mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 21:53:44 +00:00
6614a3c316
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place -----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/ SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE= =w/UH -----END PGP SIGNATURE----- Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Most of the MM queue. A few things are still pending. Liam's maple tree rework didn't make it. This has resulted in a few other minor patch series being held over for next time. Multi-gen LRU still isn't merged as we were waiting for mapletree to stabilize. The current plan is to merge MGLRU into -mm soon and to later reintroduce mapletree, with a view to hopefully getting both into 6.1-rc1. Summary: - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place" [ XFS merge from hell as per Darrick Wong in https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ] * tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits) tools/testing/selftests/vm/hmm-tests.c: fix build mm: Kconfig: fix typo mm: memory-failure: convert to pr_fmt() mm: use is_zone_movable_page() helper hugetlbfs: fix inaccurate comment in hugetlbfs_statfs() hugetlbfs: cleanup some comments in inode.c hugetlbfs: remove unneeded header file hugetlbfs: remove unneeded hugetlbfs_ops forward declaration hugetlbfs: use helper macro SZ_1{K,M} mm: cleanup is_highmem() mm/hmm: add a test for cross device private faults selftests: add soft-dirty into run_vmtests.sh selftests: soft-dirty: add test for mprotect mm/mprotect: fix soft-dirty check in can_change_pte_writable() mm: memcontrol: fix potential oom_lock recursion deadlock mm/gup.c: fix formatting in check_and_migrate_movable_page() xfs: fail dax mount if reflink is enabled on a partition mm/memcontrol.c: remove the redundant updating of stats_flush_threshold userfaultfd: don't fail on unrecognized features hugetlb_cgroup: fix wrong hugetlb cgroup numa stat ...
908 lines
24 KiB
C
908 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/mm/swap_state.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
*
|
|
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swap_slots.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include "internal.h"
|
|
#include "swap.h"
|
|
|
|
/*
|
|
* swapper_space is a fiction, retained to simplify the path through
|
|
* vmscan's shrink_page_list.
|
|
*/
|
|
static const struct address_space_operations swap_aops = {
|
|
.writepage = swap_writepage,
|
|
.dirty_folio = noop_dirty_folio,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migrate_folio = migrate_folio,
|
|
#endif
|
|
};
|
|
|
|
struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
|
|
static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
|
|
static bool enable_vma_readahead __read_mostly = true;
|
|
|
|
#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
|
|
#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
|
|
#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
|
|
#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
|
|
|
|
#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
|
|
#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
|
|
#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
|
|
|
|
#define SWAP_RA_VAL(addr, win, hits) \
|
|
(((addr) & PAGE_MASK) | \
|
|
(((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
|
|
((hits) & SWAP_RA_HITS_MASK))
|
|
|
|
/* Initial readahead hits is 4 to start up with a small window */
|
|
#define GET_SWAP_RA_VAL(vma) \
|
|
(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
|
|
|
|
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
|
|
|
|
void show_swap_cache_info(void)
|
|
{
|
|
printk("%lu pages in swap cache\n", total_swapcache_pages());
|
|
printk("Free swap = %ldkB\n",
|
|
get_nr_swap_pages() << (PAGE_SHIFT - 10));
|
|
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
|
|
}
|
|
|
|
void *get_shadow_from_swap_cache(swp_entry_t entry)
|
|
{
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
pgoff_t idx = swp_offset(entry);
|
|
struct page *page;
|
|
|
|
page = xa_load(&address_space->i_pages, idx);
|
|
if (xa_is_value(page))
|
|
return page;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* add_to_swap_cache resembles filemap_add_folio on swapper_space,
|
|
* but sets SwapCache flag and private instead of mapping and index.
