linux-stable/net/mac80211/ieee80211.c
Daniel Drake 63fc33ceb0 [PATCH] mac80211: improved 802.11g CTS protection
Currently, CTS protection is partially implemented twice:
 1. via prism2 ioctls, only used by hostapd
 2. via STA beacon parsing, recorded in sta.use_protection but never used
    (other than printed in debugfs)

Protection control should be implemented on a per-subif basis. For example,
a single physical device may be running a soft AP on one channel, and a STA
on another. The AP interface should use protection based on what hostapd told
it, and the STA interface should use protection based on beacon parsing.
These should operate independantly: one subif using protection should not
influence the other.

To implement this, I moved the use_protection flag into ieee80211_sub_if_data
and removed the device-global cts_protect_erp_frames flag.

I also made the PRISM2_PARAM_CTS_PROTECT_ERP_FRAMES write operation only
available for AP interfaces, to avoid any possibility of the user messing with
the behaviour of a STA.

Signed-off-by: Daniel Drake <dsd@gentoo.org>
Signed-off-by: Jiri Benc <jbenc@suse.cz>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-07-12 16:07:26 -04:00

5266 lines
145 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/if_arp.h>
#include <linux/wireless.h>
#include <linux/rtnetlink.h>
#include <net/iw_handler.h>
#include <linux/compiler.h>
#include <linux/bitmap.h>
#include <net/cfg80211.h>
#include <asm/unaligned.h>
#include "ieee80211_common.h"
#include "ieee80211_i.h"
#include "ieee80211_rate.h"
#include "wep.h"
#include "wpa.h"
#include "tkip.h"
#include "wme.h"
#include "aes_ccm.h"
#include "ieee80211_led.h"
#include "ieee80211_cfg.h"
#include "debugfs.h"
#include "debugfs_netdev.h"
#include "debugfs_key.h"
/* privid for wiphys to determine whether they belong to us or not */
void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
static const unsigned char rfc1042_header[] =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
static const unsigned char bridge_tunnel_header[] =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
/* No encapsulation header if EtherType < 0x600 (=length) */
static const unsigned char eapol_header[] =
{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e };
/*
* For seeing transmitted packets on monitor interfaces
* we have a radiotap header too.
*/
struct ieee80211_tx_status_rtap_hdr {
struct ieee80211_radiotap_header hdr;
__le16 tx_flags;
u8 data_retries;
} __attribute__ ((packed));
static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata,
struct ieee80211_hdr *hdr)
{
/* Set the sequence number for this frame. */
hdr->seq_ctrl = cpu_to_le16(sdata->sequence);
/* Increase the sequence number. */
sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ;
}
struct ieee80211_key_conf *
ieee80211_key_data2conf(struct ieee80211_local *local,
const struct ieee80211_key *data)
{
struct ieee80211_key_conf *conf;
conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC);
if (!conf)
return NULL;
conf->hw_key_idx = data->hw_key_idx;
conf->alg = data->alg;
conf->keylen = data->keylen;
conf->flags = 0;
if (data->force_sw_encrypt)
conf->flags |= IEEE80211_KEY_FORCE_SW_ENCRYPT;
conf->keyidx = data->keyidx;
if (data->default_tx_key)
conf->flags |= IEEE80211_KEY_DEFAULT_TX_KEY;
if (local->default_wep_only)
conf->flags |= IEEE80211_KEY_DEFAULT_WEP_ONLY;
memcpy(conf->key, data->key, data->keylen);
return conf;
}
struct ieee80211_key *ieee80211_key_alloc(struct ieee80211_sub_if_data *sdata,
int idx, size_t key_len, gfp_t flags)
{
struct ieee80211_key *key;
key = kzalloc(sizeof(struct ieee80211_key) + key_len, flags);
if (!key)
return NULL;
kref_init(&key->kref);
return key;
}
static void ieee80211_key_release(struct kref *kref)
{
struct ieee80211_key *key;
key = container_of(kref, struct ieee80211_key, kref);
if (key->alg == ALG_CCMP)
ieee80211_aes_key_free(key->u.ccmp.tfm);
ieee80211_debugfs_key_remove(key);
kfree(key);
}
void ieee80211_key_free(struct ieee80211_key *key)
{
if (key)
kref_put(&key->kref, ieee80211_key_release);
}
static int rate_list_match(const int *rate_list, int rate)
{
int i;
if (!rate_list)
return 0;
for (i = 0; rate_list[i] >= 0; i++)
if (rate_list[i] == rate)
return 1;
return 0;
}
void ieee80211_prepare_rates(struct ieee80211_local *local,
struct ieee80211_hw_mode *mode)
{
int i;
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *rate = &mode->rates[i];
rate->flags &= ~(IEEE80211_RATE_SUPPORTED |
IEEE80211_RATE_BASIC);
if (local->supp_rates[mode->mode]) {
if (!rate_list_match(local->supp_rates[mode->mode],
rate->rate))
continue;
}
rate->flags |= IEEE80211_RATE_SUPPORTED;
/* Use configured basic rate set if it is available. If not,
* use defaults that are sane for most cases. */
if (local->basic_rates[mode->mode]) {
if (rate_list_match(local->basic_rates[mode->mode],
rate->rate))
rate->flags |= IEEE80211_RATE_BASIC;
} else switch (mode->mode) {
case MODE_IEEE80211A:
if (rate->rate == 60 || rate->rate == 120 ||
rate->rate == 240)
rate->flags |= IEEE80211_RATE_BASIC;
break;
case MODE_IEEE80211B:
if (rate->rate == 10 || rate->rate == 20)
rate->flags |= IEEE80211_RATE_BASIC;
break;
case MODE_ATHEROS_TURBO:
if (rate->rate == 120 || rate->rate == 240 ||
rate->rate == 480)
rate->flags |= IEEE80211_RATE_BASIC;
break;
case MODE_IEEE80211G:
if (rate->rate == 10 || rate->rate == 20 ||
rate->rate == 55 || rate->rate == 110)
rate->flags |= IEEE80211_RATE_BASIC;
break;
}
/* Set ERP and MANDATORY flags based on phymode */
switch (mode->mode) {
case MODE_IEEE80211A:
if (rate->rate == 60 || rate->rate == 120 ||
rate->rate == 240)
rate->flags |= IEEE80211_RATE_MANDATORY;
break;
case MODE_IEEE80211B:
if (rate->rate == 10)
rate->flags |= IEEE80211_RATE_MANDATORY;
break;
case MODE_ATHEROS_TURBO:
break;
case MODE_IEEE80211G:
if (rate->rate == 10 || rate->rate == 20 ||
rate->rate == 55 || rate->rate == 110 ||
rate->rate == 60 || rate->rate == 120 ||
rate->rate == 240)
rate->flags |= IEEE80211_RATE_MANDATORY;
break;
}
if (ieee80211_is_erp_rate(mode->mode, rate->rate))
rate->flags |= IEEE80211_RATE_ERP;
}
}
static void ieee80211_key_threshold_notify(struct net_device *dev,
struct ieee80211_key *key,
struct sta_info *sta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_msg_key_notification *msg;
/* if no one will get it anyway, don't even allocate it.
* unlikely because this is only relevant for APs
* where the device must be open... */
if (unlikely(!local->apdev))
return;
skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
sizeof(struct ieee80211_msg_key_notification));
if (!skb)
return;
skb_reserve(skb, sizeof(struct ieee80211_frame_info));
msg = (struct ieee80211_msg_key_notification *)
skb_put(skb, sizeof(struct ieee80211_msg_key_notification));
msg->tx_rx_count = key->tx_rx_count;
memcpy(msg->ifname, dev->name, IFNAMSIZ);
if (sta)
memcpy(msg->addr, sta->addr, ETH_ALEN);
else
memset(msg->addr, 0xff, ETH_ALEN);
key->tx_rx_count = 0;
ieee80211_rx_mgmt(local, skb, NULL,
ieee80211_msg_key_threshold_notification);
}
static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len)
{
u16 fc;
if (len < 24)
return NULL;
fc = le16_to_cpu(hdr->frame_control);
switch (fc & IEEE80211_FCTL_FTYPE) {
case IEEE80211_FTYPE_DATA:
switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
case IEEE80211_FCTL_TODS:
return hdr->addr1;
case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
return NULL;
case IEEE80211_FCTL_FROMDS:
return hdr->addr2;
case 0:
return hdr->addr3;
}
break;
case IEEE80211_FTYPE_MGMT:
return hdr->addr3;
case IEEE80211_FTYPE_CTL:
if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)
return hdr->addr1;
else
return NULL;
}
return NULL;
}
int ieee80211_get_hdrlen(u16 fc)
{
int hdrlen = 24;
switch (fc & IEEE80211_FCTL_FTYPE) {
case IEEE80211_FTYPE_DATA:
if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS))
hdrlen = 30; /* Addr4 */
/*
* The QoS Control field is two bytes and its presence is
* indicated by the IEEE80211_STYPE_QOS_DATA bit. Add 2 to
* hdrlen if that bit is set.
* This works by masking out the bit and shifting it to
* bit position 1 so the result has the value 0 or 2.
*/
hdrlen += (fc & IEEE80211_STYPE_QOS_DATA)
>> (ilog2(IEEE80211_STYPE_QOS_DATA)-1);
break;
case IEEE80211_FTYPE_CTL:
/*
* ACK and CTS are 10 bytes, all others 16. To see how
* to get this condition consider
* subtype mask: 0b0000000011110000 (0x00F0)
* ACK subtype: 0b0000000011010000 (0x00D0)
* CTS subtype: 0b0000000011000000 (0x00C0)
* bits that matter: ^^^ (0x00E0)
* value of those: 0b0000000011000000 (0x00C0)
*/
if ((fc & 0xE0) == 0xC0)
hdrlen = 10;
else
hdrlen = 16;
break;
}
return hdrlen;
}
EXPORT_SYMBOL(ieee80211_get_hdrlen);
int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
{
const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *) skb->data;
int hdrlen;
if (unlikely(skb->len < 10))
return 0;
hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
if (unlikely(hdrlen > skb->len))
return 0;
return hdrlen;
}
EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
static int ieee80211_get_radiotap_len(struct sk_buff *skb)
{
struct ieee80211_radiotap_header *hdr =
(struct ieee80211_radiotap_header *) skb->data;
return le16_to_cpu(hdr->it_len);
}
#ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP
static void ieee80211_dump_frame(const char *ifname, const char *title,
const struct sk_buff *skb)
{
const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc;
int hdrlen;
printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len);
if (skb->len < 4) {
printk("\n");
return;
}
fc = le16_to_cpu(hdr->frame_control);
hdrlen = ieee80211_get_hdrlen(fc);
if (hdrlen > skb->len)
hdrlen = skb->len;
if (hdrlen >= 4)
printk(" FC=0x%04x DUR=0x%04x",
fc, le16_to_cpu(hdr->duration_id));
if (hdrlen >= 10)
printk(" A1=" MAC_FMT, MAC_ARG(hdr->addr1));
if (hdrlen >= 16)
printk(" A2=" MAC_FMT, MAC_ARG(hdr->addr2));
if (hdrlen >= 24)
printk(" A3=" MAC_FMT, MAC_ARG(hdr->addr3));
if (hdrlen >= 30)
printk(" A4=" MAC_FMT, MAC_ARG(hdr->addr4));
printk("\n");
}
#else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
static inline void ieee80211_dump_frame(const char *ifname, const char *title,
struct sk_buff *skb)
{
}
#endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
static int ieee80211_is_eapol(const struct sk_buff *skb)
{
const struct ieee80211_hdr *hdr;
u16 fc;
int hdrlen;
if (unlikely(skb->len < 10))
return 0;
hdr = (const struct ieee80211_hdr *) skb->data;
fc = le16_to_cpu(hdr->frame_control);
if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
return 0;
hdrlen = ieee80211_get_hdrlen(fc);
if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) &&
memcmp(skb->data + hdrlen, eapol_header,
sizeof(eapol_header)) == 0))
return 1;
return 0;
}
static ieee80211_txrx_result
ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx)
{
struct rate_control_extra extra;
memset(&extra, 0, sizeof(extra));
extra.mode = tx->u.tx.mode;
extra.mgmt_data = tx->sdata &&
tx->sdata->type == IEEE80211_IF_TYPE_MGMT;
extra.ethertype = tx->ethertype;
tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb,
&extra);
if (unlikely(extra.probe != NULL)) {
tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE;
tx->u.tx.probe_last_frag = 1;
tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val;
tx->u.tx.rate = extra.probe;
} else {
tx->u.tx.control->alt_retry_rate = -1;
}
if (!tx->u.tx.rate)
return TXRX_DROP;
if (tx->u.tx.mode->mode == MODE_IEEE80211G &&
tx->sdata->use_protection && tx->fragmented &&
extra.nonerp) {
tx->u.tx.last_frag_rate = tx->u.tx.rate;
tx->u.tx.probe_last_frag = extra.probe ? 1 : 0;
tx->u.tx.rate = extra.nonerp;
tx->u.tx.control->rate = extra.nonerp;
tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE;
} else {
tx->u.tx.last_frag_rate = tx->u.tx.rate;
tx->u.tx.control->rate = tx->u.tx.rate;
}
tx->u.tx.control->tx_rate = tx->u.tx.rate->val;
if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) &&
tx->local->short_preamble &&
(!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) {
tx->u.tx.short_preamble = 1;
tx->u.tx.control->tx_rate = tx->u.tx.rate->val2;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx)
{
if (tx->sta)
tx->u.tx.control->key_idx = tx->sta->key_idx_compression;
else
tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID;
if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT))
tx->key = NULL;
else if (tx->sta && tx->sta->key)
tx->key = tx->sta->key;
else if (tx->sdata->default_key)
tx->key = tx->sdata->default_key;
else if (tx->sdata->drop_unencrypted &&
!(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) {
I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
return TXRX_DROP;
} else
tx->key = NULL;
if (tx->key) {
tx->key->tx_rx_count++;
if (unlikely(tx->local->key_tx_rx_threshold &&
tx->key->tx_rx_count >
tx->local->key_tx_rx_threshold)) {
ieee80211_key_threshold_notify(tx->dev, tx->key,
tx->sta);
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
size_t hdrlen, per_fragm, num_fragm, payload_len, left;
struct sk_buff **frags, *first, *frag;
int i;
u16 seq;
u8 *pos;
int frag_threshold = tx->local->fragmentation_threshold;
if (!tx->fragmented)
return TXRX_CONTINUE;
first = tx->skb;
hdrlen = ieee80211_get_hdrlen(tx->fc);
payload_len = first->len - hdrlen;
per_fragm = frag_threshold - hdrlen - FCS_LEN;
num_fragm = (payload_len + per_fragm - 1) / per_fragm;
frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
if (!frags)
goto fail;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
pos = first->data + hdrlen + per_fragm;
left = payload_len - per_fragm;
for (i = 0; i < num_fragm - 1; i++) {
struct ieee80211_hdr *fhdr;
size_t copylen;
if (left <= 0)
goto fail;
/* reserve enough extra head and tail room for possible
* encryption */
frag = frags[i] =
dev_alloc_skb(tx->local->tx_headroom +
frag_threshold +
IEEE80211_ENCRYPT_HEADROOM +
IEEE80211_ENCRYPT_TAILROOM);
if (!frag)
goto fail;
/* Make sure that all fragments use the same priority so
* that they end up using the same TX queue */
frag->priority = first->priority;
skb_reserve(frag, tx->local->tx_headroom +
IEEE80211_ENCRYPT_HEADROOM);
fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
memcpy(fhdr, first->data, hdrlen);
if (i == num_fragm - 2)
fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
copylen = left > per_fragm ? per_fragm : left;
memcpy(skb_put(frag, copylen), pos, copylen);
pos += copylen;
left -= copylen;
}
skb_trim(first, hdrlen + per_fragm);
tx->u.tx.num_extra_frag = num_fragm - 1;
tx->u.tx.extra_frag = frags;
return TXRX_CONTINUE;
fail:
printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name);
if (frags) {
for (i = 0; i < num_fragm - 1; i++)
if (frags[i])
dev_kfree_skb(frags[i]);
kfree(frags);
}
I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
return TXRX_DROP;
}
static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb)
{
if (tx->key->force_sw_encrypt) {
if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
return -1;
} else {
tx->u.tx.control->key_idx = tx->key->hw_key_idx;
if (tx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
if (ieee80211_wep_add_iv(tx->local, skb, tx->key) ==
NULL)
return -1;
}
}
return 0;
}
void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
if (tx->u.tx.extra_frag) {
struct ieee80211_hdr *fhdr;
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
fhdr = (struct ieee80211_hdr *)
tx->u.tx.extra_frag[i]->data;
fhdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
}
}
static ieee80211_txrx_result
ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
u16 fc;
fc = le16_to_cpu(hdr->frame_control);
if (!tx->key || tx->key->alg != ALG_WEP ||
((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
return TXRX_CONTINUE;
tx->u.tx.control->iv_len = WEP_IV_LEN;
tx->u.tx.control->icv_len = WEP_ICV_LEN;
ieee80211_tx_set_iswep(tx);
if (wep_encrypt_skb(tx, tx->skb) < 0) {
I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
return TXRX_DROP;
}
if (tx->u.tx.extra_frag) {
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) {
I802_DEBUG_INC(tx->local->
tx_handlers_drop_wep);
return TXRX_DROP;
}
}
}
return TXRX_CONTINUE;
}
static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
int rate, int erp, int short_preamble)
{
int dur;
/* calculate duration (in microseconds, rounded up to next higher
* integer if it includes a fractional microsecond) to send frame of
* len bytes (does not include FCS) at the given rate. Duration will
* also include SIFS.
