linux-stable/drivers/pwm/pwm-imx27.c
Clark Wang 9db3ef898a pwm: imx27: Workaround of the pwm output bug when decrease the duty cycle
[ Upstream commit a25351e4c7740eb22561a3ee4ef17611c6f410b0 ]

Implement workaround for ERR051198
(https://www.nxp.com/docs/en/errata/IMX8MN_0N14Y.pdf)

PWM output may not function correctly if the FIFO is empty when a new SAR
value is programmed.

Description:
  When the PWM FIFO is empty, a new value programmed to the PWM Sample
  register (PWM_PWMSAR) will be directly applied even if the current timer
  period has not expired. If the new SAMPLE value programmed in the
  PWM_PWMSAR register is less than the previous value, and the PWM counter
  register (PWM_PWMCNR) that contains the current COUNT value is greater
  than the new programmed SAMPLE value, the current period will not flip
  the level. This may result in an output pulse with a duty cycle of 100%.

Workaround:
  Program the current SAMPLE value in the PWM_PWMSAR register before
  updating the new duty cycle to the SAMPLE value in the PWM_PWMSAR
  register. This will ensure that the new SAMPLE value is modified during
  a non-empty FIFO, and can be successfully updated after the period
  expires.

Write the old SAR value before updating the new duty cycle to SAR. This
avoids writing the new value into an empty FIFO.

This only resolves the issue when the PWM period is longer than 2us
(or <500kHz) because write register is not quick enough when PWM period is
very short.

Reproduce steps:
  cd /sys/class/pwm/pwmchip1/pwm0
  echo 2000000000 > period     # It is easy to observe by using long period
  echo 1000000000 > duty_cycle
  echo 1 > enable
  echo       8000 > duty_cycle # One full high pulse will be seen by scope

Fixes: 166091b1894d ("[ARM] MXC: add pwm driver for i.MX SoCs")
Reviewed-by: Jun Li <jun.li@nxp.com>
Signed-off-by: Clark Wang <xiaoning.wang@nxp.com>
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Link: https://lore.kernel.org/r/20241008194123.1943141-1-Frank.Li@nxp.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-12-14 19:47:47 +01:00