|
|
*/
|
|
int add_to_swap_cache(struct page *page, swp_entry_t entry,
|
|
gfp_t gfp, void **shadowp)
|
|
{
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
pgoff_t idx = swp_offset(entry);
|
|
XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
|
|
unsigned long i, nr = thp_nr_pages(page);
|
|
void *old;
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(PageSwapCache(page), page);
|
|
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
|
|
|
|
page_ref_add(page, nr);
|
|
SetPageSwapCache(page);
|
|
|
|
do {
|
|
xas_lock_irq(&xas);
|
|
xas_create_range(&xas);
|
|
if (xas_error(&xas))
|
|
goto unlock;
|
|
for (i = 0; i < nr; i++) {
|
|
VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
|
|
old = xas_load(&xas);
|
|
if (xa_is_value(old)) {
|
|
if (shadowp)
|
|
*shadowp = old;
|
|
}
|
|
set_page_private(page + i, entry.val + i);
|
|
xas_store(&xas, page);
|
|
xas_next(&xas);
|
|
}
|
|
address_space->nrpages += nr;
|
|
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
|
|
__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
|
|
unlock:
|
|
xas_unlock_irq(&xas);
|
|
} while (xas_nomem(&xas, gfp));
|
|
|
|
if (!xas_error(&xas))
|
|
return 0;
|
|
|
|
ClearPageSwapCache(page);
|
|
page_ref_sub(page, nr);
|
|
return xas_error(&xas);
|
|
}
|
|
|
|
/*
|
|
* This must be called only on folios that have
|
|
* been verified to be in the swap cache.
|
|
*/
|
|
void __delete_from_swap_cache(struct folio *folio,
|
|
swp_entry_t entry, void *shadow)
|
|
{
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
int i;
|
|
long nr = folio_nr_pages(folio);
|
|
pgoff_t idx = swp_offset(entry);
|
|
XA_STATE(xas, &address_space->i_pages, idx);
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
|
|
VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
void *entry = xas_store(&xas, shadow);
|
|
VM_BUG_ON_FOLIO(entry != folio, folio);
|
|
set_page_private(folio_page(folio, i), 0);
|
|
xas_next(&xas);
|
|
}
|
|
folio_clear_swapcache(folio);
|
|
address_space->nrpages -= nr;
|
|
__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
|
|
__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
|
|
}
|
|
|
|
/**
|
|
* add_to_swap - allocate swap space for a folio
|
|
* @folio: folio we want to move to swap
|
|
*
|
|
* Allocate swap space for the folio and add the folio to the
|
|
* swap cache.
|
|
*
|
|
* Context: Caller needs to hold the folio lock.
|
|
* Return: Whether the folio was added to the swap cache.
|
|
*/
|
|
bool add_to_swap(struct folio *folio)
|
|
{
|
|
swp_entry_t entry;
|
|
int err;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
|
|
|
|
entry = folio_alloc_swap(folio);
|
|
if (!entry.val)
|
|
return false;
|
|
|
|
/*
|
|
* XArray node allocations from PF_MEMALLOC contexts could
|
|
* completely exhaust the page allocator. __GFP_NOMEMALLOC
|
|
* stops emergency reserves from being allocated.
|
|
*
|
|
* TODO: this could cause a theoretical memory reclaim
|
|
* deadlock in the swap out path.
|
|
*/
|
|
/*
|
|
* Add it to the swap cache.
|
|
*/
|
|
err = add_to_swap_cache(&folio->page, entry,
|
|
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
|
|
if (err)
|
|
/*
|
|
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
|
|
* clear SWAP_HAS_CACHE flag.
|
|
*/
|
|
goto fail;
|
|
/*
|
|
* Normally the folio will be dirtied in unmap because its
|
|
* pte should be dirty. A special case is MADV_FREE page. The
|
|
* page's pte could have dirty bit cleared but the folio's
|
|
* SwapBacked flag is still set because clearing the dirty bit
|
|
* and SwapBacked flag has no lock protected. For such folio,
|
|
* unmap will not set dirty bit for it, so folio reclaim will
|
|
* not write the folio out. This can cause data corruption when
|
|
* the folio is swapped in later. Always setting the dirty flag
|
|
* for the folio solves the problem.
|
|
*/
|
|
folio_mark_dirty(folio);
|
|
|
|
return true;
|
|
|
|
fail:
|
|
put_swap_page(&folio->page, entry);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This must be called only on folios that have
|
|
* been verified to be in the swap cache and locked.
|
|
* It will never put the folio into the free list,
|
|
* the caller has a reference on the folio.