*
* rate is in 100 kbps, so divident is multiplied by 10 in the
* DIV_ROUND_UP() operations.
*/
if (local->hw.conf.phymode == MODE_IEEE80211A || erp ||
local->hw.conf.phymode == MODE_ATHEROS_TURBO) {
/*
* OFDM:
*
* N_DBPS = DATARATE x 4
* N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
* (16 = SIGNAL time, 6 = tail bits)
* TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
*
* T_SYM = 4 usec
* 802.11a - 17.5.2: aSIFSTime = 16 usec
* 802.11g - 19.8.4: aSIFSTime = 10 usec +
* signal ext = 6 usec
*/
/* FIX: Atheros Turbo may have different (shorter) duration? */
dur = 16; /* SIFS + signal ext */
dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
4 * rate); /* T_SYM x N_SYM */
} else {
/*
* 802.11b or 802.11g with 802.11b compatibility:
* 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
* Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
*
* 802.11 (DS): 15.3.3, 802.11b: 18.3.4
* aSIFSTime = 10 usec
* aPreambleLength = 144 usec or 72 usec with short preamble
* aPLCPHeaderLength = 48 usec or 24 usec with short preamble
*/
dur = 10; /* aSIFSTime = 10 usec */
dur += short_preamble ? (72 + 24) : (144 + 48);
dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
}
return dur;
}
/* Exported duration function for driver use */
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
size_t frame_len, int rate)
{
struct ieee80211_local *local = hw_to_local(hw);
u16 dur;
int erp;
erp = ieee80211_is_erp_rate(hw->conf.phymode, rate);
dur = ieee80211_frame_duration(local, frame_len, rate,
erp, local->short_preamble);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_generic_frame_duration);
static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr,
int next_frag_len)
{
int rate, mrate, erp, dur, i;
struct ieee80211_rate *txrate = tx->u.tx.rate;
struct ieee80211_local *local = tx->local;
struct ieee80211_hw_mode *mode = tx->u.tx.mode;
erp = txrate->flags & IEEE80211_RATE_ERP;
/*
* data and mgmt (except PS Poll):
* - during CFP: 32768
* - during contention period:
* if addr1 is group address: 0
* if more fragments = 0 and addr1 is individual address: time to
* transmit one ACK plus SIFS
* if more fragments = 1 and addr1 is individual address: time to
* transmit next fragment plus 2 x ACK plus 3 x SIFS
*
* IEEE 802.11, 9.6:
* - control response frame (CTS or ACK) shall be transmitted using the
* same rate as the immediately previous frame in the frame exchange
* sequence, if this rate belongs to the PHY mandatory rates, or else
* at the highest possible rate belonging to the PHY rates in the
* BSSBasicRateSet
*/
if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) {
/* TODO: These control frames are not currently sent by
* 80211.o, but should they be implemented, this function
* needs to be updated to support duration field calculation.
*
* RTS: time needed to transmit pending data/mgmt frame plus
* one CTS frame plus one ACK frame plus 3 x SIFS
* CTS: duration of immediately previous RTS minus time
* required to transmit CTS and its SIFS
* ACK: 0 if immediately previous directed data/mgmt had
* more=0, with more=1 duration in ACK frame is duration
* from previous frame minus time needed to transmit ACK
* and its SIFS
* PS Poll: BIT(15) | BIT(14) | aid
*/
return 0;
}
/* data/mgmt */
if (0 /* FIX: data/mgmt during CFP */)
return 32768;
if (group_addr) /* Group address as the destination - no ACK */
return 0;
/* Individual destination address:
* IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
* CTS and ACK frames shall be transmitted using the highest rate in
* basic rate set that is less than or equal to the rate of the
* immediately previous frame and that is using the same modulation
* (CCK or OFDM). If no basic rate set matches with these requirements,
* the highest mandatory rate of the PHY that is less than or equal to
* the rate of the previous frame is used.
* Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
*/
rate = -1;
mrate = 10; /* use 1 Mbps if everything fails */
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *r = &mode->rates[i];
if (r->rate > txrate->rate)
break;
if (IEEE80211_RATE_MODULATION(txrate->flags) !=
IEEE80211_RATE_MODULATION(r->flags))
continue;
if (r->flags & IEEE80211_RATE_BASIC)
rate = r->rate;
else if (r->flags & IEEE80211_RATE_MANDATORY)
mrate = r->rate;
}
if (rate == -1) {
/* No matching basic rate found; use highest suitable mandatory
* PHY rate */
rate = mrate;
}
/* Time needed to transmit ACK
* (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
* to closest integer */
dur = ieee80211_frame_duration(local, 10, rate, erp,
local->short_preamble);
if (next_frag_len) {
/* Frame is fragmented: duration increases with time needed to
* transmit next fragment plus ACK and 2 x SIFS. */
dur *= 2; /* ACK + SIFS */
/* next fragment */
dur += ieee80211_frame_duration(local, next_frag_len,
txrate->rate, erp,
local->short_preamble);
}
return dur;
}
static ieee80211_txrx_result
ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
u16 dur;
struct ieee80211_tx_control *control = tx->u.tx.control;
struct ieee80211_hw_mode *mode = tx->u.tx.mode;
if (!is_multicast_ether_addr(hdr->addr1)) {
if (tx->skb->len + FCS_LEN > tx->local->rts_threshold &&
tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) {
control->flags |= IEEE80211_TXCTL_USE_RTS_CTS;
control->retry_limit =
tx->local->long_retry_limit;
} else {
control->retry_limit =
tx->local->short_retry_limit;
}
} else {
control->retry_limit = 1;
}
if (tx->fragmented) {
/* Do not use multiple retry rates when sending fragmented
* frames.
* TODO: The last fragment could still use multiple retry
* rates. */
control->alt_retry_rate = -1;
}
/* Use CTS protection for unicast frames sent using extended rates if
* there are associated non-ERP stations and RTS/CTS is not configured
* for the frame. */
if (mode->mode == MODE_IEEE80211G &&
(tx->u.tx.rate->flags & IEEE80211_RATE_ERP) &&
tx->u.tx.unicast && tx->sdata->use_protection &&
!(control->flags & IEEE80211_TXCTL_USE_RTS_CTS))
control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT;
/* Setup duration field for the first fragment of the frame. Duration
* for remaining fragments will be updated when they are being sent
* to low-level driver in ieee80211_tx(). */
dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1),
tx->fragmented ? tx->u.tx.extra_frag[0]->len :
0);
hdr->duration_id = cpu_to_le16(dur);
if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) ||
(control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) {
struct ieee80211_rate *rate;
/* Do not use multiple retry rates when using RTS/CTS */
control->alt_retry_rate = -1;
/* Use min(data rate, max base rate) as CTS/RTS rate */
rate = tx->u.tx.rate;
while (rate > mode->rates &&
!(rate->flags & IEEE80211_RATE_BASIC))
rate--;
control->rts_cts_rate = rate->val;
control->rts_rate = rate;
}
if (tx->sta) {
tx->sta->tx_packets++;
tx->sta->tx_fragments++;
tx->sta->tx_bytes += tx->skb->len;
if (tx->u.tx.extra_frag) {
int i;
tx->sta->tx_fragments += tx->u.tx.num_extra_frag;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
tx->sta->tx_bytes +=
tx->u.tx.extra_frag[i]->len;
}
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx)
{
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
struct sk_buff *skb = tx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
u32 sta_flags;
if (unlikely(tx->local->sta_scanning != 0) &&
((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ))
return TXRX_DROP;
if (tx->u.tx.ps_buffered)
return TXRX_CONTINUE;
sta_flags = tx->sta ? tx->sta->flags : 0;
if (likely(tx->u.tx.unicast)) {
if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
tx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
(tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: dropped data frame to not "
"associated station " MAC_FMT "\n",
tx->dev->name, MAC_ARG(hdr->addr1));
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
return TXRX_DROP;
}
} else {
if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
tx->local->num_sta == 0 &&
!tx->local->allow_broadcast_always &&
tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) {
/*
* No associated STAs - no need to send multicast
* frames.
*/
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x &&
!(sta_flags & WLAN_STA_AUTHORIZED))) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: dropped frame to " MAC_FMT
" (unauthorized port)\n", tx->dev->name,
MAC_ARG(hdr->addr1));
#endif
I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24)
ieee80211_include_sequence(tx->sdata, hdr);
return TXRX_CONTINUE;
}
/* This function is called whenever the AP is about to exceed the maximum limit
* of buffered frames for power saving STAs. This situation should not really
* happen often during normal operation, so dropping the oldest buffered packet
* from each queue should be OK to make some room for new frames. */
static void purge_old_ps_buffers(struct ieee80211_local *local)
{
int total = 0, purged = 0;
struct sk_buff *skb;
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
struct ieee80211_if_ap *ap;
if (sdata->dev == local->mdev ||
sdata->type != IEEE80211_IF_TYPE_AP)
continue;
ap = &sdata->u.ap;
skb = skb_dequeue(&ap->ps_bc_buf);
if (skb) {
purged++;
dev_kfree_skb(skb);
}
total += skb_queue_len(&ap->ps_bc_buf);
}
read_unlock(&local->sub_if_lock);
spin_lock_bh(&local->sta_lock);
list_for_each_entry(sta, &local->sta_list, list) {
skb = skb_dequeue(&sta->ps_tx_buf);
if (skb) {
purged++;
dev_kfree_skb(skb);
}
total += skb_queue_len(&sta->ps_tx_buf);
}
spin_unlock_bh(&local->sta_lock);
local->total_ps_buffered = total;
printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
local->mdev->name, purged);
}
static inline ieee80211_txrx_result
ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx)
{
/* broadcast/multicast frame */
/* If any of the associated stations is in power save mode,
* the frame is buffered to be sent after DTIM beacon frame */
if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) &&
tx->sdata->type != IEEE80211_IF_TYPE_WDS &&
tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) &&
!(tx->fc & IEEE80211_FCTL_ORDER)) {
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
AP_MAX_BC_BUFFER) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: BC TX buffer full - "
"dropping the oldest frame\n",
tx->dev->name);
}
dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
} else
tx->local->total_ps_buffered++;
skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
}
static inline ieee80211_txrx_result
ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx)
{
struct sta_info *sta = tx->sta;
if (unlikely(!sta ||
((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
(tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)))
return TXRX_CONTINUE;
if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) {
struct ieee80211_tx_packet_data *pkt_data;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS buffer (entries "
"before %d)\n",
MAC_ARG(sta->addr), sta->aid,
skb_queue_len(&sta->ps_tx_buf));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
sta->flags |= WLAN_STA_TIM;
if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
purge_old_ps_buffers(tx->local);
if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: STA " MAC_FMT " TX "
"buffer full - dropping oldest frame\n",
tx->dev->name, MAC_ARG(sta->addr));
}
dev_kfree_skb(old);
} else
tx->local->total_ps_buffered++;
/* Queue frame to be sent after STA sends an PS Poll frame */
if (skb_queue_empty(&sta->ps_tx_buf)) {
if (tx->local->ops->set_tim)
tx->local->ops->set_tim(local_to_hw(tx->local),
sta->aid, 1);
if (tx->sdata->bss)
bss_tim_set(tx->local, tx->sdata->bss, sta->aid);
}
pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb;
pkt_data->jiffies = jiffies;
skb_queue_tail(&sta->ps_tx_buf, tx->skb);
return TXRX_QUEUED;
}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
else if (unlikely(sta->flags & WLAN_STA_PS)) {
printk(KERN_DEBUG "%s: STA " MAC_FMT " in PS mode, but pspoll "
"set -> send frame\n", tx->dev->name,
MAC_ARG(sta->addr));
}
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
sta->pspoll = 0;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx)
{
if (unlikely(tx->u.tx.ps_buffered))
return TXRX_CONTINUE;
if (tx->u.tx.unicast)
return ieee80211_tx_h_unicast_ps_buf(tx);
else
return ieee80211_tx_h_multicast_ps_buf(tx);
}
/*
* deal with packet injection down monitor interface
* with Radiotap Header -- only called for monitor mode interface
*/
static ieee80211_txrx_result
__ieee80211_parse_tx_radiotap(
struct ieee80211_txrx_data *tx,
struct sk_buff *skb, struct ieee80211_tx_control *control)
{
/*
* this is the moment to interpret and discard the radiotap header that
* must be at the start of the packet injected in Monitor mode
*
* Need to take some care with endian-ness since radiotap
* args are little-endian
*/
struct ieee80211_radiotap_iterator iterator;
struct ieee80211_radiotap_header *rthdr =
(struct ieee80211_radiotap_header *) skb->data;
struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode;
int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
/*
* default control situation for all injected packets
* FIXME: this does not suit all usage cases, expand to allow control
*/
control->retry_limit = 1; /* no retry */
control->key_idx = -1; /* no encryption key */
control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
IEEE80211_TXCTL_USE_CTS_PROTECT);
control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT |
IEEE80211_TXCTL_NO_ACK;
control->antenna_sel_tx = 0; /* default to default antenna */
/*
* for every radiotap entry that is present
* (ieee80211_radiotap_iterator_next returns -ENOENT when no more
* entries present, or -EINVAL on error)
*/
while (!ret) {
int i, target_rate;
ret = ieee80211_radiotap_iterator_next(&iterator);
if (ret)
continue;
/* see if this argument is something we can use */
switch (iterator.this_arg_index) {
/*
* You must take care when dereferencing iterator.this_arg
* for multibyte types... the pointer is not aligned. Use
* get_unaligned((type *)iterator.this_arg) to dereference
* iterator.this_arg for type "type" safely on all arches.
*/
case IEEE80211_RADIOTAP_RATE:
/*
* radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps
* ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps
*/
target_rate = (*iterator.this_arg) * 5;
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *r = &mode->rates[i];
if (r->rate > target_rate)
continue;
control->rate = r;
if (r->flags & IEEE80211_RATE_PREAMBLE2)
control->tx_rate = r->val2;
else
control->tx_rate = r->val;
/* end on exact match */
if (r->rate == target_rate)
i = mode->num_rates;
}
break;
case IEEE80211_RADIOTAP_ANTENNA:
/*
* radiotap uses 0 for 1st ant, mac80211 is 1 for
* 1st ant
*/
control->antenna_sel_tx = (*iterator.this_arg) + 1;
break;
case IEEE80211_RADIOTAP_DBM_TX_POWER:
control->power_level = *iterator.this_arg;
break;
case IEEE80211_RADIOTAP_FLAGS:
if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
/*
* this indicates that the skb we have been
* handed has the 32-bit FCS CRC at the end...
