIGH:
return true;
default:
return false;
}
}
static const struct regmap_config axi_dmac_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
.readable_reg = axi_dmac_regmap_rdwr,
.writeable_reg = axi_dmac_regmap_rdwr,
};
static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
{
chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
chan->direction = DMA_MEM_TO_MEM;
else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
chan->direction = DMA_MEM_TO_DEV;
else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
chan->direction = DMA_DEV_TO_MEM;
else
chan->direction = DMA_DEV_TO_DEV;
}
/*
* The configuration stored in the devicetree matches the configuration
* parameters of the peripheral instance and allows the driver to know which
* features are implemented and how it should behave.
*/
static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
struct axi_dmac_chan *chan)
{
u32 val;
int ret;
ret = of_property_read_u32(of_chan, "reg", &val);
if (ret)
return ret;
/* We only support 1 channel for now */
if (val != 0)
return -EINVAL;
ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
if (ret)
return ret;
if (val > AXI_DMAC_BUS_TYPE_FIFO)
return -EINVAL;
chan->src_type = val;
ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
if (ret)
return ret;
if (val > AXI_DMAC_BUS_TYPE_FIFO)
return -EINVAL;
chan->dest_type = val;
ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
if (ret)
return ret;
chan->src_width = val / 8;
ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
if (ret)
return ret;
chan->dest_width = val / 8;
axi_dmac_adjust_chan_params(chan);
return 0;
}
static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
{
struct device_node *of_channels, *of_chan;
int ret;
of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
if (of_channels == NULL)
return -ENODEV;
for_each_child_of_node(of_channels, of_chan) {
ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
if (ret) {
of_node_put(of_chan);
of_node_put(of_channels);
return -EINVAL;
}
}
of_node_put(of_channels);
return 0;
}
static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
{
struct axi_dmac_chan *chan = &dmac->chan;
unsigned int val, desc;
desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
if (desc == 0) {
dev_err(dev, "DMA interface register reads zero\n");
return -EFAULT;
}
val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
if (val > AXI_DMAC_BUS_TYPE_FIFO) {
dev_err(dev, "Invalid source bus type read: %d\n", val);
return -EINVAL;
}
chan->src_type = val;
val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
if (val > AXI_DMAC_BUS_TYPE_FIFO) {
dev_err(dev, "Invalid destination bus type read: %d\n", val);
return -EINVAL;
}
chan->dest_type = val;
val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
if (val == 0) {
dev_err(dev, "Source bus width is zero\n");
return -EINVAL;
}
/* widths are stored in log2 */
chan->src_width = 1 << val;
val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
if (val == 0) {
dev_err(dev, "Destination bus width is zero\n");
return -EINVAL;
}
chan->dest_width = 1 << val;
axi_dmac_adjust_chan_params(chan);
return 0;
}
static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
{
struct axi_dmac_chan *chan = &dmac->chan;
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
chan->hw_cyclic = true;
axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff);
if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS))
chan->hw_sg = true;
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
chan->hw_2d = true;
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
if (chan->max_length != UINT_MAX)
chan->max_length++;
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
dev_err(dmac->dma_dev.dev,
"Destination memory-mapped interface not supported.");
return -ENODEV;
}
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
dev_err(dmac->dma_dev.dev,
"Source memory-mapped interface not supported.");
return -ENODEV;
}
if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
chan->hw_partial_xfer = true;
if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
chan->length_align_mask =
axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
} else {
chan->length_align_mask = chan->address_align_mask;
}
return 0;
}
static void axi_dmac_tasklet_kill(void *task)
{
tasklet_kill(task);
}
static void axi_dmac_free_dma_controller(void *of_node)
{
of_dma_controller_free(of_node);
}
static int axi_dmac_probe(struct platform_device *pdev)
{
struct dma_device *dma_dev;
struct axi_dmac *dmac;
struct regmap *regmap;
unsigned int version;
u32 irq_mask = 0;
int ret;
dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
if (!dmac)
return -ENOMEM;
dmac->irq = platform_get_irq(pdev, 0);
if (dmac->irq < 0)
return dmac->irq;
if (dmac->irq == 0)
return -EINVAL;
dmac->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dmac->base))
return PTR_ERR(dmac->base);
dmac->clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(dmac->clk))
return PTR_ERR(dmac->clk);
version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
else
ret = axi_dmac_parse_dt(&pdev->dev, dmac);
if (ret < 0)
return ret;
INIT_LIST_HEAD(&dmac->chan.active_descs);
dma_set_max_seg_size(&pdev->dev, UINT_MAX);
dma_dev = &dmac->dma_dev;
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
dma_dev->device_tx_status = dma_cookie_status;
dma_dev->device_issue_pending = axi_dmac_issue_pending;
dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
dma_dev->device_terminate_all = axi_dmac_terminate_all;
dma_dev->device_synchronize = axi_dmac_synchronize;
dma_dev->dev = &pdev->dev;
dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
dma_dev->directions = BIT(dmac->chan.direction);
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */
INIT_LIST_HEAD(&dma_dev->channels);
dmac->chan.vchan.desc_free = axi_dmac_desc_free;
vchan_init(&dmac->chan.vchan, dma_dev);
ret = axi_dmac_detect_caps(dmac, version);
if (ret)
return ret;
dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
if (dmac->chan.hw_sg)
irq_mask |= AXI_DMAC_IRQ_SOT;
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask);
if (of_dma_is_coherent(pdev->dev.of_node)) {
ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
!AXI_DMAC_DST_COHERENT_GET(ret)) {
dev_err(dmac->dma_dev.dev,
"Coherent DMA not supported in hardware");
return -EINVAL;
}
}
ret = dmaenginem_async_device_register(dma_dev);
if (ret)
return ret;
/*
* Put the action in here so it get's done before unregistering the DMA
* device.
*/
ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_tasklet_kill,
&dmac->chan.vchan.task);
if (ret)
return ret;
ret = of_dma_controller_register(pdev->dev.of_node,
of_dma_xlate_by_chan_id, dma_dev);
if (ret)
return ret;
ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_free_dma_controller,
pdev->dev.of_node);
if (ret)
return ret;
ret = devm_request_irq(&pdev->dev, dmac->irq, axi_dmac_interrupt_handler,
IRQF_SHARED, dev_name(&pdev->dev), dmac);
if (ret)
return ret;
regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
&axi_dmac_regmap_config);
return PTR_ERR_OR_ZERO(regmap);
}
static const struct of_device_id axi_dmac_of_match_table[] = {
{ .compatible = "adi,axi-dmac-1.00.a" },
{ },
};
MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
static struct platform_driver axi_dmac_driver = {
.driver = {
.name = "dma-axi-dmac",
.of_match_table = axi_dmac_of_match_table,
},
.probe = axi_dmac_probe,
};
module_platform_driver(axi_dmac_driver);
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
MODULE_LICENSE("GPL v2");