|
|
*/
|
|
void delete_from_swap_cache(struct folio *folio)
|
|
{
|
|
swp_entry_t entry = folio_swap_entry(folio);
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
|
|
xa_lock_irq(&address_space->i_pages);
|
|
__delete_from_swap_cache(folio, entry, NULL);
|
|
xa_unlock_irq(&address_space->i_pages);
|
|
|
|
put_swap_page(&folio->page, entry);
|
|
folio_ref_sub(folio, folio_nr_pages(folio));
|
|
}
|
|
|
|
void clear_shadow_from_swap_cache(int type, unsigned long begin,
|
|
unsigned long end)
|
|
{
|
|
unsigned long curr = begin;
|
|
void *old;
|
|
|
|
for (;;) {
|
|
swp_entry_t entry = swp_entry(type, curr);
|
|
struct address_space *address_space = swap_address_space(entry);
|
|
XA_STATE(xas, &address_space->i_pages, curr);
|
|
|
|
xa_lock_irq(&address_space->i_pages);
|
|
xas_for_each(&xas, old, end) {
|
|
if (!xa_is_value(old))
|
|
continue;
|
|
xas_store(&xas, NULL);
|
|
}
|
|
xa_unlock_irq(&address_space->i_pages);
|
|
|
|
/* search the next swapcache until we meet end */
|
|
curr >>= SWAP_ADDRESS_SPACE_SHIFT;
|
|
curr++;
|
|
curr <<= SWAP_ADDRESS_SPACE_SHIFT;
|
|
if (curr > end)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are the only user, then try to free up the swap cache.
|
|
*
|
|
* Its ok to check for PageSwapCache without the page lock
|
|
* here because we are going to recheck again inside
|
|
* try_to_free_swap() _with_ the lock.
|
|
* - Marcelo
|
|
*/
|
|
void free_swap_cache(struct page *page)
|
|
{
|
|
if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
|
|
try_to_free_swap(page);
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform a free_page(), also freeing any swap cache associated with
|
|
* this page if it is the last user of the page.
|
|
*/
|
|
void free_page_and_swap_cache(struct page *page)
|
|
{
|
|
free_swap_cache(page);
|
|
if (!is_huge_zero_page(page))
|
|
put_page(page);
|
|
}
|
|
|
|
/*
|
|
* Passed an array of pages, drop them all from swapcache and then release
|
|
* them. They are removed from the LRU and freed if this is their last use.
|
|
*/
|
|
void free_pages_and_swap_cache(struct page **pages, int nr)
|
|
{
|
|
struct page **pagep = pages;
|
|
int i;
|
|
|
|
lru_add_drain();
|
|
for (i = 0; i < nr; i++)
|
|
free_swap_cache(pagep[i]);
|
|
release_pages(pagep, nr);
|
|
}
|
|
|
|
static inline bool swap_use_vma_readahead(void)
|
|
{
|
|
return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
|
|
}
|
|
|
|
/*
|
|
* Lookup a swap entry in the swap cache. A found page will be returned
|
|
* unlocked and with its refcount incremented - we rely on the kernel
|
|
* lock getting page table operations atomic even if we drop the page
|
|
* lock before returning.
|
|
*/
|
|
struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
struct page *page;
|
|
struct swap_info_struct *si;
|
|
|
|
si = get_swap_device(entry);
|
|
if (!si)
|
|
return NULL;
|
|
page = find_get_page(swap_address_space(entry), swp_offset(entry));
|
|
put_swap_device(si);
|
|
|
|
if (page) {
|
|
bool vma_ra = swap_use_vma_readahead();
|
|
bool readahead;
|
|
|
|
/*
|
|
* At the moment, we don't support PG_readahead for anon THP
|
|
* so let's bail out rather than confusing the readahead stat.
|
|
*/
|
|
if (unlikely(PageTransCompound(page)))
|
|
return page;
|
|
|
|
readahead = TestClearPageReadahead(page);
|
|
if (vma && vma_ra) {
|
|
unsigned long ra_val;
|
|
int win, hits;
|
|
|
|
ra_val = GET_SWAP_RA_VAL(vma);
|
|
win = SWAP_RA_WIN(ra_val);
|
|
hits = SWAP_RA_HITS(ra_val);
|
|
if (readahead)
|
|
hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
|
|
atomic_long_set(&vma->swap_readahead_info,
|
|
SWAP_RA_VAL(addr, win, hits));
|
|
}
|
|
|
|
if (readahead) {
|
|
count_vm_event(SWAP_RA_HIT);
|
|
if (!vma || !vma_ra)
|
|
atomic_inc(&swapin_readahead_hits);
|
|
}
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* find_get_incore_page - Find and get a page from the page or swap caches.