* we should react to that by snipping it off
* because it will be recomputed and added
* on transmission
*/
if (skb->len < (iterator.max_length + FCS_LEN))
return TXRX_DROP;
skb_trim(skb, skb->len - FCS_LEN);
}
break;
default:
break;
}
}
if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
return TXRX_DROP;
/*
* remove the radiotap header
* iterator->max_length was sanity-checked against
* skb->len by iterator init
*/
skb_pull(skb, iterator.max_length);
return TXRX_CONTINUE;
}
static ieee80211_txrx_result inline
__ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
struct sk_buff *skb,
struct net_device *dev,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_sub_if_data *sdata;
ieee80211_txrx_result res = TXRX_CONTINUE;
int hdrlen;
memset(tx, 0, sizeof(*tx));
tx->skb = skb;
tx->dev = dev; /* use original interface */
tx->local = local;
tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
tx->sta = sta_info_get(local, hdr->addr1);
tx->fc = le16_to_cpu(hdr->frame_control);
/*
* set defaults for things that can be set by
* injected radiotap headers
*/
control->power_level = local->hw.conf.power_level;
control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta)
control->antenna_sel_tx = tx->sta->antenna_sel_tx;
/* process and remove the injection radiotap header */
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) {
if (__ieee80211_parse_tx_radiotap(tx, skb, control) ==
TXRX_DROP) {
return TXRX_DROP;
}
/*
* we removed the radiotap header after this point,
* we filled control with what we could use
* set to the actual ieee header now
*/
hdr = (struct ieee80211_hdr *) skb->data;
res = TXRX_QUEUED; /* indication it was monitor packet */
}
tx->u.tx.control = control;
tx->u.tx.unicast = !is_multicast_ether_addr(hdr->addr1);
if (is_multicast_ether_addr(hdr->addr1))
control->flags |= IEEE80211_TXCTL_NO_ACK;
else
control->flags &= ~IEEE80211_TXCTL_NO_ACK;
tx->fragmented = local->fragmentation_threshold <
IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast &&
skb->len + FCS_LEN > local->fragmentation_threshold &&
(!local->ops->set_frag_threshold);
if (!tx->sta)
control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
else if (tx->sta->clear_dst_mask) {
control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
tx->sta->clear_dst_mask = 0;
}
hdrlen = ieee80211_get_hdrlen(tx->fc);
if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
tx->ethertype = (pos[0] << 8) | pos[1];
}
control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT;
return res;
}
static int inline is_ieee80211_device(struct net_device *dev,
struct net_device *master)
{
return (wdev_priv(dev->ieee80211_ptr) ==
wdev_priv(master->ieee80211_ptr));
}
/* Device in tx->dev has a reference added; use dev_put(tx->dev) when
* finished with it. */
static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
struct sk_buff *skb,
struct net_device *mdev,
struct ieee80211_tx_control *control)
{
struct ieee80211_tx_packet_data *pkt_data;
struct net_device *dev;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
dev = dev_get_by_index(pkt_data->ifindex);
if (unlikely(dev && !is_ieee80211_device(dev, mdev))) {
dev_put(dev);
dev = NULL;
}
if (unlikely(!dev))
return -ENODEV;
__ieee80211_tx_prepare(tx, skb, dev, control);
return 0;
}
static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local,
int queue)
{
return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
}
static inline int __ieee80211_queue_pending(const struct ieee80211_local *local,
int queue)
{
return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]);
}
#define IEEE80211_TX_OK 0
#define IEEE80211_TX_AGAIN 1
#define IEEE80211_TX_FRAG_AGAIN 2
static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
struct ieee80211_txrx_data *tx)
{
struct ieee80211_tx_control *control = tx->u.tx.control;
int ret, i;
if (!ieee80211_qdisc_installed(local->mdev) &&
__ieee80211_queue_stopped(local, 0)) {
netif_stop_queue(local->mdev);
return IEEE80211_TX_AGAIN;
}
if (skb) {
ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", skb);
ret = local->ops->tx(local_to_hw(local), skb, control);
if (ret)
return IEEE80211_TX_AGAIN;
local->mdev->trans_start = jiffies;
ieee80211_led_tx(local, 1);
}
if (tx->u.tx.extra_frag) {
control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
IEEE80211_TXCTL_USE_CTS_PROTECT |
IEEE80211_TXCTL_CLEAR_DST_MASK |
IEEE80211_TXCTL_FIRST_FRAGMENT);
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
if (!tx->u.tx.extra_frag[i])
continue;
if (__ieee80211_queue_stopped(local, control->queue))
return IEEE80211_TX_FRAG_AGAIN;
if (i == tx->u.tx.num_extra_frag) {
control->tx_rate = tx->u.tx.last_frag_hwrate;
control->rate = tx->u.tx.last_frag_rate;
if (tx->u.tx.probe_last_frag)
control->flags |=
IEEE80211_TXCTL_RATE_CTRL_PROBE;
else
control->flags &=
~IEEE80211_TXCTL_RATE_CTRL_PROBE;
}
ieee80211_dump_frame(local->mdev->name,
"TX to low-level driver",
tx->u.tx.extra_frag[i]);
ret = local->ops->tx(local_to_hw(local),
tx->u.tx.extra_frag[i],
control);
if (ret)
return IEEE80211_TX_FRAG_AGAIN;
local->mdev->trans_start = jiffies;
ieee80211_led_tx(local, 1);
tx->u.tx.extra_frag[i] = NULL;
}
kfree(tx->u.tx.extra_frag);
tx->u.tx.extra_frag = NULL;
}
return IEEE80211_TX_OK;
}
static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_tx_control *control, int mgmt)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
ieee80211_tx_handler *handler;
struct ieee80211_txrx_data tx;
ieee80211_txrx_result res = TXRX_DROP, res_prepare;
int ret, i;
WARN_ON(__ieee80211_queue_pending(local, control->queue));
if (unlikely(skb->len < 10)) {
dev_kfree_skb(skb);
return 0;
}
res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control);
if (res_prepare == TXRX_DROP) {
dev_kfree_skb(skb);
return 0;
}
sta = tx.sta;
tx.u.tx.mgmt_interface = mgmt;
tx.u.tx.mode = local->hw.conf.mode;
if (res_prepare == TXRX_QUEUED) { /* if it was an injected packet */
res = TXRX_CONTINUE;
} else {
for (handler = local->tx_handlers; *handler != NULL;
handler++) {
res = (*handler)(&tx);
if (res != TXRX_CONTINUE)
break;
}
}
skb = tx.skb; /* handlers are allowed to change skb */
if (sta)
sta_info_put(sta);
if (unlikely(res == TXRX_DROP)) {
I802_DEBUG_INC(local->tx_handlers_drop);
goto drop;
}
if (unlikely(res == TXRX_QUEUED)) {
I802_DEBUG_INC(local->tx_handlers_queued);
return 0;
}
if (tx.u.tx.extra_frag) {
for (i = 0; i < tx.u.tx.num_extra_frag; i++) {
int next_len, dur;
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *)
tx.u.tx.extra_frag[i]->data;
if (i + 1 < tx.u.tx.num_extra_frag) {
next_len = tx.u.tx.extra_frag[i + 1]->len;
} else {
next_len = 0;
tx.u.tx.rate = tx.u.tx.last_frag_rate;
tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val;
}
dur = ieee80211_duration(&tx, 0, next_len);
hdr->duration_id = cpu_to_le16(dur);
}
}
retry:
ret = __ieee80211_tx(local, skb, &tx);
if (ret) {
struct ieee80211_tx_stored_packet *store =
&local->pending_packet[control->queue];
if (ret == IEEE80211_TX_FRAG_AGAIN)
skb = NULL;
set_bit(IEEE80211_LINK_STATE_PENDING,
&local->state[control->queue]);
smp_mb();
/* When the driver gets out of buffers during sending of
* fragments and calls ieee80211_stop_queue, there is
* a small window between IEEE80211_LINK_STATE_XOFF and
* IEEE80211_LINK_STATE_PENDING flags are set. If a buffer
* gets available in that window (i.e. driver calls
* ieee80211_wake_queue), we would end up with ieee80211_tx
* called with IEEE80211_LINK_STATE_PENDING. Prevent this by
* continuing transmitting here when that situation is
* possible to have happened. */
if (!__ieee80211_queue_stopped(local, control->queue)) {
clear_bit(IEEE80211_LINK_STATE_PENDING,
&local->state[control->queue]);
goto retry;
}
memcpy(&store->control, control,
sizeof(struct ieee80211_tx_control));
store->skb = skb;
store->extra_frag = tx.u.tx.extra_frag;
store->num_extra_frag = tx.u.tx.num_extra_frag;
store->last_frag_hwrate = tx.u.tx.last_frag_hwrate;
store->last_frag_rate = tx.u.tx.last_frag_rate;
store->last_frag_rate_ctrl_probe = tx.u.tx.probe_last_frag;
}
return 0;
drop:
if (skb)
dev_kfree_skb(skb);
for (i = 0; i < tx.u.tx.num_extra_frag; i++)
if (tx.u.tx.extra_frag[i])
dev_kfree_skb(tx.u.tx.extra_frag[i]);
kfree(tx.u.tx.extra_frag);
return 0;
}
static void ieee80211_tx_pending(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *)data;
struct net_device *dev = local->mdev;
struct ieee80211_tx_stored_packet *store;
struct ieee80211_txrx_data tx;
int i, ret, reschedule = 0;
netif_tx_lock_bh(dev);
for (i = 0; i < local->hw.queues; i++) {
if (__ieee80211_queue_stopped(local, i))
continue;
if (!__ieee80211_queue_pending(local, i)) {
reschedule = 1;
continue;
}
store = &local->pending_packet[i];
tx.u.tx.control = &store->control;
tx.u.tx.extra_frag = store->extra_frag;
tx.u.tx.num_extra_frag = store->num_extra_frag;
tx.u.tx.last_frag_hwrate = store->last_frag_hwrate;
tx.u.tx.last_frag_rate = store->last_frag_rate;
tx.u.tx.probe_last_frag = store->last_frag_rate_ctrl_probe;
ret = __ieee80211_tx(local, store->skb, &tx);
if (ret) {
if (ret == IEEE80211_TX_FRAG_AGAIN)
store->skb = NULL;
} else {
clear_bit(IEEE80211_LINK_STATE_PENDING,
&local->state[i]);
reschedule = 1;
}
}
netif_tx_unlock_bh(dev);
if (reschedule) {
if (!ieee80211_qdisc_installed(dev)) {
if (!__ieee80211_queue_stopped(local, 0))
netif_wake_queue(dev);
} else
netif_schedule(dev);
}
}
static void ieee80211_clear_tx_pending(struct ieee80211_local *local)
{
int i, j;
struct ieee80211_tx_stored_packet *store;
for (i = 0; i < local->hw.queues; i++) {
if (!__ieee80211_queue_pending(local, i))
continue;
store = &local->pending_packet[i];
kfree_skb(store->skb);
for (j = 0; j < store->num_extra_frag; j++)
kfree_skb(store->extra_frag[j]);
kfree(store->extra_frag);
clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]);
}
}
static int ieee80211_master_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_tx_control control;
struct ieee80211_tx_packet_data *pkt_data;
struct net_device *odev = NULL;
struct ieee80211_sub_if_data *osdata;
int headroom;
int ret;
/*
* copy control out of the skb so other people can use skb->cb
*/
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(&control, 0, sizeof(struct ieee80211_tx_control));
if (pkt_data->ifindex)
odev = dev_get_by_index(pkt_data->ifindex);
if (unlikely(odev && !is_ieee80211_device(odev, dev))) {
dev_put(odev);
odev = NULL;
}
if (unlikely(!odev)) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
"originating device\n", dev->name);
#endif
dev_kfree_skb(skb);
return 0;
}
osdata = IEEE80211_DEV_TO_SUB_IF(odev);
headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM;
if (skb_headroom(skb) < headroom) {
if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return 0;
}
}
control.ifindex = odev->ifindex;
control.type = osdata->type;
if (pkt_data->req_tx_status)
control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS;
if (pkt_data->do_not_encrypt)
control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT;
if (pkt_data->requeue)
control.flags |= IEEE80211_TXCTL_REQUEUE;
control.queue = pkt_data->queue;
ret = ieee80211_tx(odev, skb, &control,
control.type == IEEE80211_IF_TYPE_MGMT);
dev_put(odev);
return ret;
}
int ieee80211_monitor_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_radiotap_header *prthdr =
(struct ieee80211_radiotap_header *)skb->data;
u16 len;
/*
* there must be a radiotap header at the
* start in this case
*/
if (unlikely(prthdr->it_version)) {
/* only version 0 is supported */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
skb->dev = local->mdev;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(pkt_data, 0, sizeof(*pkt_data));
pkt_data->ifindex = dev->ifindex;
pkt_data->mgmt_iface = 0;
pkt_data->do_not_encrypt = 1;
/* above needed because we set skb device to master */
/*
* fix up the pointers accounting for the radiotap
* header still being in there. We are being given
* a precooked IEEE80211 header so no need for
* normal processing
*/
len = le16_to_cpu(get_unaligned(&prthdr->it_len));
skb_set_mac_header(skb, len);
skb_set_network_header(skb, len + sizeof(struct ieee80211_hdr));
skb_set_transport_header(skb, len + sizeof(struct ieee80211_hdr));
/*
* pass the radiotap header up to
* the next stage intact
*/
dev_queue_xmit(skb);
return NETDEV_TX_OK;
}
/**
* ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
* subinterfaces (wlan#, WDS, and VLAN interfaces)
* @skb: packet to be sent
* @dev: incoming interface
*
* Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
* not be freed, and caller is responsible for either retrying later or freeing
* skb).
*
* This function takes in an Ethernet header and encapsulates it with suitable
* IEEE 802.11 header based on which interface the packet is coming in. The
* encapsulated packet will then be passed to master interface, wlan#.11, for
* transmission (through low-level driver).
*/
int ieee80211_subif_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_sub_if_data *sdata;
int ret = 1, head_need;
u16 ethertype, hdrlen, fc;
struct ieee80211_hdr hdr;
const u8 *encaps_data;
int encaps_len, skip_header_bytes;
int nh_pos, h_pos, no_encrypt = 0;
struct sta_info *sta;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (unlikely(skb->len < ETH_HLEN)) {
printk(KERN_DEBUG "%s: short skb (len=%d)\n",
dev->name, skb->len);
ret = 0;
goto fail;
}
nh_pos = skb_network_header(skb) - skb->data;
h_pos = skb_transport_header(skb) - skb->data;
/* convert Ethernet header to proper 802.11 header (based on
* operation mode) */
ethertype = (skb->data[12] << 8) | skb->data[13];
/* TODO: handling for 802.1x authorized/unauthorized port */
fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
if (likely(sdata->type == IEEE80211_IF_TYPE_AP ||
sdata->type == IEEE80211_IF_TYPE_VLAN)) {
fc |= IEEE80211_FCTL_FROMDS;
/* DA BSSID SA */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 24;
} else if (sdata->type == IEEE80211_IF_TYPE_WDS) {
fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS;
/* RA TA DA SA */
memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
hdrlen = 30;
} else if (sdata->type == IEEE80211_IF_TYPE_STA) {
fc |= IEEE80211_FCTL_TODS;
/* BSSID SA DA */
memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, skb->data, ETH_ALEN);
hdrlen = 24;
} else if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
/* DA SA BSSID */
memcpy(hdr.addr1, skb->data, ETH_ALEN);
memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
hdrlen = 24;
} else {
ret = 0;
goto fail;
}
/* receiver is QoS enabled, use a QoS type frame */
sta = sta_info_get(local, hdr.addr1);
if (sta) {
if (sta->flags & WLAN_STA_WME) {
fc |= IEEE80211_STYPE_QOS_DATA;
hdrlen += 2;
}
sta_info_put(sta);
}
hdr.frame_control = cpu_to_le16(fc);
hdr.duration_id = 0;
hdr.seq_ctrl = 0;
skip_header_bytes = ETH_HLEN;
if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
encaps_data = bridge_tunnel_header;
encaps_len = sizeof(bridge_tunnel_header);
skip_header_bytes -= 2;
} else if (ethertype >= 0x600) {
encaps_data = rfc1042_header;
encaps_len = sizeof(rfc1042_header);
skip_header_bytes -= 2;
} else {
encaps_data = NULL;
encaps_len = 0;
}
skb_pull(skb, skip_header_bytes);
nh_pos -= skip_header_bytes;
h_pos -= skip_header_bytes;
/* TODO: implement support for fragments so that there is no need to
* reallocate and copy payload; it might be enough to support one
* extra fragment that would be copied in the beginning of the frame
* data.. anyway, it would be nice to include this into skb structure
* somehow
*
* There are few options for this:
* use skb->cb as an extra space for 802.11 header
* allocate new buffer if not enough headroom
* make sure that there is enough headroom in every skb by increasing
* build in headroom in __dev_alloc_skb() (linux/skbuff.h) and
* alloc_skb() (net/core/skbuff.c)
*/
head_need = hdrlen + encaps_len + local->tx_headroom;
head_need -= skb_headroom(skb);
/* We are going to modify skb data, so make a copy of it if happens to
* be cloned. This could happen, e.g., with Linux bridge code passing
* us broadcast frames. */
if (head_need > 0 || skb_cloned(skb)) {
#if 0
printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes "
"of headroom\n", dev->name, head_need);
#endif
if (skb_cloned(skb))
I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
else
I802_DEBUG_INC(local->tx_expand_skb_head);
/* Since we have to reallocate the buffer, make sure that there
* is enough room for possible WEP IV/ICV and TKIP (8 bytes
* before payload and 12 after). */
if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8),
12, GFP_ATOMIC)) {
printk(KERN_DEBUG "%s: failed to reallocate TX buffer"
"\n", dev->name);
goto fail;
}
}
if (encaps_data) {
memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
nh_pos += encaps_len;
h_pos += encaps_len;
}
memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
nh_pos += hdrlen;
h_pos += hdrlen;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
pkt_data->ifindex = dev->ifindex;
pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
pkt_data->do_not_encrypt = no_encrypt;
skb->dev = local->mdev;
sdata->stats.tx_packets++;
sdata->stats.tx_bytes += skb->len;
/* Update skb pointers to various headers since this modified frame
* is going to go through Linux networking code that may potentially
* need things like pointer to IP header. */
skb_set_mac_header(skb, 0);
skb_set_network_header(skb, nh_pos);
skb_set_transport_header(skb, h_pos);
dev->trans_start = jiffies;
dev_queue_xmit(skb);
return 0;
fail:
if (!ret)
dev_kfree_skb(skb);
return ret;
}
/*
* This is the transmit routine for the 802.11 type interfaces
* called by upper layers of the linux networking
* stack when it has a frame to transmit
*/
static int
ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_packet_data *pkt_data;
struct ieee80211_hdr *hdr;
u16 fc;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (skb->len < 10) {
dev_kfree_skb(skb);
return 0;
}
if (skb_headroom(skb) < sdata->local->tx_headroom) {
if (pskb_expand_head(skb, sdata->local->tx_headroom,
0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return 0;
}
}
hdr = (struct ieee80211_hdr *) skb->data;
fc = le16_to_cpu(hdr->frame_control);
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
pkt_data->ifindex = sdata->dev->ifindex;
pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
skb->priority = 20; /* use hardcoded priority for mgmt TX queue */
skb->dev = sdata->local->mdev;
/*
* We're using the protocol field of the the frame control header
* to request TX callback for hostapd. BIT(1) is checked.