480 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* simple driver for PWM (Pulse Width Modulator) controller
*
* Derived from pxa PWM driver by eric miao <eric.miao@marvell.com>
*
* Limitations:
* - When disabled the output is driven to 0 independent of the configured
* polarity.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#define MX3_PWMCR 0x00 /* PWM Control Register */
#define MX3_PWMSR 0x04 /* PWM Status Register */
#define MX3_PWMSAR 0x0C /* PWM Sample Register */
#define MX3_PWMPR 0x10 /* PWM Period Register */
#define MX3_PWMCNR 0x14 /* PWM Counter Register */
#define MX3_PWMCR_FWM GENMASK(27, 26)
#define MX3_PWMCR_STOPEN BIT(25)
#define MX3_PWMCR_DOZEN BIT(24)
#define MX3_PWMCR_WAITEN BIT(23)
#define MX3_PWMCR_DBGEN BIT(22)
#define MX3_PWMCR_BCTR BIT(21)
#define MX3_PWMCR_HCTR BIT(20)
#define MX3_PWMCR_POUTC GENMASK(19, 18)
#define MX3_PWMCR_POUTC_NORMAL 0
#define MX3_PWMCR_POUTC_INVERTED 1
#define MX3_PWMCR_POUTC_OFF 2
#define MX3_PWMCR_CLKSRC GENMASK(17, 16)
#define MX3_PWMCR_CLKSRC_OFF 0
#define MX3_PWMCR_CLKSRC_IPG 1
#define MX3_PWMCR_CLKSRC_IPG_HIGH 2
#define MX3_PWMCR_CLKSRC_IPG_32K 3
#define MX3_PWMCR_PRESCALER GENMASK(15, 4)
#define MX3_PWMCR_SWR BIT(3)
#define MX3_PWMCR_REPEAT GENMASK(2, 1)
#define MX3_PWMCR_REPEAT_1X 0
#define MX3_PWMCR_REPEAT_2X 1
#define MX3_PWMCR_REPEAT_4X 2
#define MX3_PWMCR_REPEAT_8X 3
#define MX3_PWMCR_EN BIT(0)
#define MX3_PWMSR_FWE BIT(6)
#define MX3_PWMSR_CMP BIT(5)
#define MX3_PWMSR_ROV BIT(4)
#define MX3_PWMSR_FE BIT(3)
#define MX3_PWMSR_FIFOAV GENMASK(2, 0)
#define MX3_PWMSR_FIFOAV_EMPTY 0
#define MX3_PWMSR_FIFOAV_1WORD 1
#define MX3_PWMSR_FIFOAV_2WORDS 2
#define MX3_PWMSR_FIFOAV_3WORDS 3
#define MX3_PWMSR_FIFOAV_4WORDS 4
#define MX3_PWMCR_PRESCALER_SET(x) FIELD_PREP(MX3_PWMCR_PRESCALER, (x) - 1)
#define MX3_PWMCR_PRESCALER_GET(x) (FIELD_GET(MX3_PWMCR_PRESCALER, \
(x)) + 1)
#define MX3_PWM_SWR_LOOP 5
/* PWMPR register value of 0xffff has the same effect as 0xfffe */
#define MX3_PWMPR_MAX 0xfffe
struct pwm_imx27_chip {
struct clk *clk_ipg;
struct clk *clk_per;
void __iomem *mmio_base;
struct pwm_chip chip;
/*
* The driver cannot read the current duty cycle from the hardware if
* the hardware is disabled. Cache the last programmed duty cycle
* value to return in that case.
*/
unsigned int duty_cycle;
};
#define to_pwm_imx27_chip(chip) container_of(chip, struct pwm_imx27_chip, chip)
static int pwm_imx27_clk_prepare_enable(struct pwm_imx27_chip *imx)
{
int ret;
ret = clk_prepare_enable(imx->clk_ipg);
if (ret)
return ret;
ret = clk_prepare_enable(imx->clk_per);
if (ret) {
clk_disable_unprepare(imx->clk_ipg);
return ret;
}
return 0;
}
static void pwm_imx27_clk_disable_unprepare(struct pwm_imx27_chip *imx)
{
clk_disable_unprepare(imx->clk_per);
clk_disable_unprepare(imx->clk_ipg);
}
static void pwm_imx27_get_state(struct pwm_chip *chip,
struct pwm_device *pwm, struct pwm_state *state)
{
struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip);
u32 period, prescaler, pwm_clk, val;
u64 tmp;
int ret;
ret = pwm_imx27_clk_prepare_enable(imx);
if (ret < 0)
return;
val = readl(imx->mmio_base + MX3_PWMCR);
if (val & MX3_PWMCR_EN)
state->enabled = true;
else
state->enabled = false;
switch (FIELD_GET(MX3_PWMCR_POUTC, val)) {
case MX3_PWMCR_POUTC_NORMAL:
state->polarity = PWM_POLARITY_NORMAL;
break;
case MX3_PWMCR_POUTC_INVERTED:
state->polarity = PWM_POLARITY_INVERSED;
break;
default:
dev_warn(chip->dev, "can't set polarity, output disconnected");
}
prescaler = MX3_PWMCR_PRESCALER_GET(val);
pwm_clk = clk_get_rate(imx->clk_per);
val = readl(imx->mmio_base + MX3_PWMPR);
period = val >= MX3_PWMPR_MAX ? MX3_PWMPR_MAX : val;
/* PWMOUT (Hz) = PWMCLK / (PWMPR + 2) */
tmp = NSEC_PER_SEC * (u64)(period + 2) * prescaler;
state->period = DIV_ROUND_UP_ULL(tmp, pwm_clk);
/*
* PWMSAR can be read only if PWM is enabled. If the PWM is disabled,
* use the cached value.
*/
if (state->enabled)
val = readl(imx->mmio_base + MX3_PWMSAR);
else
val = imx->duty_cycle;