|
|
* @mapping: The address_space to search.
|
|
* @index: The page cache index.
|
|
*
|
|
* This differs from find_get_page() in that it will also look for the
|
|
* page in the swap cache.
|
|
*
|
|
* Return: The found page or %NULL.
|
|
*/
|
|
struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
|
|
{
|
|
swp_entry_t swp;
|
|
struct swap_info_struct *si;
|
|
struct page *page = pagecache_get_page(mapping, index,
|
|
FGP_ENTRY | FGP_HEAD, 0);
|
|
|
|
if (!page)
|
|
return page;
|
|
if (!xa_is_value(page))
|
|
return find_subpage(page, index);
|
|
if (!shmem_mapping(mapping))
|
|
return NULL;
|
|
|
|
swp = radix_to_swp_entry(page);
|
|
/* There might be swapin error entries in shmem mapping. */
|
|
if (non_swap_entry(swp))
|
|
return NULL;
|
|
/* Prevent swapoff from happening to us */
|
|
si = get_swap_device(swp);
|
|
if (!si)
|
|
return NULL;
|
|
page = find_get_page(swap_address_space(swp), swp_offset(swp));
|
|
put_swap_device(si);
|
|
return page;
|
|
}
|
|
|
|
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
bool *new_page_allocated)
|
|
{
|
|
struct swap_info_struct *si;
|
|
struct page *page;
|
|
void *shadow = NULL;
|
|
|
|
*new_page_allocated = false;
|
|
|
|
for (;;) {
|
|
int err;
|
|
/*
|
|
* First check the swap cache. Since this is normally
|
|
* called after lookup_swap_cache() failed, re-calling
|
|
* that would confuse statistics.
|
|
*/
|
|
si = get_swap_device(entry);
|
|
if (!si)
|
|
return NULL;
|
|
page = find_get_page(swap_address_space(entry),
|
|
swp_offset(entry));
|
|
put_swap_device(si);
|
|
if (page)
|
|
return page;
|
|
|
|
/*
|
|
* Just skip read ahead for unused swap slot.
|
|
* During swap_off when swap_slot_cache is disabled,
|
|
* we have to handle the race between putting
|
|
* swap entry in swap cache and marking swap slot
|
|
* as SWAP_HAS_CACHE. That's done in later part of code or
|
|
* else swap_off will be aborted if we return NULL.
|
|
*/
|
|
if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
|
|
return NULL;
|
|
|
|
/*
|
|
* Get a new page to read into from swap. Allocate it now,
|
|
* before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
|
|
* cause any racers to loop around until we add it to cache.
|
|
*/
|
|
page = alloc_page_vma(gfp_mask, vma, addr);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
/*
|
|
* Swap entry may have been freed since our caller observed it.
|
|
*/
|
|
err = swapcache_prepare(entry);
|
|
if (!err)
|
|
break;
|
|
|
|
put_page(page);
|
|
if (err != -EEXIST)
|
|
return NULL;
|
|
|
|
/*
|
|
* We might race against __delete_from_swap_cache(), and
|
|
* stumble across a swap_map entry whose SWAP_HAS_CACHE
|
|
* has not yet been cleared. Or race against another
|
|
* __read_swap_cache_async(), which has set SWAP_HAS_CACHE
|
|
* in swap_map, but not yet added its page to swap cache.
|
|
*/
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
|
|
/*
|
|
* The swap entry is ours to swap in. Prepare the new page.