*/
if ((fc & BIT(1)) == BIT(1)) {
pkt_data->req_tx_status = 1;
fc &= ~BIT(1);
hdr->frame_control = cpu_to_le16(fc);
}
pkt_data->do_not_encrypt = !(fc & IEEE80211_FCTL_PROTECTED);
sdata->stats.tx_packets++;
sdata->stats.tx_bytes += skb->len;
dev_queue_xmit(skb);
return 0;
}
static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
struct ieee80211_if_ap *bss,
struct sk_buff *skb)
{
u8 *pos, *tim;
int aid0 = 0;
int i, have_bits = 0, n1, n2;
/* Generate bitmap for TIM only if there are any STAs in power save
* mode. */
spin_lock_bh(&local->sta_lock);
if (atomic_read(&bss->num_sta_ps) > 0)
/* in the hope that this is faster than
* checking byte-for-byte */
have_bits = !bitmap_empty((unsigned long*)bss->tim,
IEEE80211_MAX_AID+1);
if (bss->dtim_count == 0)
bss->dtim_count = bss->dtim_period - 1;
else
bss->dtim_count--;
tim = pos = (u8 *) skb_put(skb, 6);
*pos++ = WLAN_EID_TIM;
*pos++ = 4;
*pos++ = bss->dtim_count;
*pos++ = bss->dtim_period;
if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
aid0 = 1;
if (have_bits) {
/* Find largest even number N1 so that bits numbered 1 through
* (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
* (N2 + 1) x 8 through 2007 are 0. */
n1 = 0;
for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
if (bss->tim[i]) {
n1 = i & 0xfe;
break;
}
}
n2 = n1;
for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
if (bss->tim[i]) {
n2 = i;
break;
}
}
/* Bitmap control */
*pos++ = n1 | aid0;
/* Part Virt Bitmap */
memcpy(pos, bss->tim + n1, n2 - n1 + 1);
tim[1] = n2 - n1 + 4;
skb_put(skb, n2 - n1);
} else {
*pos++ = aid0; /* Bitmap control */
*pos++ = 0; /* Part Virt Bitmap */
}
spin_unlock_bh(&local->sta_lock);
}
struct sk_buff * ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = hw_to_local(hw);
struct sk_buff *skb;
struct net_device *bdev;
struct ieee80211_sub_if_data *sdata = NULL;
struct ieee80211_if_ap *ap = NULL;
struct ieee80211_rate *rate;
struct rate_control_extra extra;
u8 *b_head, *b_tail;
int bh_len, bt_len;
bdev = dev_get_by_index(if_id);
if (bdev) {
sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
ap = &sdata->u.ap;
dev_put(bdev);
}
if (!ap || sdata->type != IEEE80211_IF_TYPE_AP ||
!ap->beacon_head) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
if (net_ratelimit())
printk(KERN_DEBUG "no beacon data avail for idx=%d "
"(%s)\n", if_id, bdev ? bdev->name : "N/A");
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
return NULL;
}
/* Assume we are generating the normal beacon locally */
b_head = ap->beacon_head;
b_tail = ap->beacon_tail;
bh_len = ap->beacon_head_len;
bt_len = ap->beacon_tail_len;
skb = dev_alloc_skb(local->tx_headroom +
bh_len + bt_len + 256 /* maximum TIM len */);
if (!skb)
return NULL;
skb_reserve(skb, local->tx_headroom);
memcpy(skb_put(skb, bh_len), b_head, bh_len);
ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data);
ieee80211_beacon_add_tim(local, ap, skb);
if (b_tail) {
memcpy(skb_put(skb, bt_len), b_tail, bt_len);
}
if (control) {
memset(&extra, 0, sizeof(extra));
extra.mode = local->oper_hw_mode;
rate = rate_control_get_rate(local, local->mdev, skb, &extra);
if (!rate) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate "
"found\n", local->mdev->name);
}
dev_kfree_skb(skb);
return NULL;
}
control->tx_rate = (local->short_preamble &&
(rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
rate->val2 : rate->val;
control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
control->power_level = local->hw.conf.power_level;
control->flags |= IEEE80211_TXCTL_NO_ACK;
control->retry_limit = 1;
control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
}
ap->num_beacons++;
return skb;
}
EXPORT_SYMBOL(ieee80211_beacon_get);
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
size_t frame_len,
const struct ieee80211_tx_control *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
int short_preamble = local->short_preamble;
int erp;
u16 dur;
rate = frame_txctl->rts_rate;
erp = !!(rate->flags & IEEE80211_RATE_ERP);
/* CTS duration */
dur = ieee80211_frame_duration(local, 10, rate->rate,
erp, short_preamble);
/* Data frame duration */
dur += ieee80211_frame_duration(local, frame_len, rate->rate,
erp, short_preamble);
/* ACK duration */
dur += ieee80211_frame_duration(local, 10, rate->rate,
erp, short_preamble);
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_rts_duration);
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
size_t frame_len,
const struct ieee80211_tx_control *frame_txctl)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
int short_preamble = local->short_preamble;
int erp;
u16 dur;
rate = frame_txctl->rts_rate;
erp = !!(rate->flags & IEEE80211_RATE_ERP);
/* Data frame duration */
dur = ieee80211_frame_duration(local, frame_len, rate->rate,
erp, short_preamble);
if (!(frame_txctl->flags & IEEE80211_TXCTL_NO_ACK)) {
/* ACK duration */
dur += ieee80211_frame_duration(local, 10, rate->rate,
erp, short_preamble);
}
return cpu_to_le16(dur);
}
EXPORT_SYMBOL(ieee80211_ctstoself_duration);
void ieee80211_rts_get(struct ieee80211_hw *hw,
const void *frame, size_t frame_len,
const struct ieee80211_tx_control *frame_txctl,
struct ieee80211_rts *rts)
{
const struct ieee80211_hdr *hdr = frame;
u16 fctl;
fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS;
rts->frame_control = cpu_to_le16(fctl);
rts->duration = ieee80211_rts_duration(hw, frame_len, frame_txctl);
memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
}
EXPORT_SYMBOL(ieee80211_rts_get);
void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
const void *frame, size_t frame_len,
const struct ieee80211_tx_control *frame_txctl,
struct ieee80211_cts *cts)
{
const struct ieee80211_hdr *hdr = frame;
u16 fctl;
fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS;
cts->frame_control = cpu_to_le16(fctl);
cts->duration = ieee80211_ctstoself_duration(hw, frame_len, frame_txctl);
memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
}
EXPORT_SYMBOL(ieee80211_ctstoself_get);
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id,
struct ieee80211_tx_control *control)
{
struct ieee80211_local *local = hw_to_local(hw);
struct sk_buff *skb;
struct sta_info *sta;
ieee80211_tx_handler *handler;
struct ieee80211_txrx_data tx;
ieee80211_txrx_result res = TXRX_DROP;
struct net_device *bdev;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_ap *bss = NULL;
bdev = dev_get_by_index(if_id);
if (bdev) {
sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
bss = &sdata->u.ap;
dev_put(bdev);
}
if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head)
return NULL;
if (bss->dtim_count != 0)
return NULL; /* send buffered bc/mc only after DTIM beacon */
memset(control, 0, sizeof(*control));
while (1) {
skb = skb_dequeue(&bss->ps_bc_buf);
if (!skb)
return NULL;
local->total_ps_buffered--;
if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) skb->data;
/* more buffered multicast/broadcast frames ==> set
* MoreData flag in IEEE 802.11 header to inform PS
* STAs */
hdr->frame_control |=
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
}
if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0)
break;
dev_kfree_skb_any(skb);
}
sta = tx.sta;
tx.u.tx.ps_buffered = 1;
for (handler = local->tx_handlers; *handler != NULL; handler++) {
res = (*handler)(&tx);
if (res == TXRX_DROP || res == TXRX_QUEUED)
break;
}
dev_put(tx.dev);
skb = tx.skb; /* handlers are allowed to change skb */
if (res == TXRX_DROP) {
I802_DEBUG_INC(local->tx_handlers_drop);
dev_kfree_skb(skb);
skb = NULL;
} else if (res == TXRX_QUEUED) {
I802_DEBUG_INC(local->tx_handlers_queued);
skb = NULL;
}
if (sta)
sta_info_put(sta);
return skb;
}
EXPORT_SYMBOL(ieee80211_get_buffered_bc);
static int __ieee80211_if_config(struct net_device *dev,
struct sk_buff *beacon,
struct ieee80211_tx_control *control)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_if_conf conf;
static u8 scan_bssid[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
if (!local->ops->config_interface || !netif_running(dev))
return 0;
memset(&conf, 0, sizeof(conf));
conf.type = sdata->type;
if (sdata->type == IEEE80211_IF_TYPE_STA ||
sdata->type == IEEE80211_IF_TYPE_IBSS) {
if (local->sta_scanning &&
local->scan_dev == dev)
conf.bssid = scan_bssid;
else
conf.bssid = sdata->u.sta.bssid;
conf.ssid = sdata->u.sta.ssid;
conf.ssid_len = sdata->u.sta.ssid_len;
conf.generic_elem = sdata->u.sta.extra_ie;
conf.generic_elem_len = sdata->u.sta.extra_ie_len;
} else if (sdata->type == IEEE80211_IF_TYPE_AP) {
conf.ssid = sdata->u.ap.ssid;
conf.ssid_len = sdata->u.ap.ssid_len;
conf.generic_elem = sdata->u.ap.generic_elem;
conf.generic_elem_len = sdata->u.ap.generic_elem_len;
conf.beacon = beacon;
conf.beacon_control = control;
}
return local->ops->config_interface(local_to_hw(local),
dev->ifindex, &conf);
}
int ieee80211_if_config(struct net_device *dev)
{
return __ieee80211_if_config(dev, NULL, NULL);
}
int ieee80211_if_config_beacon(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_control control;
struct sk_buff *skb;
if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE))
return 0;
skb = ieee80211_beacon_get(local_to_hw(local), dev->ifindex, &control);
if (!skb)
return -ENOMEM;
return __ieee80211_if_config(dev, skb, &control);
}
int ieee80211_hw_config(struct ieee80211_local *local)
{
struct ieee80211_hw_mode *mode;
struct ieee80211_channel *chan;
int ret = 0;
if (local->sta_scanning) {
chan = local->scan_channel;
mode = local->scan_hw_mode;
} else {
chan = local->oper_channel;
mode = local->oper_hw_mode;
}
local->hw.conf.channel = chan->chan;
local->hw.conf.channel_val = chan->val;
local->hw.conf.power_level = chan->power_level;
local->hw.conf.freq = chan->freq;
local->hw.conf.phymode = mode->mode;
local->hw.conf.antenna_max = chan->antenna_max;
local->hw.conf.chan = chan;
local->hw.conf.mode = mode;
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d "
"phymode=%d\n", local->hw.conf.channel, local->hw.conf.freq,
local->hw.conf.phymode);
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
if (local->ops->config)
ret = local->ops->config(local_to_hw(local), &local->hw.conf);
return ret;
}
static int ieee80211_change_mtu(struct net_device *dev, int new_mtu)
{
/* FIX: what would be proper limits for MTU?
* This interface uses 802.3 frames. */
if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6) {
printk(KERN_WARNING "%s: invalid MTU %d\n",
dev->name, new_mtu);
return -EINVAL;
}
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
dev->mtu = new_mtu;
return 0;
}
static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu)
{
/* FIX: what would be proper limits for MTU?