tmp = NSEC_PER_SEC * (u64)(val) * prescaler;
state->duty_cycle = DIV_ROUND_UP_ULL(tmp, pwm_clk);
pwm_imx27_clk_disable_unprepare(imx);
}
static void pwm_imx27_sw_reset(struct pwm_chip *chip)
{
struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip);
struct device *dev = chip->dev;
int wait_count = 0;
u32 cr;
writel(MX3_PWMCR_SWR, imx->mmio_base + MX3_PWMCR);
do {
usleep_range(200, 1000);
cr = readl(imx->mmio_base + MX3_PWMCR);
} while ((cr & MX3_PWMCR_SWR) &&
(wait_count++ < MX3_PWM_SWR_LOOP));
if (cr & MX3_PWMCR_SWR)
dev_warn(dev, "software reset timeout\n");
}
static void pwm_imx27_wait_fifo_slot(struct pwm_chip *chip,
struct pwm_device *pwm)
{
struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip);
struct device *dev = chip->dev;
unsigned int period_ms;
int fifoav;
u32 sr;
sr = readl(imx->mmio_base + MX3_PWMSR);
fifoav = FIELD_GET(MX3_PWMSR_FIFOAV, sr);
if (fifoav == MX3_PWMSR_FIFOAV_4WORDS) {
period_ms = DIV_ROUND_UP_ULL(pwm_get_period(pwm),
NSEC_PER_MSEC);
msleep(period_ms);
sr = readl(imx->mmio_base + MX3_PWMSR);
if (fifoav == FIELD_GET(MX3_PWMSR_FIFOAV, sr))
dev_warn(dev, "there is no free FIFO slot\n");
}
}
static int pwm_imx27_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
unsigned long period_cycles, duty_cycles, prescale, period_us, tmp;
struct pwm_imx27_chip *imx = to_pwm_imx27_chip(chip);
struct pwm_state cstate;
unsigned long long c;
unsigned long long clkrate;
unsigned long flags;
int val;
int ret;
u32 cr;
pwm_get_state(pwm, &cstate);
clkrate = clk_get_rate(imx->clk_per);
c = clkrate * state->period;
do_div(c, NSEC_PER_SEC);
period_cycles = c;
prescale = period_cycles / 0x10000 + 1;
period_cycles /= prescale;
c = clkrate * state->duty_cycle;
do_div(c, NSEC_PER_SEC);
duty_cycles = c;
duty_cycles /= prescale;
/*
* according to imx pwm RM, the real period value should be PERIOD
* value in PWMPR plus 2.
*/
if (period_cycles > 2)
period_cycles -= 2;
else
period_cycles = 0;
/*
* Wait for a free FIFO slot if the PWM is already enabled, and flush
* the FIFO if the PWM was disabled and is about to be enabled.
*/
if (cstate.enabled) {
pwm_imx27_wait_fifo_slot(chip, pwm);
} else {
ret = pwm_imx27_clk_prepare_enable(imx);
if (ret)
return ret;
pwm_imx27_sw_reset(chip);
}
val = readl(imx->mmio_base + MX3_PWMPR);
val = val >= MX3_PWMPR_MAX ? MX3_PWMPR_MAX : val;
cr = readl(imx->mmio_base + MX3_PWMCR);
tmp = NSEC_PER_SEC * (u64)(val + 2) * MX3_PWMCR_PRESCALER_GET(cr);
tmp = DIV_ROUND_UP_ULL(tmp, clkrate);
period_us = DIV_ROUND_UP_ULL(tmp, 1000);
/*
* ERR051198:
* PWM: PWM output may not function correctly if the FIFO is empty when
* a new SAR value is programmed
*
* Description:
* When the PWM FIFO is empty, a new value programmed to the PWM Sample
* register (PWM_PWMSAR) will be directly applied even if the current
* timer period has not expired.
*
* If the new SAMPLE value programmed in the PWM_PWMSAR register is
* less than the previous value, and the PWM counter register
* (PWM_PWMCNR) that contains the current COUNT value is greater than
* the new programmed SAMPLE value, the current period will not flip
* the level. This may result in an output pulse with a duty cycle of
* 100%.
*
* Consider a change from
* ________
* / \______/
* ^ * ^
* to
* ____
* / \__________/
* ^ ^
* At the time marked by *, the new write value will be directly applied
* to SAR even the current period is not over if FIFO is empty.
*
* ________ ____________________
* / \______/ \__________/
* ^ ^ * ^ ^
* |<-- old SAR -->| |<-- new SAR -->|
*
* That is the output is active for a whole period.
*
* Workaround:
* Check new SAR less than old SAR and current counter is in errata
* windows, write extra old SAR into FIFO and new SAR will effect at
* next period.
*
* Sometime period is quite long, such as over 1 second. If add old SAR
* into FIFO unconditional, new SAR have to wait for next period. It
* may be too long.
*
* Turn off the interrupt to ensure that not IRQ and schedule happen