|
|
*/
|
|
|
|
__SetPageLocked(page);
|
|
__SetPageSwapBacked(page);
|
|
|
|
if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
|
|
goto fail_unlock;
|
|
|
|
/* May fail (-ENOMEM) if XArray node allocation failed. */
|
|
if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
|
|
goto fail_unlock;
|
|
|
|
mem_cgroup_swapin_uncharge_swap(entry);
|
|
|
|
if (shadow)
|
|
workingset_refault(page_folio(page), shadow);
|
|
|
|
/* Caller will initiate read into locked page */
|
|
lru_cache_add(page);
|
|
*new_page_allocated = true;
|
|
return page;
|
|
|
|
fail_unlock:
|
|
put_swap_page(page, entry);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Locate a page of swap in physical memory, reserving swap cache space
|
|
* and reading the disk if it is not already cached.
|
|
* A failure return means that either the page allocation failed or that
|
|
* the swap entry is no longer in use.
|
|
*/
|
|
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma,
|
|
unsigned long addr, bool do_poll,
|
|
struct swap_iocb **plug)
|
|
{
|
|
bool page_was_allocated;
|
|
struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
|
|
vma, addr, &page_was_allocated);
|
|
|
|
if (page_was_allocated)
|
|
swap_readpage(retpage, do_poll, plug);
|
|
|
|
return retpage;
|
|
}
|
|
|
|
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
|
|
unsigned long offset,
|
|
int hits,
|
|
int max_pages,
|
|
int prev_win)
|
|
{
|
|
unsigned int pages, last_ra;
|
|
|
|
/*
|
|
* This heuristic has been found to work well on both sequential and
|
|
* random loads, swapping to hard disk or to SSD: please don't ask
|
|
* what the "+ 2" means, it just happens to work well, that's all.
|
|
*/
|
|
pages = hits + 2;
|
|
if (pages == 2) {
|
|
/*
|
|
* We can have no readahead hits to judge by: but must not get
|
|
* stuck here forever, so check for an adjacent offset instead
|
|
* (and don't even bother to check whether swap type is same).
|
|
*/
|
|
if (offset != prev_offset + 1 && offset != prev_offset - 1)
|
|
pages = 1;
|
|
} else {
|
|
unsigned int roundup = 4;
|
|
while (roundup < pages)
|
|
roundup <<= 1;
|
|
pages = roundup;
|
|
}
|
|
|
|
if (pages > max_pages)
|
|
pages = max_pages;
|
|
|
|
/* Don't shrink readahead too fast */
|
|
last_ra = prev_win / 2;
|
|
if (pages < last_ra)
|
|
pages = last_ra;
|
|
|
|
return pages;
|
|
}
|
|
|
|
static unsigned long swapin_nr_pages(unsigned long offset)
|
|
{
|
|
static unsigned long prev_offset;
|
|
unsigned int hits, pages, max_pages;
|
|
static atomic_t last_readahead_pages;
|
|
|
|
max_pages = 1 << READ_ONCE(page_cluster);
|
|
if (max_pages <= 1)
|
|
return 1;
|
|
|
|
hits = atomic_xchg(&swapin_readahead_hits, 0);
|
|
pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
|
|
max_pages,
|
|
atomic_read(&last_readahead_pages));
|
|
if (!hits)
|
|
WRITE_ONCE(prev_offset, offset);
|
|
atomic_set(&last_readahead_pages, pages);
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* swap_cluster_readahead - swap in pages in hope we need them soon
|
|
* @entry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct page for entry and addr, after queueing swapin.
|
|
*
|
|
* Primitive swap readahead code. We simply read an aligned block of
|
|
* (1 << page_cluster) entries in the swap area. This method is chosen
|
|
* because it doesn't cost us any seek time. We also make sure to queue
|
|
* the 'original' request together with the readahead ones...
|
|
*
|
|
* This has been extended to use the NUMA policies from the mm triggering
|
|
* the readahead.
|
|
*
|
|
* Caller must hold read mmap_lock if vmf->vma is not NULL.