* This interface uses 802.11 frames. */
if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN) {
printk(KERN_WARNING "%s: invalid MTU %d\n",
dev->name, new_mtu);
return -EINVAL;
}
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
#endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
dev->mtu = new_mtu;
return 0;
}
enum netif_tx_lock_class {
TX_LOCK_NORMAL,
TX_LOCK_MASTER,
};
static inline void netif_tx_lock_nested(struct net_device *dev, int subclass)
{
spin_lock_nested(&dev->_xmit_lock, subclass);
dev->xmit_lock_owner = smp_processor_id();
}
static void ieee80211_set_multicast_list(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
unsigned short flags;
netif_tx_lock_nested(local->mdev, TX_LOCK_MASTER);
if (((dev->flags & IFF_ALLMULTI) != 0) ^ (sdata->allmulti != 0)) {
if (sdata->allmulti) {
sdata->allmulti = 0;
local->iff_allmultis--;
} else {
sdata->allmulti = 1;
local->iff_allmultis++;
}
}
if (((dev->flags & IFF_PROMISC) != 0) ^ (sdata->promisc != 0)) {
if (sdata->promisc) {
sdata->promisc = 0;
local->iff_promiscs--;
} else {
sdata->promisc = 1;
local->iff_promiscs++;
}
}
if (dev->mc_count != sdata->mc_count) {
local->mc_count = local->mc_count - sdata->mc_count +
dev->mc_count;
sdata->mc_count = dev->mc_count;
}
if (local->ops->set_multicast_list) {
flags = local->mdev->flags;
if (local->iff_allmultis)
flags |= IFF_ALLMULTI;
if (local->iff_promiscs)
flags |= IFF_PROMISC;
read_lock(&local->sub_if_lock);
local->ops->set_multicast_list(local_to_hw(local), flags,
local->mc_count);
read_unlock(&local->sub_if_lock);
}
netif_tx_unlock(local->mdev);
}
struct dev_mc_list *ieee80211_get_mc_list_item(struct ieee80211_hw *hw,
struct dev_mc_list *prev,
void **ptr)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata = *ptr;
struct dev_mc_list *mc;
if (!prev) {
WARN_ON(sdata);
sdata = NULL;
}
if (!prev || !prev->next) {
if (sdata)
sdata = list_entry(sdata->list.next,
struct ieee80211_sub_if_data, list);
else
sdata = list_entry(local->sub_if_list.next,
struct ieee80211_sub_if_data, list);
if (&sdata->list != &local->sub_if_list)
mc = sdata->dev->mc_list;
else
mc = NULL;
} else
mc = prev->next;
*ptr = sdata;
return mc;
}
EXPORT_SYMBOL(ieee80211_get_mc_list_item);
static struct net_device_stats *ieee80211_get_stats(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
return &(sdata->stats);
}
static void ieee80211_if_shutdown(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ASSERT_RTNL();
switch (sdata->type) {
case IEEE80211_IF_TYPE_STA:
case IEEE80211_IF_TYPE_IBSS:
sdata->u.sta.state = IEEE80211_DISABLED;
del_timer_sync(&sdata->u.sta.timer);
skb_queue_purge(&sdata->u.sta.skb_queue);
if (!local->ops->hw_scan &&
local->scan_dev == sdata->dev) {
local->sta_scanning = 0;
cancel_delayed_work(&local->scan_work);
}
flush_workqueue(local->hw.workqueue);
break;
}
}
static inline int identical_mac_addr_allowed(int type1, int type2)
{
return (type1 == IEEE80211_IF_TYPE_MNTR ||
type2 == IEEE80211_IF_TYPE_MNTR ||
(type1 == IEEE80211_IF_TYPE_AP &&
type2 == IEEE80211_IF_TYPE_WDS) ||
(type1 == IEEE80211_IF_TYPE_WDS &&
(type2 == IEEE80211_IF_TYPE_WDS ||
type2 == IEEE80211_IF_TYPE_AP)) ||
(type1 == IEEE80211_IF_TYPE_AP &&
type2 == IEEE80211_IF_TYPE_VLAN) ||
(type1 == IEEE80211_IF_TYPE_VLAN &&
(type2 == IEEE80211_IF_TYPE_AP ||
type2 == IEEE80211_IF_TYPE_VLAN)));
}
static int ieee80211_master_open(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
int res = -EOPNOTSUPP;
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
if (sdata->dev != dev && netif_running(sdata->dev)) {
res = 0;
break;
}
}
read_unlock(&local->sub_if_lock);
return res;
}
static int ieee80211_master_stop(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list)
if (sdata->dev != dev && netif_running(sdata->dev))
dev_close(sdata->dev);
read_unlock(&local->sub_if_lock);
return 0;
}
static int ieee80211_mgmt_open(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (!netif_running(local->mdev))
return -EOPNOTSUPP;
return 0;
}
static int ieee80211_mgmt_stop(struct net_device *dev)
{
return 0;
}
/* Check if running monitor interfaces should go to a "soft monitor" mode
* and switch them if necessary. */
static inline void ieee80211_start_soft_monitor(struct ieee80211_local *local)
{
struct ieee80211_if_init_conf conf;
if (local->open_count && local->open_count == local->monitors &&
!(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) &&
local->ops->remove_interface) {
conf.if_id = -1;
conf.type = IEEE80211_IF_TYPE_MNTR;
conf.mac_addr = NULL;
local->ops->remove_interface(local_to_hw(local), &conf);
}
}
/* Check if running monitor interfaces should go to a "hard monitor" mode
* and switch them if necessary. */
static void ieee80211_start_hard_monitor(struct ieee80211_local *local)
{
struct ieee80211_if_init_conf conf;
if (local->open_count && local->open_count == local->monitors &&
!(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
conf.if_id = -1;
conf.type = IEEE80211_IF_TYPE_MNTR;
conf.mac_addr = NULL;
local->ops->add_interface(local_to_hw(local), &conf);
}
}
static int ieee80211_open(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata, *nsdata;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_if_init_conf conf;
int res;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
read_lock(&local->sub_if_lock);
list_for_each_entry(nsdata, &local->sub_if_list, list) {
struct net_device *ndev = nsdata->dev;
if (ndev != dev && ndev != local->mdev && netif_running(ndev) &&
compare_ether_addr(dev->dev_addr, ndev->dev_addr) == 0 &&
!identical_mac_addr_allowed(sdata->type, nsdata->type)) {
read_unlock(&local->sub_if_lock);
return -ENOTUNIQ;
}
}
read_unlock(&local->sub_if_lock);
if (sdata->type == IEEE80211_IF_TYPE_WDS &&
is_zero_ether_addr(sdata->u.wds.remote_addr))
return -ENOLINK;
if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count &&
!(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
/* run the interface in a "soft monitor" mode */
local->monitors++;
local->open_count++;
local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
return 0;
}
ieee80211_start_soft_monitor(local);
conf.if_id = dev->ifindex;
conf.type = sdata->type;
conf.mac_addr = dev->dev_addr;
res = local->ops->add_interface(local_to_hw(local), &conf);
if (res) {
if (sdata->type == IEEE80211_IF_TYPE_MNTR)
ieee80211_start_hard_monitor(local);
return res;
}
if (local->open_count == 0) {
res = 0;
tasklet_enable(&local->tx_pending_tasklet);
tasklet_enable(&local->tasklet);
if (local->ops->open)
res = local->ops->open(local_to_hw(local));
if (res == 0) {
res = dev_open(local->mdev);
if (res) {
if (local->ops->stop)
local->ops->stop(local_to_hw(local));
} else {
res = ieee80211_hw_config(local);
if (res && local->ops->stop)
local->ops->stop(local_to_hw(local));
else if (!res && local->apdev)
dev_open(local->apdev);
}
}
if (res) {
if (local->ops->remove_interface)
local->ops->remove_interface(local_to_hw(local),
&conf);
return res;
}
}
local->open_count++;
if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
local->monitors++;
local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
} else
ieee80211_if_config(dev);
if (sdata->type == IEEE80211_IF_TYPE_STA &&
!local->user_space_mlme)
netif_carrier_off(dev);
else
netif_carrier_on(dev);
netif_start_queue(dev);
return 0;
}
static int ieee80211_stop(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->type == IEEE80211_IF_TYPE_MNTR &&
local->open_count > 1 &&
!(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
/* remove "soft monitor" interface */
local->open_count--;
local->monitors--;
if (!local->monitors)
local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
return 0;
}
netif_stop_queue(dev);
ieee80211_if_shutdown(dev);
if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
local->monitors--;
if (!local->monitors)
local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
}
local->open_count--;
if (local->open_count == 0) {
if (netif_running(local->mdev))
dev_close(local->mdev);
if (local->apdev)
dev_close(local->apdev);
if (local->ops->stop)
local->ops->stop(local_to_hw(local));
tasklet_disable(&local->tx_pending_tasklet);
tasklet_disable(&local->tasklet);
}
if (local->ops->remove_interface) {
struct ieee80211_if_init_conf conf;
conf.if_id = dev->ifindex;
conf.type = sdata->type;
conf.mac_addr = dev->dev_addr;
local->ops->remove_interface(local_to_hw(local), &conf);
}
ieee80211_start_hard_monitor(local);
return 0;
}
static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr)
{
memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */
return ETH_ALEN;
}
static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr)
{
return compare_ether_addr(raddr, addr) == 0 ||
is_broadcast_ether_addr(raddr);
}
static ieee80211_txrx_result
ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
{
struct net_device *dev = rx->dev;
struct ieee80211_local *local = rx->local;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
u16 fc, hdrlen, ethertype;
u8 *payload;
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
struct sk_buff *skb = rx->skb, *skb2;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
fc = rx->fc;
if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
return TXRX_CONTINUE;
if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
return TXRX_DROP;
hdrlen = ieee80211_get_hdrlen(fc);
/* convert IEEE 802.11 header + possible LLC headers into Ethernet
* header
* IEEE 802.11 address fields:
* ToDS FromDS Addr1 Addr2 Addr3 Addr4
* 0 0 DA SA BSSID n/a
* 0 1 DA BSSID SA n/a
* 1 0 BSSID SA DA n/a
* 1 1 RA TA DA SA
*/
switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
case IEEE80211_FCTL_TODS:
/* BSSID SA DA */
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP &&
sdata->type != IEEE80211_IF_TYPE_VLAN)) {
printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID="
MAC_FMT " SA=" MAC_FMT " DA=" MAC_FMT ")\n",
dev->name, MAC_ARG(hdr->addr1),
MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3));
return TXRX_DROP;
}
break;
case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
/* RA TA DA SA */
memcpy(dst, hdr->addr3, ETH_ALEN);
memcpy(src, hdr->addr4, ETH_ALEN);
if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) {
printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA="
MAC_FMT " TA=" MAC_FMT " DA=" MAC_FMT " SA="
MAC_FMT ")\n",
rx->dev->name, MAC_ARG(hdr->addr1),
MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3),
MAC_ARG(hdr->addr4));
return TXRX_DROP;
}
break;
case IEEE80211_FCTL_FROMDS:
/* DA BSSID SA */
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr3, ETH_ALEN);
if (sdata->type != IEEE80211_IF_TYPE_STA) {
return TXRX_DROP;
}
break;
case 0:
/* DA SA BSSID */
memcpy(dst, hdr->addr1, ETH_ALEN);
memcpy(src, hdr->addr2, ETH_ALEN);
if (sdata->type != IEEE80211_IF_TYPE_IBSS) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: dropped IBSS frame (DA="
MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT
")\n",
dev->name, MAC_ARG(hdr->addr1),
MAC_ARG(hdr->addr2),
MAC_ARG(hdr->addr3));
}
return TXRX_DROP;
}
break;
}
payload = skb->data + hdrlen;
if (unlikely(skb->len - hdrlen < 8)) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: RX too short data frame "
"payload\n", dev->name);
}
return TXRX_DROP;
}
ethertype = (payload[6] << 8) | payload[7];
if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
/* remove RFC1042 or Bridge-Tunnel encapsulation and
* replace EtherType */
skb_pull(skb, hdrlen + 6);
memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
} else {
struct ethhdr *ehdr;
__be16 len;
skb_pull(skb, hdrlen);
len = htons(skb->len);
ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
memcpy(ehdr->h_dest, dst, ETH_ALEN);
memcpy(ehdr->h_source, src, ETH_ALEN);
ehdr->h_proto = len;
}
skb->dev = dev;
skb2 = NULL;
sdata->stats.rx_packets++;
sdata->stats.rx_bytes += skb->len;
if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP
|| sdata->type == IEEE80211_IF_TYPE_VLAN) && rx->u.rx.ra_match) {
if (is_multicast_ether_addr(skb->data)) {
/* send multicast frames both to higher layers in
* local net stack and back to the wireless media */
skb2 = skb_copy(skb, GFP_ATOMIC);
if (!skb2)
printk(KERN_DEBUG "%s: failed to clone "
"multicast frame\n", dev->name);
} else {
struct sta_info *dsta;
dsta = sta_info_get(local, skb->data);
if (dsta && !dsta->dev) {
printk(KERN_DEBUG "Station with null dev "
"structure!\n");
} else if (dsta && dsta->dev == dev) {
/* Destination station is associated to this
* AP, so send the frame directly to it and
* do not pass the frame to local net stack.
*/
skb2 = skb;
skb = NULL;
}
if (dsta)
sta_info_put(dsta);
}
}
if (skb) {
/* deliver to local stack */
skb->protocol = eth_type_trans(skb, dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
if (skb2) {
/* send to wireless media */
skb2->protocol = __constant_htons(ETH_P_802_3);
skb_set_network_header(skb2, 0);
skb_set_mac_header(skb2, 0);
dev_queue_xmit(skb2);
}
return TXRX_QUEUED;
}
static struct ieee80211_rate *
ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate)
{
struct ieee80211_hw_mode *mode;
int r;
list_for_each_entry(mode, &local->modes_list, list) {
if (mode->mode != phymode)
continue;
for (r = 0; r < mode->num_rates; r++) {
struct ieee80211_rate *rate = &mode->rates[r];
if (rate->val == hw_rate ||
(rate->flags & IEEE80211_RATE_PREAMBLE2 &&
rate->val2 == hw_rate))
return rate;
}
}
return NULL;
}
static void
ieee80211_fill_frame_info(struct ieee80211_local *local,
struct ieee80211_frame_info *fi,
struct ieee80211_rx_status *status)
{
if (status) {
struct timespec ts;
struct ieee80211_rate *rate;
jiffies_to_timespec(jiffies, &ts);
fi->hosttime = cpu_to_be64((u64) ts.tv_sec * 1000000 +
ts.tv_nsec / 1000);
fi->mactime = cpu_to_be64(status->mactime);
switch (status->phymode) {
case MODE_IEEE80211A:
fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a);
break;
case MODE_IEEE80211B:
fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b);
break;
case MODE_IEEE80211G:
fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g);
break;
case MODE_ATHEROS_TURBO:
fi->phytype =
htonl(ieee80211_phytype_dsss_dot11_turbo);
break;
default:
fi->phytype = htonl(0xAAAAAAAA);
break;
}
fi->channel = htonl(status->channel);
rate = ieee80211_get_rate(local, status->phymode,
status->rate);
if (rate) {
fi->datarate = htonl(rate->rate);
if (rate->flags & IEEE80211_RATE_PREAMBLE2) {
if (status->rate == rate->val)
fi->preamble = htonl(2); /* long */
else if (status->rate == rate->val2)
fi->preamble = htonl(1); /* short */
} else
fi->preamble = htonl(0);
} else {
fi->datarate = htonl(0);
fi->preamble = htonl(0);
}
fi->antenna = htonl(status->antenna);
fi->priority = htonl(0xffffffff); /* no clue */
fi->ssi_type = htonl(ieee80211_ssi_raw);
fi->ssi_signal = htonl(status->ssi);
fi->ssi_noise = 0x00000000;
fi->encoding = 0;
} else {
/* clear everything because we really don't know.
* the msg_type field isn't present on monitor frames
* so we don't know whether it will be present or not,
* but it's ok to not clear it since it'll be assigned
* anyway */
memset(fi, 0, sizeof(*fi) - sizeof(fi->msg_type));
fi->ssi_type = htonl(ieee80211_ssi_none);
}
fi->version = htonl(IEEE80211_FI_VERSION);
fi->length = cpu_to_be32(sizeof(*fi) - sizeof(fi->msg_type));
}
/* this routine is actually not just for this, but also
* for pushing fake 'management' frames into userspace.
* it shall be replaced by a netlink-based system. */
void
ieee80211_rx_mgmt(struct ieee80211_local *local, struct sk_buff *skb,
struct ieee80211_rx_status *status, u32 msg_type)
{
struct ieee80211_frame_info *fi;
const size_t hlen = sizeof(struct ieee80211_frame_info);
struct ieee80211_sub_if_data *sdata;
skb->dev = local->apdev;
sdata = IEEE80211_DEV_TO_SUB_IF(local->apdev);
if (skb_headroom(skb) < hlen) {
I802_DEBUG_INC(local->rx_expand_skb_head);
if (pskb_expand_head(skb, hlen, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return;
}
}
fi = (struct ieee80211_frame_info *) skb_push(skb, hlen);
ieee80211_fill_frame_info(local, fi, status);
fi->msg_type = htonl(msg_type);
sdata->stats.rx_packets++;
sdata->stats.rx_bytes += skb->len;
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
static void
ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
struct ieee80211_rate *rate;
struct ieee80211_rtap_hdr {
struct ieee80211_radiotap_header hdr;
u8 flags;
u8 rate;
__le16 chan_freq;
__le16 chan_flags;
u8 antsignal;
} __attribute__ ((packed)) *rthdr;
skb->dev = dev;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (status->flag & RX_FLAG_RADIOTAP)
goto out;
if (skb_headroom(skb) < sizeof(*rthdr)) {
I802_DEBUG_INC(local->rx_expand_skb_head);
if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return;
}
}
rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr));
memset(rthdr, 0, sizeof(*rthdr));
rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
rthdr->hdr.it_present =
cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_RATE) |
(1 << IEEE80211_RADIOTAP_CHANNEL) |
(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL));
rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ?
IEEE80211_RADIOTAP_F_FCS : 0;
rate = ieee80211_get_rate(local, status->phymode, status->rate);
if (rate)
rthdr->rate = rate->rate / 5;
rthdr->chan_freq = cpu_to_le16(status->freq);
rthdr->chan_flags =
status->phymode == MODE_IEEE80211A ?
cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) :
cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ);
rthdr->antsignal = status->ssi;
out:
sdata->stats.rx_packets++;
sdata->stats.rx_bytes += skb->len;
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
}
int ieee80211_radar_status(struct ieee80211_hw *hw, int channel,
int radar, int radar_type)
{
struct sk_buff *skb;
struct ieee80211_radar_info *msg;
struct ieee80211_local *local = hw_to_local(hw);
if (!local->apdev)
return 0;
skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
sizeof(struct ieee80211_radar_info));
if (!skb)
return -ENOMEM;
skb_reserve(skb, sizeof(struct ieee80211_frame_info));
msg = (struct ieee80211_radar_info *)
skb_put(skb, sizeof(struct ieee80211_radar_info));
msg->channel = channel;
msg->radar = radar;
msg->radar_type = radar_type;
ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_radar);
return 0;
}
EXPORT_SYMBOL(ieee80211_radar_status);
static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
if (sdata->bss)
atomic_inc(&sdata->bss->num_sta_ps);
sta->flags |= WLAN_STA_PS;
sta->pspoll = 0;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d enters power "
"save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
}
static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
int sent = 0;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_packet_data *pkt_data;
sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
if (sdata->bss)
atomic_dec(&sdata->bss->num_sta_ps);
sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
sta->pspoll = 0;
if (!skb_queue_empty(&sta->ps_tx_buf)) {
if (local->ops->set_tim)
local->ops->set_tim(local_to_hw(local), sta->aid, 0);
if (sdata->bss)
bss_tim_clear(local, sdata->bss, sta->aid);
}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d exits power "
"save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
/* Send all buffered frames to the station */
while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
sent++;
pkt_data->requeue = 1;
dev_queue_xmit(skb);
}
while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
local->total_ps_buffered--;
sent++;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d send PS frame "
"since STA not sleeping anymore\n", dev->name,
MAC_ARG(sta->addr), sta->aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
pkt_data->requeue = 1;
dev_queue_xmit(skb);
}
return sent;
}
static ieee80211_txrx_result
ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
{
struct sk_buff *skb;
int no_pending_pkts;
if (likely(!rx->sta ||
(rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
!rx->u.rx.ra_match))
return TXRX_CONTINUE;
skb = skb_dequeue(&rx->sta->tx_filtered);
if (!skb) {
skb = skb_dequeue(&rx->sta->ps_tx_buf);
if (skb)
rx->local->total_ps_buffered--;
}
no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
skb_queue_empty(&rx->sta->ps_tx_buf);
if (skb) {
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) skb->data;
/* tell TX path to send one frame even though the STA may
* still remain is PS mode after this frame exchange */
rx->sta->pspoll = 1;
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS Poll (entries "
"after %d)\n",
MAC_ARG(rx->sta->addr), rx->sta->aid,
skb_queue_len(&rx->sta->ps_tx_buf));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
/* Use MoreData flag to indicate whether there are more
* buffered frames for this STA */
if (no_pending_pkts) {
hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
rx->sta->flags &= ~WLAN_STA_TIM;
} else
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
dev_queue_xmit(skb);
if (no_pending_pkts) {
if (rx->local->ops->set_tim)
rx->local->ops->set_tim(local_to_hw(rx->local),
rx->sta->aid, 0);
if (rx->sdata->bss)
bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
}
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
} else if (!rx->u.rx.sent_ps_buffered) {
printk(KERN_DEBUG "%s: STA " MAC_FMT " sent PS Poll even "
"though there is no buffered frames for it\n",
rx->dev->name, MAC_ARG(rx->sta->addr));
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
}
/* Free PS Poll skb here instead of returning TXRX_DROP that would
* count as an dropped frame. */
dev_kfree_skb(rx->skb);
return TXRX_QUEUED;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
unsigned int frag, unsigned int seq, int rx_queue,
struct sk_buff **skb)
{
struct ieee80211_fragment_entry *entry;
int idx;
idx = sdata->fragment_next;
entry = &sdata->fragments[sdata->fragment_next++];
if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
sdata->fragment_next = 0;
if (!skb_queue_empty(&entry->skb_list)) {
#ifdef CONFIG_MAC80211_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) entry->skb_list.next->data;
printk(KERN_DEBUG "%s: RX reassembly removed oldest "
"fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
"addr1=" MAC_FMT " addr2=" MAC_FMT "\n",
sdata->dev->name, idx,
jiffies - entry->first_frag_time, entry->seq,
entry->last_frag, MAC_ARG(hdr->addr1),
MAC_ARG(hdr->addr2));
#endif /* CONFIG_MAC80211_DEBUG */
__skb_queue_purge(&entry->skb_list);
}
__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
*skb = NULL;
entry->first_frag_time = jiffies;
entry->seq = seq;
entry->rx_queue = rx_queue;
entry->last_frag = frag;
entry->ccmp = 0;
entry->extra_len = 0;
return entry;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
u16 fc, unsigned int frag, unsigned int seq,
int rx_queue, struct ieee80211_hdr *hdr)
{
struct ieee80211_fragment_entry *entry;
int i, idx;
idx = sdata->fragment_next;
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
struct ieee80211_hdr *f_hdr;
u16 f_fc;
idx--;
if (idx < 0)
idx = IEEE80211_FRAGMENT_MAX - 1;
entry = &sdata->fragments[idx];
if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
entry->rx_queue != rx_queue ||
entry->last_frag + 1 != frag)
continue;
f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
f_fc = le16_to_cpu(f_hdr->frame_control);
if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
continue;
if (entry->first_frag_time + 2 * HZ < jiffies) {
__skb_queue_purge(&entry->skb_list);
continue;
}
return entry;
}
return NULL;
}
static ieee80211_txrx_result
ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
{
struct ieee80211_hdr *hdr;
u16 sc;
unsigned int frag, seq;
struct ieee80211_fragment_entry *entry;
struct sk_buff *skb;
hdr = (struct ieee80211_hdr *) rx->skb->data;
sc = le16_to_cpu(hdr->seq_ctrl);
frag = sc & IEEE80211_SCTL_FRAG;
if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
(rx->skb)->len < 24 ||
is_multicast_ether_addr(hdr->addr1))) {
/* not fragmented */
goto out;
}
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
if (frag == 0) {
/* This is the first fragment of a new frame. */
entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
rx->u.rx.queue, &(rx->skb));
if (rx->key && rx->key->alg == ALG_CCMP &&
(rx->fc & IEEE80211_FCTL_PROTECTED)) {
/* Store CCMP PN so that we can verify that the next
* fragment has a sequential PN value. */
entry->ccmp = 1;
memcpy(entry->last_pn,
rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
CCMP_PN_LEN);
}
return TXRX_QUEUED;
}
/* This is a fragment for a frame that should already be pending in
* fragment cache. Add this fragment to the end of the pending entry.
