Kent Overstreet 0069455bcb fix missing vmalloc.h includes
Patch series "Memory allocation profiling", v6.

Overview:
Low overhead [1] per-callsite memory allocation profiling. Not just for
debug kernels, overhead low enough to be deployed in production.

Example output:
  root@moria-kvm:~# sort -rn /proc/allocinfo
   127664128    31168 mm/page_ext.c:270 func:alloc_page_ext
    56373248     4737 mm/slub.c:2259 func:alloc_slab_page
    14880768     3633 mm/readahead.c:247 func:page_cache_ra_unbounded
    14417920     3520 mm/mm_init.c:2530 func:alloc_large_system_hash
    13377536      234 block/blk-mq.c:3421 func:blk_mq_alloc_rqs
    11718656     2861 mm/filemap.c:1919 func:__filemap_get_folio
     9192960     2800 kernel/fork.c:307 func:alloc_thread_stack_node
     4206592        4 net/netfilter/nf_conntrack_core.c:2567 func:nf_ct_alloc_hashtable
     4136960     1010 drivers/staging/ctagmod/ctagmod.c:20 [ctagmod] func:ctagmod_start
     3940352      962 mm/memory.c:4214 func:alloc_anon_folio
     2894464    22613 fs/kernfs/dir.c:615 func:__kernfs_new_node
     ...

Usage:
kconfig options:
 - CONFIG_MEM_ALLOC_PROFILING
 - CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT
 - CONFIG_MEM_ALLOC_PROFILING_DEBUG
   adds warnings for allocations that weren't accounted because of a
   missing annotation

sysctl:
  /proc/sys/vm/mem_profiling

Runtime info:
  /proc/allocinfo

Notes:

[1]: Overhead
To measure the overhead we are comparing the following configurations:
(1) Baseline with CONFIG_MEMCG_KMEM=n
(2) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
    CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n)
(3) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
    CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y)
(4) Enabled at runtime (CONFIG_MEM_ALLOC_PROFILING=y &&
    CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n && /proc/sys/vm/mem_profiling=1)
(5) Baseline with CONFIG_MEMCG_KMEM=y && allocating with __GFP_ACCOUNT
(6) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
    CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n)  && CONFIG_MEMCG_KMEM=y
(7) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y &&
    CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y) && CONFIG_MEMCG_KMEM=y

Performance overhead:
To evaluate performance we implemented an in-kernel test executing
multiple get_free_page/free_page and kmalloc/kfree calls with allocation
sizes growing from 8 to 240 bytes with CPU frequency set to max and CPU
affinity set to a specific CPU to minimize the noise. Below are results
from running the test on Ubuntu 22.04.2 LTS with 6.8.0-rc1 kernel on
56 core Intel Xeon:

                        kmalloc                 pgalloc
(1 baseline)            6.764s                  16.902s
(2 default disabled)    6.793s  (+0.43%)        17.007s (+0.62%)
(3 default enabled)     7.197s  (+6.40%)        23.666s (+40.02%)
(4 runtime enabled)     7.405s  (+9.48%)        23.901s (+41.41%)
(5 memcg)               13.388s (+97.94%)       48.460s (+186.71%)
(6 def disabled+memcg)  13.332s (+97.10%)       48.105s (+184.61%)
(7 def enabled+memcg)   13.446s (+98.78%)       54.963s (+225.18%)

Memory overhead:
Kernel size:

   text           data        bss         dec         diff
(1) 26515311	      18890222    17018880    62424413
(2) 26524728	      19423818    16740352    62688898    264485
(3) 26524724	      19423818    16740352    62688894    264481
(4) 26524728	      19423818    16740352    62688898    264485
(5) 26541782	      18964374    16957440    62463596    39183

Memory consumption on a 56 core Intel CPU with 125GB of memory:
Code tags:           192 kB
PageExts:         262144 kB (256MB)
SlabExts:           9876 kB (9.6MB)
PcpuExts:            512 kB (0.5MB)

Total overhead is 0.2% of total memory.