|
|
*/
|
|
struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct page *page;
|
|
unsigned long entry_offset = swp_offset(entry);
|
|
unsigned long offset = entry_offset;
|
|
unsigned long start_offset, end_offset;
|
|
unsigned long mask;
|
|
struct swap_info_struct *si = swp_swap_info(entry);
|
|
struct blk_plug plug;
|
|
struct swap_iocb *splug = NULL;
|
|
bool do_poll = true, page_allocated;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
unsigned long addr = vmf->address;
|
|
|
|
mask = swapin_nr_pages(offset) - 1;
|
|
if (!mask)
|
|
goto skip;
|
|
|
|
do_poll = false;
|
|
/* Read a page_cluster sized and aligned cluster around offset. */
|
|
start_offset = offset & ~mask;
|
|
end_offset = offset | mask;
|
|
if (!start_offset) /* First page is swap header. */
|
|
start_offset++;
|
|
if (end_offset >= si->max)
|
|
end_offset = si->max - 1;
|
|
|
|
blk_start_plug(&plug);
|
|
for (offset = start_offset; offset <= end_offset ; offset++) {
|
|
/* Ok, do the async read-ahead now */
|
|
page = __read_swap_cache_async(
|
|
swp_entry(swp_type(entry), offset),
|
|
gfp_mask, vma, addr, &page_allocated);
|
|
if (!page)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_readpage(page, false, &splug);
|
|
if (offset != entry_offset) {
|
|
SetPageReadahead(page);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
put_page(page);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
swap_read_unplug(splug);
|
|
|
|
lru_add_drain(); /* Push any new pages onto the LRU now */
|
|
skip:
|
|
/* The page was likely read above, so no need for plugging here */
|
|
return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
|
|
}
|
|
|
|
int init_swap_address_space(unsigned int type, unsigned long nr_pages)
|
|
{
|
|
struct address_space *spaces, *space;
|
|
unsigned int i, nr;
|
|
|
|
nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
|
|
spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
|
|
if (!spaces)
|
|
return -ENOMEM;
|
|
for (i = 0; i < nr; i++) {
|
|
space = spaces + i;
|
|
xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
|
|
atomic_set(&space->i_mmap_writable, 0);
|
|
space->a_ops = &swap_aops;
|
|
/* swap cache doesn't use writeback related tags */
|
|
mapping_set_no_writeback_tags(space);
|
|
}
|
|
nr_swapper_spaces[type] = nr;
|
|
swapper_spaces[type] = spaces;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void exit_swap_address_space(unsigned int type)
|
|
{
|
|
int i;
|
|
struct address_space *spaces = swapper_spaces[type];
|
|
|
|
for (i = 0; i < nr_swapper_spaces[type]; i++)
|
|
VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
|
|
kvfree(spaces);
|
|
nr_swapper_spaces[type] = 0;
|
|
swapper_spaces[type] = NULL;
|
|
}
|
|
|
|
static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
|
|
unsigned long faddr,
|
|
unsigned long lpfn,
|
|
unsigned long rpfn,
|
|
unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
*start = max3(lpfn, PFN_DOWN(vma->vm_start),
|
|
PFN_DOWN(faddr & PMD_MASK));
|
|
*end = min3(rpfn, PFN_DOWN(vma->vm_end),
|
|
PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
|
|
}
|
|
|
|
static void swap_ra_info(struct vm_fault *vmf,
|
|
struct vma_swap_readahead *ra_info)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
unsigned long ra_val;
|
|
unsigned long faddr, pfn, fpfn;
|
|
unsigned long start, end;
|
|
pte_t *pte, *orig_pte;
|
|
unsigned int max_win, hits, prev_win, win, left;
|
|
#ifndef CONFIG_64BIT
|
|
pte_t *tpte;
|
|
#endif
|
|
|
|
max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
|
|
SWAP_RA_ORDER_CEILING);
|
|
if (max_win == 1) {
|
|
ra_info->win = 1;
|
|
return;
|
|
}
|
|
|
|
faddr = vmf->address;
|
|
orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
|
|
|
|
fpfn = PFN_DOWN(faddr);
|
|
ra_val = GET_SWAP_RA_VAL(vma);
|
|
pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
|
|
prev_win = SWAP_RA_WIN(ra_val);
|
|
hits = SWAP_RA_HITS(ra_val);
|
|
ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
|
|
max_win, prev_win);
|
|
atomic_long_set(&vma->swap_readahead_info,
|
|
SWAP_RA_VAL(faddr, win, 0));
|
|
|
|
if (win == 1) {
|
|
pte_unmap(orig_pte);
|
|
return;
|
|
}
|
|
|
|
/* Copy the PTEs because the page table may be unmapped */
|
|
if (fpfn == pfn + 1)
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
|
|
else if (pfn == fpfn + 1)
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
|
|
&start, &end);
|
|
else {
|
|
left = (win - 1) / 2;
|
|
swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
|
|
&start, &end);
|
|
}
|
|
ra_info->nr_pte = end - start;
|
|
ra_info->offset = fpfn - start;
|
|
pte -= ra_info->offset;
|
|
#ifdef CONFIG_64BIT
|
|
ra_info->ptes = pte;
|
|
#else
|
|
tpte = ra_info->ptes;
|
|
for (pfn = start; pfn != end; pfn++)
|
|
*tpte++ = *pte++;
|
|
#endif
|
|
pte_unmap(orig_pte);
|
|
}
|
|
|
|
/**
|
|
* swap_vma_readahead - swap in pages in hope we need them soon
|
|
* @fentry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct page for entry and addr, after queueing swapin.