*/
entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
rx->u.rx.queue, hdr);
if (!entry) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
return TXRX_DROP;
}
/* Verify that MPDUs within one MSDU have sequential PN values.
* (IEEE 802.11i, 8.3.3.4.5) */
if (entry->ccmp) {
int i;
u8 pn[CCMP_PN_LEN], *rpn;
if (!rx->key || rx->key->alg != ALG_CCMP)
return TXRX_DROP;
memcpy(pn, entry->last_pn, CCMP_PN_LEN);
for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
pn[i]++;
if (pn[i])
break;
}
rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
printk(KERN_DEBUG "%s: defrag: CCMP PN not sequential"
" A2=" MAC_FMT " PN=%02x%02x%02x%02x%02x%02x "
"(expected %02x%02x%02x%02x%02x%02x)\n",
rx->dev->name, MAC_ARG(hdr->addr2),
rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5],
pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]);
return TXRX_DROP;
}
memcpy(entry->last_pn, pn, CCMP_PN_LEN);
}
skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
__skb_queue_tail(&entry->skb_list, rx->skb);
entry->last_frag = frag;
entry->extra_len += rx->skb->len;
if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
rx->skb = NULL;
return TXRX_QUEUED;
}
rx->skb = __skb_dequeue(&entry->skb_list);
if (skb_tailroom(rx->skb) < entry->extra_len) {
I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
GFP_ATOMIC))) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
__skb_queue_purge(&entry->skb_list);
return TXRX_DROP;
}
}
while ((skb = __skb_dequeue(&entry->skb_list))) {
memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
dev_kfree_skb(skb);
}
/* Complete frame has been reassembled - process it now */
rx->fragmented = 1;
out:
if (rx->sta)
rx->sta->rx_packets++;
if (is_multicast_ether_addr(hdr->addr1))
rx->local->dot11MulticastReceivedFrameCount++;
else
ieee80211_led_rx(rx->local);
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
{
if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) {
ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status);
return TXRX_QUEUED;
}
if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP)
skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb));
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
{
struct ieee80211_hdr *hdr;
int always_sta_key;
hdr = (struct ieee80211_hdr *) rx->skb->data;
/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
hdr->seq_ctrl)) {
if (rx->u.rx.ra_match) {
rx->local->dot11FrameDuplicateCount++;
rx->sta->num_duplicates++;
}
return TXRX_DROP;
} else
rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
}
if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) &&
rx->skb->len > FCS_LEN)
skb_trim(rx->skb, rx->skb->len - FCS_LEN);
if (unlikely(rx->skb->len < 16)) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
return TXRX_DROP;
}
if (!rx->u.rx.ra_match)
rx->skb->pkt_type = PACKET_OTHERHOST;
else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0)
rx->skb->pkt_type = PACKET_HOST;
else if (is_multicast_ether_addr(hdr->addr1)) {
if (is_broadcast_ether_addr(hdr->addr1))
rx->skb->pkt_type = PACKET_BROADCAST;
else
rx->skb->pkt_type = PACKET_MULTICAST;
} else
rx->skb->pkt_type = PACKET_OTHERHOST;
/* Drop disallowed frame classes based on STA auth/assoc state;
* IEEE 802.11, Chap 5.5.
*
* 80211.o does filtering only based on association state, i.e., it
* drops Class 3 frames from not associated stations. hostapd sends
* deauth/disassoc frames when needed. In addition, hostapd is
* responsible for filtering on both auth and assoc states.
*/
if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
(rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
rx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
(!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
!(rx->fc & IEEE80211_FCTL_TODS) &&
(rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
|| !rx->u.rx.ra_match) {
/* Drop IBSS frames and frames for other hosts
* silently. */
return TXRX_DROP;
}
if (!rx->local->apdev)
return TXRX_DROP;
ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_sta_not_assoc);
return TXRX_QUEUED;
}
if (rx->sdata->type == IEEE80211_IF_TYPE_STA)
always_sta_key = 0;
else
always_sta_key = 1;
if (rx->sta && rx->sta->key && always_sta_key) {
rx->key = rx->sta->key;
} else {
if (rx->sta && rx->sta->key)
rx->key = rx->sta->key;
else
rx->key = rx->sdata->default_key;
if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) &&
rx->fc & IEEE80211_FCTL_PROTECTED) {
int keyidx = ieee80211_wep_get_keyidx(rx->skb);
if (keyidx >= 0 && keyidx < NUM_DEFAULT_KEYS &&
(!rx->sta || !rx->sta->key || keyidx > 0))
rx->key = rx->sdata->keys[keyidx];
if (!rx->key) {
if (!rx->u.rx.ra_match)
return TXRX_DROP;
printk(KERN_DEBUG "%s: RX WEP frame with "
"unknown keyidx %d (A1=" MAC_FMT " A2="
MAC_FMT " A3=" MAC_FMT ")\n",
rx->dev->name, keyidx,
MAC_ARG(hdr->addr1),
MAC_ARG(hdr->addr2),
MAC_ARG(hdr->addr3));
if (!rx->local->apdev)
return TXRX_DROP;
ieee80211_rx_mgmt(
rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_wep_frame_unknown_key);
return TXRX_QUEUED;
}
}
}
if (rx->fc & IEEE80211_FCTL_PROTECTED && rx->key && rx->u.rx.ra_match) {
rx->key->tx_rx_count++;
if (unlikely(rx->local->key_tx_rx_threshold &&
rx->key->tx_rx_count >
rx->local->key_tx_rx_threshold)) {
ieee80211_key_threshold_notify(rx->dev, rx->key,
rx->sta);
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
{
struct sta_info *sta = rx->sta;
struct net_device *dev = rx->dev;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
if (!sta)
return TXRX_CONTINUE;
/* Update last_rx only for IBSS packets which are for the current
* BSSID to avoid keeping the current IBSS network alive in cases where
* other STAs are using different BSSID. */
if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) {
u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
sta->last_rx = jiffies;
} else
if (!is_multicast_ether_addr(hdr->addr1) ||
rx->sdata->type == IEEE80211_IF_TYPE_STA) {
/* Update last_rx only for unicast frames in order to prevent
* the Probe Request frames (the only broadcast frames from a
* STA in infrastructure mode) from keeping a connection alive.
*/
sta->last_rx = jiffies;
}
if (!rx->u.rx.ra_match)
return TXRX_CONTINUE;
sta->rx_fragments++;
sta->rx_bytes += rx->skb->len;
sta->last_rssi = (sta->last_rssi * 15 +
rx->u.rx.status->ssi) / 16;
sta->last_signal = (sta->last_signal * 15 +
rx->u.rx.status->signal) / 16;
sta->last_noise = (sta->last_noise * 15 +
rx->u.rx.status->noise) / 16;
if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
/* Change STA power saving mode only in the end of a frame
* exchange sequence */
if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
else if (!(sta->flags & WLAN_STA_PS) &&
(rx->fc & IEEE80211_FCTL_PM))
ap_sta_ps_start(dev, sta);
}
/* Drop data::nullfunc frames silently, since they are used only to
* control station power saving mode. */
if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
(rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
/* Update counter and free packet here to avoid counting this
* as a dropped packed. */
sta->rx_packets++;
dev_kfree_skb(rx->skb);
return TXRX_QUEUED;
}
return TXRX_CONTINUE;
} /* ieee80211_rx_h_sta_process */
static ieee80211_txrx_result
ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
{
if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
(rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA ||
!rx->key || rx->key->alg != ALG_WEP || !rx->u.rx.ra_match)
return TXRX_CONTINUE;
/* Check for weak IVs, if hwaccel did not remove IV from the frame */
if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) ||
rx->key->force_sw_encrypt) {
u8 *iv = ieee80211_wep_is_weak_iv(rx->skb, rx->key);
if (iv) {
rx->sta->wep_weak_iv_count++;
}
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
{
/* If the device handles decryption totally, skip this test */
if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP)
return TXRX_CONTINUE;
if ((rx->key && rx->key->alg != ALG_WEP) ||
!(rx->fc & IEEE80211_FCTL_PROTECTED) ||
((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
return TXRX_CONTINUE;
if (!rx->key) {
printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
rx->dev->name);
return TXRX_DROP;
}
if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) ||
rx->key->force_sw_encrypt) {
if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
"failed\n", rx->dev->name);
return TXRX_DROP;
}
} else if (rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
/* remove ICV */
skb_trim(rx->skb, rx->skb->len - 4);
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
{
if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
rx->sdata->type != IEEE80211_IF_TYPE_STA && rx->u.rx.ra_match) {
/* Pass both encrypted and unencrypted EAPOL frames to user
* space for processing. */
if (!rx->local->apdev)
return TXRX_DROP;
ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_normal);
return TXRX_QUEUED;
}
if (unlikely(rx->sdata->ieee802_1x &&
(rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
(!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
!ieee80211_is_eapol(rx->skb))) {
#ifdef CONFIG_MAC80211_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) rx->skb->data;
printk(KERN_DEBUG "%s: dropped frame from " MAC_FMT
" (unauthorized port)\n", rx->dev->name,
MAC_ARG(hdr->addr2));
#endif /* CONFIG_MAC80211_DEBUG */
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
{
/* If the device handles decryption totally, skip this test */
if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP)
return TXRX_CONTINUE;
/* Drop unencrypted frames if key is set. */
if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
(rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
(rx->key || rx->sdata->drop_unencrypted) &&
(rx->sdata->eapol == 0 ||
!ieee80211_is_eapol(rx->skb)))) {
printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
"encryption\n", rx->dev->name);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
{
struct ieee80211_sub_if_data *sdata;
if (!rx->u.rx.ra_match)
return TXRX_DROP;
sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
if ((sdata->type == IEEE80211_IF_TYPE_STA ||
sdata->type == IEEE80211_IF_TYPE_IBSS) &&
!rx->local->user_space_mlme) {
ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
} else {
/* Management frames are sent to hostapd for processing */
if (!rx->local->apdev)
return TXRX_DROP;
ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_normal);
}
return TXRX_QUEUED;
}
static ieee80211_txrx_result
ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb;
if (unlikely(local->sta_scanning != 0)) {
ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
return TXRX_QUEUED;
}
if (unlikely(rx->u.rx.in_scan)) {
/* scanning finished during invoking of handlers */
I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
return TXRX_DROP;
}
return TXRX_CONTINUE;
}
static void ieee80211_rx_michael_mic_report(struct net_device *dev,
struct ieee80211_hdr *hdr,
struct sta_info *sta,
struct ieee80211_txrx_data *rx)
{
int keyidx, hdrlen;
hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
if (rx->skb->len >= hdrlen + 4)
keyidx = rx->skb->data[hdrlen + 3] >> 6;
else
keyidx = -1;
/* TODO: verify that this is not triggered by fragmented
* frames (hw does not verify MIC for them). */
printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
"failure from " MAC_FMT " to " MAC_FMT " keyidx=%d\n",
dev->name, MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr1), keyidx);
if (!sta) {
/* Some hardware versions seem to generate incorrect
* Michael MIC reports; ignore them to avoid triggering
* countermeasures. */
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for unknown address " MAC_FMT "\n",
dev->name, MAC_ARG(hdr->addr2));
goto ignore;
}
if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for a frame with no ISWEP flag (src "
MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr2));
goto ignore;
}
if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) &&
rx->sdata->type == IEEE80211_IF_TYPE_AP) {
keyidx = ieee80211_wep_get_keyidx(rx->skb);
/* AP with Pairwise keys support should never receive Michael
* MIC errors for non-zero keyidx because these are reserved
* for group keys and only the AP is sending real multicast
* frames in BSS. */
if (keyidx) {
printk(KERN_DEBUG "%s: ignored Michael MIC error for "
"a frame with non-zero keyidx (%d) (src " MAC_FMT
")\n", dev->name, keyidx, MAC_ARG(hdr->addr2));
goto ignore;
}
}
if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
(rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
"error for a frame that cannot be encrypted "
"(fc=0x%04x) (src " MAC_FMT ")\n",
dev->name, rx->fc, MAC_ARG(hdr->addr2));
goto ignore;
}
do {
union iwreq_data wrqu;
char *buf = kmalloc(128, GFP_ATOMIC);
if (!buf)
break;
/* TODO: needed parameters: count, key type, TSC */
sprintf(buf, "MLME-MICHAELMICFAILURE.indication("
"keyid=%d %scast addr=" MAC_FMT ")",
keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni",
MAC_ARG(hdr->addr2));
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(buf);
wireless_send_event(rx->dev, IWEVCUSTOM, &wrqu, buf);
kfree(buf);
} while (0);
/* TODO: consider verifying the MIC error report with software
* implementation if we get too many spurious reports from the
* hardware. */
if (!rx->local->apdev)
goto ignore;
ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
ieee80211_msg_michael_mic_failure);
return;
ignore:
dev_kfree_skb(rx->skb);
rx->skb = NULL;
}
static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
struct ieee80211_local *local,
ieee80211_rx_handler *handlers,
struct ieee80211_txrx_data *rx,
struct sta_info *sta)
{
ieee80211_rx_handler *handler;
ieee80211_txrx_result res = TXRX_DROP;
for (handler = handlers; *handler != NULL; handler++) {
res = (*handler)(rx);
if (res != TXRX_CONTINUE) {
if (res == TXRX_DROP) {
I802_DEBUG_INC(local->rx_handlers_drop);
if (sta)
sta->rx_dropped++;
}
if (res == TXRX_QUEUED)
I802_DEBUG_INC(local->rx_handlers_queued);
break;
}
}
if (res == TXRX_DROP) {
dev_kfree_skb(rx->skb);
}
return res;
}
static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
ieee80211_rx_handler *handlers,
struct ieee80211_txrx_data *rx,
struct sta_info *sta)
{
if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
TXRX_CONTINUE)
dev_kfree_skb(rx->skb);
}
/*
* This is the receive path handler. It is called by a low level driver when an
* 802.11 MPDU is received from the hardware.