Benchmarks:

Hackbench tests run 100 times:
hackbench -s 512 -l 200 -g 15 -f 25 -P
      baseline       disabled profiling           enabled profiling
avg   0.3543         0.3559 (+0.0016)             0.3566 (+0.0023)
stdev 0.0137         0.0188                       0.0077


hackbench -l 10000
      baseline       disabled profiling           enabled profiling
avg   6.4218         6.4306 (+0.0088)             6.5077 (+0.0859)
stdev 0.0933         0.0286                       0.0489

stress-ng tests:
stress-ng --class memory --seq 4 -t 60
stress-ng --class cpu --seq 4 -t 60
Results posted at: https://evilpiepirate.org/~kent/memalloc_prof_v4_stress-ng/

[2] https://lore.kernel.org/all/20240306182440.2003814-1-surenb@google.com/


This patch (of 37):

The next patch drops vmalloc.h from a system header in order to fix a
circular dependency; this adds it to all the files that were pulling it in
implicitly.

[kent.overstreet@linux.dev: fix arch/alpha/lib/memcpy.c]
  Link: https://lkml.kernel.org/r/20240327002152.3339937-1-kent.overstreet@linux.dev
[surenb@google.com: fix arch/x86/mm/numa_32.c]
  Link: https://lkml.kernel.org/r/20240402180933.1663992-1-surenb@google.com
[kent.overstreet@linux.dev: a few places were depending on sizes.h]
  Link: https://lkml.kernel.org/r/20240404034744.1664840-1-kent.overstreet@linux.dev
[arnd@arndb.de: fix mm/kasan/hw_tags.c]
  Link: https://lkml.kernel.org/r/20240404124435.3121534-1-arnd@kernel.org
[surenb@google.com: fix arc build]
  Link: https://lkml.kernel.org/r/20240405225115.431056-1-surenb@google.com
Link: https://lkml.kernel.org/r/20240321163705.3067592-1-surenb@google.com
Link: https://lkml.kernel.org/r/20240321163705.3067592-2-surenb@google.com
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:49 -07:00