|
|
*
|
|
* Primitive swap readahead code. We simply read in a few pages whose
|
|
* virtual addresses are around the fault address in the same vma.
|
|
*
|
|
* Caller must hold read mmap_lock if vmf->vma is not NULL.
|
|
*
|
|
*/
|
|
static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct blk_plug plug;
|
|
struct swap_iocb *splug = NULL;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct page *page;
|
|
pte_t *pte, pentry;
|
|
swp_entry_t entry;
|
|
unsigned int i;
|
|
bool page_allocated;
|
|
struct vma_swap_readahead ra_info = {
|
|
.win = 1,
|
|
};
|
|
|
|
swap_ra_info(vmf, &ra_info);
|
|
if (ra_info.win == 1)
|
|
goto skip;
|
|
|
|
blk_start_plug(&plug);
|
|
for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
|
|
i++, pte++) {
|
|
pentry = *pte;
|
|
if (!is_swap_pte(pentry))
|
|
continue;
|
|
entry = pte_to_swp_entry(pentry);
|
|
if (unlikely(non_swap_entry(entry)))
|
|
continue;
|
|
page = __read_swap_cache_async(entry, gfp_mask, vma,
|
|
vmf->address, &page_allocated);
|
|
if (!page)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_readpage(page, false, &splug);
|
|
if (i != ra_info.offset) {
|
|
SetPageReadahead(page);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
put_page(page);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
swap_read_unplug(splug);
|
|
lru_add_drain();
|
|
skip:
|
|
/* The page was likely read above, so no need for plugging here */
|
|
return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
|
|
ra_info.win == 1, NULL);
|
|
}
|
|
|
|
/**
|
|
* swapin_readahead - swap in pages in hope we need them soon
|
|
* @entry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct page for entry and addr, after queueing swapin.
|
|
*
|
|
* It's a main entry function for swap readahead. By the configuration,
|
|
* it will read ahead blocks by cluster-based(ie, physical disk based)
|
|
* or vma-based(ie, virtual address based on faulty address) readahead.
|
|
*/
|
|
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf)
|
|
{
|
|
return swap_use_vma_readahead() ?
|
|
swap_vma_readahead(entry, gfp_mask, vmf) :
|
|
swap_cluster_readahead(entry, gfp_mask, vmf);
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n",
|
|
enable_vma_readahead ? "true" : "false");
|
|
}
|
|
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kstrtobool(buf, &enable_vma_readahead);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
|
|
|
|
static struct attribute *swap_attrs[] = {
|
|
&vma_ra_enabled_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group swap_attr_group = {
|
|
.attrs = swap_attrs,
|
|
};
|
|
|
|
static int __init swap_init_sysfs(void)
|
|
{
|
|
int err;
|
|
struct kobject *swap_kobj;
|
|
|
|
swap_kobj = kobject_create_and_add("swap", mm_kobj);
|
|
if (!swap_kobj) {
|
|
pr_err("failed to create swap kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
err = sysfs_create_group(swap_kobj, &swap_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register swap group\n");
|
|
goto delete_obj;
|
|
}
|
|
return 0;
|
|
|
|
delete_obj:
|
|
kobject_put(swap_kobj);
|
|
return err;
|
|
}
|
|
subsys_initcall(swap_init_sysfs);
|
|
#endif
|