*/
void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
struct ieee80211_hdr *hdr;
struct ieee80211_txrx_data rx;
u16 type;
int multicast;
int radiotap_len = 0;
if (status->flag & RX_FLAG_RADIOTAP) {
radiotap_len = ieee80211_get_radiotap_len(skb);
skb_pull(skb, radiotap_len);
}
hdr = (struct ieee80211_hdr *) skb->data;
memset(&rx, 0, sizeof(rx));
rx.skb = skb;
rx.local = local;
rx.u.rx.status = status;
rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
type = rx.fc & IEEE80211_FCTL_FTYPE;
if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
local->dot11ReceivedFragmentCount++;
multicast = is_multicast_ether_addr(hdr->addr1);
if (skb->len >= 16)
sta = rx.sta = sta_info_get(local, hdr->addr2);
else
sta = rx.sta = NULL;
if (sta) {
rx.dev = sta->dev;
rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
}
if ((status->flag & RX_FLAG_MMIC_ERROR)) {
ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
goto end;
}
if (unlikely(local->sta_scanning))
rx.u.rx.in_scan = 1;
if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
sta) != TXRX_CONTINUE)
goto end;
skb = rx.skb;
skb_push(skb, radiotap_len);
if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS) &&
!local->iff_promiscs && !multicast) {
rx.u.rx.ra_match = 1;
ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
sta);
} else {
struct ieee80211_sub_if_data *prev = NULL;
struct sk_buff *skb_new;
u8 *bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len);
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
rx.u.rx.ra_match = 1;
switch (sdata->type) {
case IEEE80211_IF_TYPE_STA:
if (!bssid)
continue;
if (!ieee80211_bssid_match(bssid,
sdata->u.sta.bssid)) {
if (!rx.u.rx.in_scan)
continue;
rx.u.rx.ra_match = 0;
} else if (!multicast &&
compare_ether_addr(sdata->dev->dev_addr,
hdr->addr1) != 0) {
if (!sdata->promisc)
continue;
rx.u.rx.ra_match = 0;
}
break;
case IEEE80211_IF_TYPE_IBSS:
if (!bssid)
continue;
if (!ieee80211_bssid_match(bssid,
sdata->u.sta.bssid)) {
if (!rx.u.rx.in_scan)
continue;
rx.u.rx.ra_match = 0;
} else if (!multicast &&
compare_ether_addr(sdata->dev->dev_addr,
hdr->addr1) != 0) {
if (!sdata->promisc)
continue;
rx.u.rx.ra_match = 0;
} else if (!sta)
sta = rx.sta =
ieee80211_ibss_add_sta(sdata->dev,
skb, bssid,
hdr->addr2);
break;
case IEEE80211_IF_TYPE_AP:
if (!bssid) {
if (compare_ether_addr(sdata->dev->dev_addr,
hdr->addr1) != 0)
continue;
} else if (!ieee80211_bssid_match(bssid,
sdata->dev->dev_addr)) {
if (!rx.u.rx.in_scan)
continue;
rx.u.rx.ra_match = 0;
}
if (sdata->dev == local->mdev &&
!rx.u.rx.in_scan)
/* do not receive anything via
* master device when not scanning */
continue;
break;
case IEEE80211_IF_TYPE_WDS:
if (bssid ||
(rx.fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
continue;
if (compare_ether_addr(sdata->u.wds.remote_addr,
hdr->addr2) != 0)
continue;
break;
}
if (prev) {
skb_new = skb_copy(skb, GFP_ATOMIC);
if (!skb_new) {
if (net_ratelimit())
printk(KERN_DEBUG "%s: failed to copy "
"multicast frame for %s",
local->mdev->name, prev->dev->name);
continue;
}
rx.skb = skb_new;
rx.dev = prev->dev;
rx.sdata = prev;
ieee80211_invoke_rx_handlers(local,
local->rx_handlers,
&rx, sta);
}
prev = sdata;
}
if (prev) {
rx.skb = skb;
rx.dev = prev->dev;
rx.sdata = prev;
ieee80211_invoke_rx_handlers(local, local->rx_handlers,
&rx, sta);
} else
dev_kfree_skb(skb);
read_unlock(&local->sub_if_lock);
}
end:
if (sta)
sta_info_put(sta);
}
EXPORT_SYMBOL(__ieee80211_rx);
static ieee80211_txrx_result
ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx)
{
struct ieee80211_local *local = tx->local;
struct ieee80211_hw_mode *mode = tx->u.tx.mode;
struct sk_buff *skb = tx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u32 load = 0, hdrtime;
/* TODO: this could be part of tx_status handling, so that the number
* of retries would be known; TX rate should in that case be stored
* somewhere with the packet */
/* Estimate total channel use caused by this frame */
/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
* 1 usec = 1/8 * (1080 / 10) = 13.5 */
if (mode->mode == MODE_IEEE80211A ||
mode->mode == MODE_ATHEROS_TURBO ||
mode->mode == MODE_ATHEROS_TURBOG ||
(mode->mode == MODE_IEEE80211G &&
tx->u.tx.rate->flags & IEEE80211_RATE_ERP))
hdrtime = CHAN_UTIL_HDR_SHORT;
else
hdrtime = CHAN_UTIL_HDR_LONG;
load = hdrtime;
if (!is_multicast_ether_addr(hdr->addr1))
load += hdrtime;
if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS)
load += 2 * hdrtime;
else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
load += hdrtime;
load += skb->len * tx->u.tx.rate->rate_inv;
if (tx->u.tx.extra_frag) {
int i;
for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
load += 2 * hdrtime;
load += tx->u.tx.extra_frag[i]->len *
tx->u.tx.rate->rate;
}
}
/* Divide channel_use by 8 to avoid wrapping around the counter */
load >>= CHAN_UTIL_SHIFT;
local->channel_use_raw += load;
if (tx->sta)
tx->sta->channel_use_raw += load;
tx->sdata->channel_use_raw += load;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u32 load = 0, hdrtime;
struct ieee80211_rate *rate;
struct ieee80211_hw_mode *mode = local->hw.conf.mode;
int i;
/* Estimate total channel use caused by this frame */
if (unlikely(mode->num_rates < 0))
return TXRX_CONTINUE;
rate = &mode->rates[0];
for (i = 0; i < mode->num_rates; i++) {
if (mode->rates[i].val == rx->u.rx.status->rate) {
rate = &mode->rates[i];
break;
}
}
/* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
* 1 usec = 1/8 * (1080 / 10) = 13.5 */
if (mode->mode == MODE_IEEE80211A ||
mode->mode == MODE_ATHEROS_TURBO ||
mode->mode == MODE_ATHEROS_TURBOG ||
(mode->mode == MODE_IEEE80211G &&
rate->flags & IEEE80211_RATE_ERP))
hdrtime = CHAN_UTIL_HDR_SHORT;
else
hdrtime = CHAN_UTIL_HDR_LONG;
load = hdrtime;
if (!is_multicast_ether_addr(hdr->addr1))
load += hdrtime;
load += skb->len * rate->rate_inv;
/* Divide channel_use by 8 to avoid wrapping around the counter */
load >>= CHAN_UTIL_SHIFT;
local->channel_use_raw += load;
if (rx->sta)
rx->sta->channel_use_raw += load;
rx->u.rx.load = load;
return TXRX_CONTINUE;
}
static ieee80211_txrx_result
ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
{
rx->sdata->channel_use_raw += rx->u.rx.load;
return TXRX_CONTINUE;
}
static void ieee80211_stat_refresh(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *) data;
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata;
if (!local->stat_time)
return;
/* go through all stations */
spin_lock_bh(&local->sta_lock);
list_for_each_entry(sta, &local->sta_list, list) {
sta->channel_use = (sta->channel_use_raw / local->stat_time) /
CHAN_UTIL_PER_10MS;
sta->channel_use_raw = 0;
}
spin_unlock_bh(&local->sta_lock);
/* go through all subinterfaces */
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
sdata->channel_use = (sdata->channel_use_raw /
local->stat_time) / CHAN_UTIL_PER_10MS;
sdata->channel_use_raw = 0;
}
read_unlock(&local->sub_if_lock);
/* hardware interface */
local->channel_use = (local->channel_use_raw /
local->stat_time) / CHAN_UTIL_PER_10MS;
local->channel_use_raw = 0;
local->stat_timer.expires = jiffies + HZ * local->stat_time / 100;
add_timer(&local->stat_timer);
}
/* This is a version of the rx handler that can be called from hard irq
* context. Post the skb on the queue and schedule the tasklet */
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_rx_status *status)
{
struct ieee80211_local *local = hw_to_local(hw);
BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
skb->dev = local->mdev;
/* copy status into skb->cb for use by tasklet */
memcpy(skb->cb, status, sizeof(*status));
skb->pkt_type = IEEE80211_RX_MSG;
skb_queue_tail(&local->skb_queue, skb);
tasklet_schedule(&local->tasklet);
}
EXPORT_SYMBOL(ieee80211_rx_irqsafe);
void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_tx_status *status)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_tx_status *saved;
int tmp;
skb->dev = local->mdev;
saved = kmalloc(sizeof(struct ieee80211_tx_status), GFP_ATOMIC);
if (unlikely(!saved)) {
if (net_ratelimit())
printk(KERN_WARNING "%s: Not enough memory, "
"dropping tx status", skb->dev->name);
/* should be dev_kfree_skb_irq, but due to this function being
* named _irqsafe instead of just _irq we can't be sure that
* people won't call it from non-irq contexts */
dev_kfree_skb_any(skb);
return;
}
memcpy(saved, status, sizeof(struct ieee80211_tx_status));
/* copy pointer to saved status into skb->cb for use by tasklet */
memcpy(skb->cb, &saved, sizeof(saved));
skb->pkt_type = IEEE80211_TX_STATUS_MSG;
skb_queue_tail(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS ?
&local->skb_queue : &local->skb_queue_unreliable, skb);
tmp = skb_queue_len(&local->skb_queue) +
skb_queue_len(&local->skb_queue_unreliable);
while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT &&
(skb = skb_dequeue(&local->skb_queue_unreliable))) {
memcpy(&saved, skb->cb, sizeof(saved));
kfree(saved);
dev_kfree_skb_irq(skb);
tmp--;
I802_DEBUG_INC(local->tx_status_drop);
}
tasklet_schedule(&local->tasklet);
}
EXPORT_SYMBOL(ieee80211_tx_status_irqsafe);
static void ieee80211_tasklet_handler(unsigned long data)
{
struct ieee80211_local *local = (struct ieee80211_local *) data;
struct sk_buff *skb;
struct ieee80211_rx_status rx_status;
struct ieee80211_tx_status *tx_status;
while ((skb = skb_dequeue(&local->skb_queue)) ||
(skb = skb_dequeue(&local->skb_queue_unreliable))) {
switch (skb->pkt_type) {
case IEEE80211_RX_MSG:
/* status is in skb->cb */
memcpy(&rx_status, skb->cb, sizeof(rx_status));
/* Clear skb->type in order to not confuse kernel
* netstack. */
skb->pkt_type = 0;
__ieee80211_rx(local_to_hw(local), skb, &rx_status);
break;
case IEEE80211_TX_STATUS_MSG:
/* get pointer to saved status out of skb->cb */
memcpy(&tx_status, skb->cb, sizeof(tx_status));
skb->pkt_type = 0;
ieee80211_tx_status(local_to_hw(local),
skb, tx_status);
kfree(tx_status);
break;
default: /* should never get here! */
printk(KERN_ERR "%s: Unknown message type (%d)\n",
local->mdev->name, skb->pkt_type);
dev_kfree_skb(skb);
break;
}
}
}
/* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to
* make a prepared TX frame (one that has been given to hw) to look like brand
* new IEEE 802.11 frame that is ready to go through TX processing again.
* Also, tx_packet_data in cb is restored from tx_control. */
static void ieee80211_remove_tx_extra(struct ieee80211_local *local,
struct ieee80211_key *key,
struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
int hdrlen, iv_len, mic_len;
struct ieee80211_tx_packet_data *pkt_data;
pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
pkt_data->ifindex = control->ifindex;
pkt_data->mgmt_iface = (control->type == IEEE80211_IF_TYPE_MGMT);
pkt_data->req_tx_status = !!(control->flags & IEEE80211_TXCTL_REQ_TX_STATUS);
pkt_data->do_not_encrypt = !!(control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT);
pkt_data->requeue = !!(control->flags & IEEE80211_TXCTL_REQUEUE);
pkt_data->queue = control->queue;
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
if (!key)
goto no_key;
switch (key->alg) {
case ALG_WEP:
iv_len = WEP_IV_LEN;
mic_len = WEP_ICV_LEN;
break;
case ALG_TKIP:
iv_len = TKIP_IV_LEN;
mic_len = TKIP_ICV_LEN;
break;
case ALG_CCMP:
iv_len = CCMP_HDR_LEN;
mic_len = CCMP_MIC_LEN;
break;
default:
goto no_key;
}
if (skb->len >= mic_len && key->force_sw_encrypt)
skb_trim(skb, skb->len - mic_len);
if (skb->len >= iv_len && skb->len > hdrlen) {
memmove(skb->data + iv_len, skb->data, hdrlen);
skb_pull(skb, iv_len);
}
no_key:
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 fc = le16_to_cpu(hdr->frame_control);
if ((fc & 0x8C) == 0x88) /* QoS Control Field */ {
fc &= ~IEEE80211_STYPE_QOS_DATA;
hdr->frame_control = cpu_to_le16(fc);
memmove(skb->data + 2, skb->data, hdrlen - 2);
skb_pull(skb, 2);
}
}
}
void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ieee80211_tx_status *status)
{
struct sk_buff *skb2;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_local *local = hw_to_local(hw);
u16 frag, type;
u32 msg_type;
struct ieee80211_tx_status_rtap_hdr *rthdr;
struct ieee80211_sub_if_data *sdata;
int monitors;
if (!status) {
printk(KERN_ERR
"%s: ieee80211_tx_status called with NULL status\n",
local->mdev->name);
dev_kfree_skb(skb);
return;
}
if (status->excessive_retries) {
struct sta_info *sta;
sta = sta_info_get(local, hdr->addr1);
if (sta) {
if (sta->flags & WLAN_STA_PS) {
/* The STA is in power save mode, so assume
* that this TX packet failed because of that.
*/
status->excessive_retries = 0;
status->flags |= IEEE80211_TX_STATUS_TX_FILTERED;
}
sta_info_put(sta);
}
}
if (status->flags & IEEE80211_TX_STATUS_TX_FILTERED) {
struct sta_info *sta;
sta = sta_info_get(local, hdr->addr1);
if (sta) {
sta->tx_filtered_count++;
/* Clear the TX filter mask for this STA when sending
* the next packet. If the STA went to power save mode,
* this will happen when it is waking up for the next
* time. */
sta->clear_dst_mask = 1;
/* TODO: Is the WLAN_STA_PS flag always set here or is
* the race between RX and TX status causing some
* packets to be filtered out before 80211.o gets an
* update for PS status? This seems to be the case, so
* no changes are likely to be needed. */
if (sta->flags & WLAN_STA_PS &&
skb_queue_len(&sta->tx_filtered) <
STA_MAX_TX_BUFFER) {
ieee80211_remove_tx_extra(local, sta->key,
skb,
&status->control);
skb_queue_tail(&sta->tx_filtered, skb);
} else if (!(sta->flags & WLAN_STA_PS) &&
!(status->control.flags & IEEE80211_TXCTL_REQUEUE)) {
/* Software retry the packet once */
status->control.flags |= IEEE80211_TXCTL_REQUEUE;
ieee80211_remove_tx_extra(local, sta->key,
skb,
&status->control);
dev_queue_xmit(skb);
} else {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: dropped TX "
"filtered frame queue_len=%d "
"PS=%d @%lu\n",
local->mdev->name,
skb_queue_len(
&sta->tx_filtered),
!!(sta->flags & WLAN_STA_PS),
jiffies);
}
dev_kfree_skb(skb);
}
sta_info_put(sta);
return;
}
} else {
/* FIXME: STUPID to call this with both local and local->mdev */
rate_control_tx_status(local, local->mdev, skb, status);
}
ieee80211_led_tx(local, 0);
/* SNMP counters
* Fragments are passed to low-level drivers as separate skbs, so these
* are actually fragments, not frames. Update frame counters only for
* the first fragment of the frame. */
frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
if (status->flags & IEEE80211_TX_STATUS_ACK) {
if (frag == 0) {
local->dot11TransmittedFrameCount++;
if (is_multicast_ether_addr(hdr->addr1))
local->dot11MulticastTransmittedFrameCount++;
if (status->retry_count > 0)
local->dot11RetryCount++;
if (status->retry_count > 1)
local->dot11MultipleRetryCount++;
}
/* This counter shall be incremented for an acknowledged MPDU
* with an individual address in the address 1 field or an MPDU
* with a multicast address in the address 1 field of type Data
* or Management. */
if (!is_multicast_ether_addr(hdr->addr1) ||
type == IEEE80211_FTYPE_DATA ||
type == IEEE80211_FTYPE_MGMT)
local->dot11TransmittedFragmentCount++;
} else {
if (frag == 0)
local->dot11FailedCount++;
}
msg_type = (status->flags & IEEE80211_TX_STATUS_ACK) ?
ieee80211_msg_tx_callback_ack : ieee80211_msg_tx_callback_fail;
/* this was a transmitted frame, but now we want to reuse it */
skb_orphan(skb);
if ((status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS) &&
local->apdev) {
if (local->monitors) {
skb2 = skb_clone(skb, GFP_ATOMIC);
} else {
skb2 = skb;
skb = NULL;
}
if (skb2)
/* Send frame to hostapd */
ieee80211_rx_mgmt(local, skb2, NULL, msg_type);
if (!skb)
return;
}
if (!local->monitors) {
dev_kfree_skb(skb);
return;
}
/* send frame to monitor interfaces now */
if (skb_headroom(skb) < sizeof(*rthdr)) {
printk(KERN_ERR "ieee80211_tx_status: headroom too small\n");
dev_kfree_skb(skb);
return;
}
rthdr = (struct ieee80211_tx_status_rtap_hdr*)
skb_push(skb, sizeof(*rthdr));
memset(rthdr, 0, sizeof(*rthdr));
rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
rthdr->hdr.it_present =
cpu_to_le32((1 << IEEE80211_RADIOTAP_TX_FLAGS) |
(1 << IEEE80211_RADIOTAP_DATA_RETRIES));
if (!(status->flags & IEEE80211_TX_STATUS_ACK) &&
!is_multicast_ether_addr(hdr->addr1))
rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_FAIL);
if ((status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) &&
(status->control.flags & IEEE80211_TXCTL_USE_CTS_PROTECT))
rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_CTS);
else if (status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS)
rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_RTS);
rthdr->data_retries = status->retry_count;
read_lock(&local->sub_if_lock);
monitors = local->monitors;
list_for_each_entry(sdata, &local->sub_if_list, list) {
/*
* Using the monitors counter is possibly racy, but
* if the value is wrong we simply either clone the skb
* once too much or forget sending it to one monitor iface
* The latter case isn't nice but fixing the race is much
* more complicated.