477 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Load ELF vmlinux file for the kexec_file_load syscall.
*
* Copyright (C) 2021 Huawei Technologies Co, Ltd.
*
* Author: Liao Chang (liaochang1@huawei.com)
*
* Based on kexec-tools' kexec-elf-riscv.c, heavily modified
* for kernel.
*/
#define pr_fmt(fmt) "kexec_image: " fmt
#include <linux/elf.h>
#include <linux/kexec.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/libfdt.h>
#include <linux/types.h>
#include <linux/memblock.h>
#include <linux/vmalloc.h>
#include <asm/setup.h>
int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
kvfree(image->arch.fdt);
image->arch.fdt = NULL;
vfree(image->elf_headers);
image->elf_headers = NULL;
image->elf_headers_sz = 0;
return kexec_image_post_load_cleanup_default(image);
}
static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
struct kexec_elf_info *elf_info, unsigned long old_pbase,
unsigned long new_pbase)
{
int i;
int ret = 0;
size_t size;
struct kexec_buf kbuf;
const struct elf_phdr *phdr;
kbuf.image = image;
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &elf_info->proghdrs[i];
if (phdr->p_type != PT_LOAD)
continue;
size = phdr->p_filesz;
if (size > phdr->p_memsz)
size = phdr->p_memsz;
kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
kbuf.bufsz = size;
kbuf.buf_align = phdr->p_align;
kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
kbuf.memsz = phdr->p_memsz;
kbuf.top_down = false;
ret = kexec_add_buffer(&kbuf);
if (ret)
break;
}
return ret;
}
/*
* Go through the available phsyical memory regions and find one that hold
* an image of the specified size.
*/
static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
unsigned long *old_pbase, unsigned long *new_pbase)
{
int i;
int ret;
struct kexec_buf kbuf;
const struct elf_phdr *phdr;
unsigned long lowest_paddr = ULONG_MAX;
unsigned long lowest_vaddr = ULONG_MAX;
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &elf_info->proghdrs[i];
if (phdr->p_type != PT_LOAD)
continue;
if (lowest_paddr > phdr->p_paddr)
lowest_paddr = phdr->p_paddr;
if (lowest_vaddr > phdr->p_vaddr)
lowest_vaddr = phdr->p_vaddr;
}
kbuf.image = image;
kbuf.buf_min = lowest_paddr;
kbuf.buf_max = ULONG_MAX;
/*
* Current riscv boot protocol requires 2MB alignment for
* RV64 and 4MB alignment for RV32
*
*/
kbuf.buf_align = PMD_SIZE;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
kbuf.top_down = false;
ret = arch_kexec_locate_mem_hole(&kbuf);
if (!ret) {
*old_pbase = lowest_paddr;
*new_pbase = kbuf.mem;
image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
}
return ret;
}
#ifdef CONFIG_CRASH_DUMP
static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
{
unsigned int *nr_ranges = arg;
(*nr_ranges)++;
return 0;
}
static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
{
struct crash_mem *cmem = arg;
cmem->ranges[cmem->nr_ranges].start = res->start;
cmem->ranges[cmem->nr_ranges].end = res->end;
cmem->nr_ranges++;
return 0;
}
static int prepare_elf_headers(void **addr, unsigned long *sz)
{
struct crash_mem *cmem;
unsigned int nr_ranges;
int ret;
nr_ranges = 1; /* For exclusion of crashkernel region */
walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
if (!cmem)
return -ENOMEM;
cmem->max_nr_ranges = nr_ranges;
cmem->nr_ranges = 0;
ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
if (ret)
goto out;
/* Exclude crashkernel region */
ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
if (!ret)
ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
out:
kfree(cmem);
return ret;
}
static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
unsigned long cmdline_len)
{
int elfcorehdr_strlen;
char *cmdline_ptr;
cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
if (!cmdline_ptr)
return NULL;
elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
image->elf_load_addr);
if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
kfree(cmdline_ptr);
return NULL;
}
memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
/* Ensure it's nul terminated */
cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
return cmdline_ptr;
}
#endif
static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
unsigned long kernel_len, char *initrd,
unsigned long initrd_len, char *cmdline,
unsigned long cmdline_len)
{
int ret;
void *fdt;
unsigned long old_kernel_pbase = ULONG_MAX;
unsigned long new_kernel_pbase = 0UL;
unsigned long initrd_pbase = 0UL;
unsigned long kernel_start;
struct elfhdr ehdr;
struct kexec_buf kbuf;
struct kexec_elf_info elf_info;
char *modified_cmdline = NULL;
ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
if (ret)
return ERR_PTR(ret);
ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
&old_kernel_pbase, &new_kernel_pbase);
if (ret)
goto out;
kernel_start = image->start;
/* Add the kernel binary to the image */
ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
old_kernel_pbase, new_kernel_pbase);
if (ret)
goto out;
kbuf.image = image;
kbuf.buf_min = new_kernel_pbase + kernel_len;
kbuf.buf_max = ULONG_MAX;
#ifdef CONFIG_CRASH_DUMP
/* Add elfcorehdr */
if (image->type == KEXEC_TYPE_CRASH) {
void *headers;
unsigned long headers_sz;
ret = prepare_elf_headers(&headers, &headers_sz);
if (ret) {
pr_err("Preparing elf core header failed\n");
goto out;
}
kbuf.buffer = headers;
kbuf.bufsz = headers_sz;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf.memsz = headers_sz;
kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
kbuf.top_down = true;
ret = kexec_add_buffer(&kbuf);
if (ret) {
vfree(headers);
goto out;
}
image->elf_headers = headers;
image->elf_load_addr = kbuf.mem;
image->elf_headers_sz = headers_sz;
kexec_dprintk("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
/* Setup cmdline for kdump kernel case */