* during above operations. If any irq and schedule happen, counter
* in PWM will be out of data and take wrong action.
*
* Add a safety margin 1.5us because it needs some time to complete
* IO write.
*
* Use writel_relaxed() to minimize the interval between two writes to
* the SAR register to increase the fastest PWM frequency supported.
*
* When the PWM period is longer than 2us(or <500kHz), this workaround
* can solve this problem. No software workaround is available if PWM
* period is shorter than IO write. Just try best to fill old data
* into FIFO.
*/
c = clkrate * 1500;
do_div(c, NSEC_PER_SEC);
local_irq_save(flags);
val = FIELD_GET(MX3_PWMSR_FIFOAV, readl_relaxed(imx->mmio_base + MX3_PWMSR));
if (duty_cycles < imx->duty_cycle && (cr & MX3_PWMCR_EN)) {
if (period_us < 2) { /* 2us = 500 kHz */
/* Best effort attempt to fix up >500 kHz case */
udelay(3 * period_us);
writel_relaxed(imx->duty_cycle, imx->mmio_base + MX3_PWMSAR);
writel_relaxed(imx->duty_cycle, imx->mmio_base + MX3_PWMSAR);
} else if (val < MX3_PWMSR_FIFOAV_2WORDS) {
val = readl_relaxed(imx->mmio_base + MX3_PWMCNR);
/*
* If counter is close to period, controller may roll over when
* next IO write.
*/
if ((val + c >= duty_cycles && val < imx->duty_cycle) ||
val + c >= period_cycles)
writel_relaxed(imx->duty_cycle, imx->mmio_base + MX3_PWMSAR);
}
}
writel_relaxed(duty_cycles, imx->mmio_base + MX3_PWMSAR);
local_irq_restore(flags);
writel(period_cycles, imx->mmio_base + MX3_PWMPR);
/*
* Store the duty cycle for future reference in cases where the
* MX3_PWMSAR register can't be read (i.e. when the PWM is disabled).
*/
imx->duty_cycle = duty_cycles;
cr = MX3_PWMCR_PRESCALER_SET(prescale) |
MX3_PWMCR_STOPEN | MX3_PWMCR_DOZEN | MX3_PWMCR_WAITEN |
FIELD_PREP(MX3_PWMCR_CLKSRC, MX3_PWMCR_CLKSRC_IPG_HIGH) |
MX3_PWMCR_DBGEN;
if (state->polarity == PWM_POLARITY_INVERSED)
cr |= FIELD_PREP(MX3_PWMCR_POUTC,
MX3_PWMCR_POUTC_INVERTED);
if (state->enabled)
cr |= MX3_PWMCR_EN;
writel(cr, imx->mmio_base + MX3_PWMCR);
if (!state->enabled)
pwm_imx27_clk_disable_unprepare(imx);
return 0;
}
static const struct pwm_ops pwm_imx27_ops = {
.apply = pwm_imx27_apply,
.get_state = pwm_imx27_get_state,
.owner = THIS_MODULE,
};
static const struct of_device_id pwm_imx27_dt_ids[] = {
{ .compatible = "fsl,imx27-pwm", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, pwm_imx27_dt_ids);
static int pwm_imx27_probe(struct platform_device *pdev)
{
struct pwm_imx27_chip *imx;
int ret;
u32 pwmcr;
imx = devm_kzalloc(&pdev->dev, sizeof(*imx), GFP_KERNEL);
if (imx == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, imx);
imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(imx->clk_ipg)) {
int ret = PTR_ERR(imx->clk_ipg);
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev,
"getting ipg clock failed with %d\n",
ret);
return ret;
}
imx->clk_per = devm_clk_get(&pdev->dev, "per");
if (IS_ERR(imx->clk_per)) {
int ret = PTR_ERR(imx->clk_per);
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev,
"failed to get peripheral clock: %d\n",
ret);
return ret;
}
imx->chip.ops = &pwm_imx27_ops;
imx->chip.dev = &pdev->dev;
imx->chip.base = -1;
imx->chip.npwm = 1;
imx->chip.of_xlate = of_pwm_xlate_with_flags;
imx->chip.of_pwm_n_cells = 3;
imx->mmio_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(imx->mmio_base))
return PTR_ERR(imx->mmio_base);
ret = pwm_imx27_clk_prepare_enable(imx);
if (ret)
return ret;
/* keep clks on if pwm is running */
pwmcr = readl(imx->mmio_base + MX3_PWMCR);
if (!(pwmcr & MX3_PWMCR_EN))
pwm_imx27_clk_disable_unprepare(imx);
return pwmchip_add(&imx->chip);
}
static int pwm_imx27_remove(struct platform_device *pdev)
{
struct pwm_imx27_chip *imx;
imx = platform_get_drvdata(pdev);
return pwmchip_remove(&imx->chip);
}
static struct platform_driver imx_pwm_driver = {
.driver = {
.name = "pwm-imx27",
.of_match_table = pwm_imx27_dt_ids,
},
.probe = pwm_imx27_probe,
.remove = pwm_imx27_remove,
};
module_platform_driver(imx_pwm_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");