modified_cmdline = setup_kdump_cmdline(image, cmdline,
cmdline_len);
if (!modified_cmdline) {
pr_err("Setting up cmdline for kdump kernel failed\n");
ret = -EINVAL;
goto out;
}
cmdline = modified_cmdline;
}
#endif
#ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
/* Add purgatory to the image */
kbuf.top_down = true;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
ret = kexec_load_purgatory(image, &kbuf);
if (ret) {
pr_err("Error loading purgatory ret=%d\n", ret);
goto out;
}
kexec_dprintk("Loaded purgatory at 0x%lx\n", kbuf.mem);
ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
&kernel_start,
sizeof(kernel_start), 0);
if (ret)
pr_err("Error update purgatory ret=%d\n", ret);
#endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
/* Add the initrd to the image */
if (initrd != NULL) {
kbuf.buffer = initrd;
kbuf.bufsz = kbuf.memsz = initrd_len;
kbuf.buf_align = PAGE_SIZE;
kbuf.top_down = true;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
ret = kexec_add_buffer(&kbuf);
if (ret)
goto out;
initrd_pbase = kbuf.mem;
kexec_dprintk("Loaded initrd at 0x%lx\n", initrd_pbase);
}
/* Add the DTB to the image */
fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
initrd_len, cmdline, 0);
if (!fdt) {
pr_err("Error setting up the new device tree.\n");
ret = -EINVAL;
goto out;
}
fdt_pack(fdt);
kbuf.buffer = fdt;
kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
kbuf.buf_align = PAGE_SIZE;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf.top_down = true;
ret = kexec_add_buffer(&kbuf);
if (ret) {
pr_err("Error add DTB kbuf ret=%d\n", ret);
goto out_free_fdt;
}
/* Cache the fdt buffer address for memory cleanup */
image->arch.fdt = fdt;
kexec_dprintk("Loaded device tree at 0x%lx\n", kbuf.mem);
goto out;
out_free_fdt:
kvfree(fdt);
out:
kfree(modified_cmdline);
kexec_free_elf_info(&elf_info);
return ret ? ERR_PTR(ret) : NULL;
}
#define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1))
#define RISCV_IMM_BITS 12
#define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
#define RISCV_CONST_HIGH_PART(x) \
(((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
#define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
#define ENCODE_ITYPE_IMM(x) \
(RV_X(x, 0, 12) << 20)
#define ENCODE_BTYPE_IMM(x) \
((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
(RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
#define ENCODE_UTYPE_IMM(x) \
(RV_X(x, 12, 20) << 12)
#define ENCODE_JTYPE_IMM(x) \
((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
(RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
#define ENCODE_CBTYPE_IMM(x) \
((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
(RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
#define ENCODE_CJTYPE_IMM(x) \
((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
(RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
(RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
#define ENCODE_UJTYPE_IMM(x) \
(ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
(ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
#define ENCODE_UITYPE_IMM(x) \
(ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
#define CLEAN_IMM(type, x) \
((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
Elf_Shdr *section,
const Elf_Shdr *relsec,
const Elf_Shdr *symtab)
{
const char *strtab, *name, *shstrtab;
const Elf_Shdr *sechdrs;
Elf64_Rela *relas;
int i, r_type;
/* String & section header string table */
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
relas = (void *)pi->ehdr + relsec->sh_offset;
for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
const Elf_Sym *sym; /* symbol to relocate */
unsigned long addr; /* final location after relocation */
unsigned long val; /* relocated symbol value */
unsigned long sec_base; /* relocated symbol value */
void *loc; /* tmp location to modify */
sym = (void *)pi->ehdr + symtab->sh_offset;
sym += ELF64_R_SYM(relas[i].r_info);
if (sym->st_name)
name = strtab + sym->st_name;
else
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
loc = pi->purgatory_buf;
loc += section->sh_offset;
loc += relas[i].r_offset;
if (sym->st_shndx == SHN_ABS)
sec_base = 0;
else if (sym->st_shndx >= pi->ehdr->e_shnum) {
pr_err("Invalid section %d for symbol %s\n",
sym->st_shndx, name);
return -ENOEXEC;
} else
sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
val = sym->st_value;
val += sec_base;
val += relas[i].r_addend;
addr = section->sh_addr + relas[i].r_offset;
r_type = ELF64_R_TYPE(relas[i].r_info);
switch (r_type) {
case R_RISCV_BRANCH:
*(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
ENCODE_BTYPE_IMM(val - addr);
break;
case R_RISCV_JAL:
*(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
ENCODE_JTYPE_IMM(val - addr);
break;
/*
* With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
* sym is expected to be next to R_RISCV_PCREL_HI20
* in purgatory relsec. Handle it like R_RISCV_CALL
* sym, instead of searching the whole relsec.
*/
case R_RISCV_PCREL_HI20:
case R_RISCV_CALL_PLT:
case R_RISCV_CALL:
*(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
ENCODE_UJTYPE_IMM(val - addr);
break;
case R_RISCV_RVC_BRANCH:
*(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
ENCODE_CBTYPE_IMM(val - addr);
break;
case R_RISCV_RVC_JUMP:
*(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
ENCODE_CJTYPE_IMM(val - addr);
break;
case R_RISCV_ADD32:
*(u32 *)loc += val;
break;
case R_RISCV_SUB32:
*(u32 *)loc -= val;
break;
/* It has been applied by R_RISCV_PCREL_HI20 sym */
case R_RISCV_PCREL_LO12_I:
case R_RISCV_ALIGN:
case R_RISCV_RELAX:
break;
default:
pr_err("Unknown rela relocation: %d\n", r_type);
return -ENOEXEC;
}
}
return 0;
}
const struct kexec_file_ops elf_kexec_ops = {
.probe = kexec_elf_probe,
.load = elf_kexec_load,
};