*/
if (!monitors || !skb)
goto out;
if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
if (!netif_running(sdata->dev))
continue;
monitors--;
if (monitors)
skb2 = skb_clone(skb, GFP_KERNEL);
else
skb2 = NULL;
skb->dev = sdata->dev;
/* XXX: is this sufficient for BPF? */
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
memset(skb->cb, 0, sizeof(skb->cb));
netif_rx(skb);
skb = skb2;
break;
}
}
out:
read_unlock(&local->sub_if_lock);
if (skb)
dev_kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_tx_status);
/* TODO: implement register/unregister functions for adding TX/RX handlers
* into ordered list */
/* rx_pre handlers don't have dev and sdata fields available in
* ieee80211_txrx_data */
static ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
{
ieee80211_rx_h_parse_qos,
ieee80211_rx_h_load_stats,
NULL
};
static ieee80211_rx_handler ieee80211_rx_handlers[] =
{
ieee80211_rx_h_if_stats,
ieee80211_rx_h_monitor,
ieee80211_rx_h_passive_scan,
ieee80211_rx_h_check,
ieee80211_rx_h_sta_process,
ieee80211_rx_h_ccmp_decrypt,
ieee80211_rx_h_tkip_decrypt,
ieee80211_rx_h_wep_weak_iv_detection,
ieee80211_rx_h_wep_decrypt,
ieee80211_rx_h_defragment,
ieee80211_rx_h_ps_poll,
ieee80211_rx_h_michael_mic_verify,
/* this must be after decryption - so header is counted in MPDU mic
* must be before pae and data, so QOS_DATA format frames
* are not passed to user space by these functions
*/
ieee80211_rx_h_remove_qos_control,
ieee80211_rx_h_802_1x_pae,
ieee80211_rx_h_drop_unencrypted,
ieee80211_rx_h_data,
ieee80211_rx_h_mgmt,
NULL
};
static ieee80211_tx_handler ieee80211_tx_handlers[] =
{
ieee80211_tx_h_check_assoc,
ieee80211_tx_h_sequence,
ieee80211_tx_h_ps_buf,
ieee80211_tx_h_select_key,
ieee80211_tx_h_michael_mic_add,
ieee80211_tx_h_fragment,
ieee80211_tx_h_tkip_encrypt,
ieee80211_tx_h_ccmp_encrypt,
ieee80211_tx_h_wep_encrypt,
ieee80211_tx_h_rate_ctrl,
ieee80211_tx_h_misc,
ieee80211_tx_h_load_stats,
NULL
};
int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct sta_info *sta;
if (compare_ether_addr(remote_addr, sdata->u.wds.remote_addr) == 0)
return 0;
/* Create STA entry for the new peer */
sta = sta_info_add(local, dev, remote_addr, GFP_KERNEL);
if (!sta)
return -ENOMEM;
sta_info_put(sta);
/* Remove STA entry for the old peer */
sta = sta_info_get(local, sdata->u.wds.remote_addr);
if (sta) {
sta_info_put(sta);
sta_info_free(sta, 0);
} else {
printk(KERN_DEBUG "%s: could not find STA entry for WDS link "
"peer " MAC_FMT "\n",
dev->name, MAC_ARG(sdata->u.wds.remote_addr));
}
/* Update WDS link data */
memcpy(&sdata->u.wds.remote_addr, remote_addr, ETH_ALEN);
return 0;
}
/* Must not be called for mdev and apdev */
void ieee80211_if_setup(struct net_device *dev)
{
ether_setup(dev);
dev->hard_start_xmit = ieee80211_subif_start_xmit;
dev->wireless_handlers = &ieee80211_iw_handler_def;
dev->set_multicast_list = ieee80211_set_multicast_list;
dev->change_mtu = ieee80211_change_mtu;
dev->get_stats = ieee80211_get_stats;
dev->open = ieee80211_open;
dev->stop = ieee80211_stop;
dev->uninit = ieee80211_if_reinit;
dev->destructor = ieee80211_if_free;
}
void ieee80211_if_mgmt_setup(struct net_device *dev)
{
ether_setup(dev);
dev->hard_start_xmit = ieee80211_mgmt_start_xmit;
dev->change_mtu = ieee80211_change_mtu_apdev;
dev->get_stats = ieee80211_get_stats;
dev->open = ieee80211_mgmt_open;
dev->stop = ieee80211_mgmt_stop;
dev->type = ARPHRD_IEEE80211_PRISM;
dev->hard_header_parse = header_parse_80211;
dev->uninit = ieee80211_if_reinit;
dev->destructor = ieee80211_if_free;
}
int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local,
const char *name)
{
struct rate_control_ref *ref, *old;
ASSERT_RTNL();
if (local->open_count || netif_running(local->mdev) ||
(local->apdev && netif_running(local->apdev)))
return -EBUSY;
ref = rate_control_alloc(name, local);
if (!ref) {
printk(KERN_WARNING "%s: Failed to select rate control "
"algorithm\n", local->mdev->name);
return -ENOENT;
}
old = local->rate_ctrl;
local->rate_ctrl = ref;
if (old) {
rate_control_put(old);
sta_info_flush(local, NULL);
}
printk(KERN_DEBUG "%s: Selected rate control "
"algorithm '%s'\n", local->mdev->name,
ref->ops->name);
return 0;
}
static void rate_control_deinitialize(struct ieee80211_local *local)
{
struct rate_control_ref *ref;
ref = local->rate_ctrl;
local->rate_ctrl = NULL;
rate_control_put(ref);
}
struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
const struct ieee80211_ops *ops)
{
struct net_device *mdev;
struct ieee80211_local *local;
struct ieee80211_sub_if_data *sdata;
int priv_size;
struct wiphy *wiphy;
/* Ensure 32-byte alignment of our private data and hw private data.
* We use the wiphy priv data for both our ieee80211_local and for
* the driver's private data
*
* In memory it'll be like this:
*
* +-------------------------+
* | struct wiphy |
* +-------------------------+
* | struct ieee80211_local |
* +-------------------------+
* | driver's private data |
* +-------------------------+
*
*/
priv_size = ((sizeof(struct ieee80211_local) +
NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) +
priv_data_len;
wiphy = wiphy_new(&mac80211_config_ops, priv_size);
if (!wiphy)
return NULL;
wiphy->privid = mac80211_wiphy_privid;
local = wiphy_priv(wiphy);
local->hw.wiphy = wiphy;
local->hw.priv = (char *)local +
((sizeof(struct ieee80211_local) +
NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
BUG_ON(!ops->tx);
BUG_ON(!ops->config);
BUG_ON(!ops->add_interface);
local->ops = ops;
/* for now, mdev needs sub_if_data :/ */
mdev = alloc_netdev(sizeof(struct ieee80211_sub_if_data),
"wmaster%d", ether_setup);
if (!mdev) {
wiphy_free(wiphy);
return NULL;
}
sdata = IEEE80211_DEV_TO_SUB_IF(mdev);
mdev->ieee80211_ptr = &sdata->wdev;
sdata->wdev.wiphy = wiphy;
local->hw.queues = 1; /* default */
local->mdev = mdev;
local->rx_pre_handlers = ieee80211_rx_pre_handlers;
local->rx_handlers = ieee80211_rx_handlers;
local->tx_handlers = ieee80211_tx_handlers;
local->bridge_packets = 1;
local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
local->short_retry_limit = 7;
local->long_retry_limit = 4;
local->hw.conf.radio_enabled = 1;
local->enabled_modes = (unsigned int) -1;
INIT_LIST_HEAD(&local->modes_list);
rwlock_init(&local->sub_if_lock);
INIT_LIST_HEAD(&local->sub_if_list);
INIT_DELAYED_WORK(&local->scan_work, ieee80211_sta_scan_work);
init_timer(&local->stat_timer);
local->stat_timer.function = ieee80211_stat_refresh;
local->stat_timer.data = (unsigned long) local;
ieee80211_rx_bss_list_init(mdev);
sta_info_init(local);
mdev->hard_start_xmit = ieee80211_master_start_xmit;
mdev->open = ieee80211_master_open;
mdev->stop = ieee80211_master_stop;
mdev->type = ARPHRD_IEEE80211;
mdev->hard_header_parse = header_parse_80211;
sdata->type = IEEE80211_IF_TYPE_AP;
sdata->dev = mdev;
sdata->local = local;
sdata->u.ap.force_unicast_rateidx = -1;
sdata->u.ap.max_ratectrl_rateidx = -1;
ieee80211_if_sdata_init(sdata);
list_add_tail(&sdata->list, &local->sub_if_list);
tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending,
(unsigned long)local);
tasklet_disable(&local->tx_pending_tasklet);
tasklet_init(&local->tasklet,
ieee80211_tasklet_handler,
(unsigned long) local);
tasklet_disable(&local->tasklet);
skb_queue_head_init(&local->skb_queue);
skb_queue_head_init(&local->skb_queue_unreliable);
return local_to_hw(local);
}
EXPORT_SYMBOL(ieee80211_alloc_hw);
int ieee80211_register_hw(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
const char *name;
int result;
result = wiphy_register(local->hw.wiphy);
if (result < 0)
return result;
name = wiphy_dev(local->hw.wiphy)->driver->name;
local->hw.workqueue = create_singlethread_workqueue(name);
if (!local->hw.workqueue) {
result = -ENOMEM;
goto fail_workqueue;
}
/*
* The hardware needs headroom for sending the frame,
* and we need some headroom for passing the frame to monitor
* interfaces, but never both at the same time.
*/
local->tx_headroom = max(local->hw.extra_tx_headroom,
sizeof(struct ieee80211_tx_status_rtap_hdr));
debugfs_hw_add(local);
local->hw.conf.beacon_int = 1000;
local->wstats_flags |= local->hw.max_rssi ?
IW_QUAL_LEVEL_UPDATED : IW_QUAL_LEVEL_INVALID;
local->wstats_flags |= local->hw.max_signal ?
IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID;
local->wstats_flags |= local->hw.max_noise ?
IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID;
if (local->hw.max_rssi < 0 || local->hw.max_noise < 0)
local->wstats_flags |= IW_QUAL_DBM;
result = sta_info_start(local);
if (result < 0)
goto fail_sta_info;
rtnl_lock();
result = dev_alloc_name(local->mdev, local->mdev->name);
if (result < 0)
goto fail_dev;
memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN);
SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy));
result = register_netdevice(local->mdev);
if (result < 0)
goto fail_dev;
ieee80211_debugfs_add_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
result = ieee80211_init_rate_ctrl_alg(local, NULL);
if (result < 0) {
printk(KERN_DEBUG "%s: Failed to initialize rate control "
"algorithm\n", local->mdev->name);
goto fail_rate;
}
result = ieee80211_wep_init(local);
if (result < 0) {
printk(KERN_DEBUG "%s: Failed to initialize wep\n",
local->mdev->name);
goto fail_wep;
}
ieee80211_install_qdisc(local->mdev);
/* add one default STA interface */
result = ieee80211_if_add(local->mdev, "wlan%d", NULL,
IEEE80211_IF_TYPE_STA);
if (result)
printk(KERN_WARNING "%s: Failed to add default virtual iface\n",
local->mdev->name);
local->reg_state = IEEE80211_DEV_REGISTERED;
rtnl_unlock();
ieee80211_led_init(local);
return 0;
fail_wep:
rate_control_deinitialize(local);
fail_rate:
ieee80211_debugfs_remove_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
unregister_netdevice(local->mdev);
fail_dev:
rtnl_unlock();
sta_info_stop(local);
fail_sta_info:
debugfs_hw_del(local);
destroy_workqueue(local->hw.workqueue);
fail_workqueue:
wiphy_unregister(local->hw.wiphy);
return result;
}
EXPORT_SYMBOL(ieee80211_register_hw);
int ieee80211_register_hwmode(struct ieee80211_hw *hw,
struct ieee80211_hw_mode *mode)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate;
int i;
INIT_LIST_HEAD(&mode->list);
list_add_tail(&mode->list, &local->modes_list);
local->hw_modes |= (1 << mode->mode);
for (i = 0; i < mode->num_rates; i++) {
rate = &(mode->rates[i]);
rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate;
}
ieee80211_prepare_rates(local, mode);
if (!local->oper_hw_mode) {
/* Default to this mode */
local->hw.conf.phymode = mode->mode;
local->oper_hw_mode = local->scan_hw_mode = mode;
local->oper_channel = local->scan_channel = &mode->channels[0];
local->hw.conf.mode = local->oper_hw_mode;
local->hw.conf.chan = local->oper_channel;
}
if (!(hw->flags & IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED))
ieee80211_init_client(local->mdev);
return 0;
}
EXPORT_SYMBOL(ieee80211_register_hwmode);
void ieee80211_unregister_hw(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata, *tmp;
struct list_head tmp_list;
int i;
tasklet_kill(&local->tx_pending_tasklet);
tasklet_kill(&local->tasklet);
rtnl_lock();
BUG_ON(local->reg_state != IEEE80211_DEV_REGISTERED);
local->reg_state = IEEE80211_DEV_UNREGISTERED;
if (local->apdev)
ieee80211_if_del_mgmt(local);
write_lock_bh(&local->sub_if_lock);
list_replace_init(&local->sub_if_list, &tmp_list);
write_unlock_bh(&local->sub_if_lock);
list_for_each_entry_safe(sdata, tmp, &tmp_list, list)
__ieee80211_if_del(local, sdata);
rtnl_unlock();
if (local->stat_time)
del_timer_sync(&local->stat_timer);
ieee80211_rx_bss_list_deinit(local->mdev);
ieee80211_clear_tx_pending(local);
sta_info_stop(local);
rate_control_deinitialize(local);
debugfs_hw_del(local);
for (i = 0; i < NUM_IEEE80211_MODES; i++) {
kfree(local->supp_rates[i]);
kfree(local->basic_rates[i]);
}
if (skb_queue_len(&local->skb_queue)
|| skb_queue_len(&local->skb_queue_unreliable))
printk(KERN_WARNING "%s: skb_queue not empty\n",
local->mdev->name);
skb_queue_purge(&local->skb_queue);
skb_queue_purge(&local->skb_queue_unreliable);
destroy_workqueue(local->hw.workqueue);
wiphy_unregister(local->hw.wiphy);
ieee80211_wep_free(local);
ieee80211_led_exit(local);
}
EXPORT_SYMBOL(ieee80211_unregister_hw);
void ieee80211_free_hw(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
ieee80211_if_free(local->mdev);
wiphy_free(local->hw.wiphy);
}
EXPORT_SYMBOL(ieee80211_free_hw);
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
{
struct ieee80211_local *local = hw_to_local(hw);
if (test_and_clear_bit(IEEE80211_LINK_STATE_XOFF,
&local->state[queue])) {
if (test_bit(IEEE80211_LINK_STATE_PENDING,
&local->state[queue]))
tasklet_schedule(&local->tx_pending_tasklet);
else
if (!ieee80211_qdisc_installed(local->mdev)) {
if (queue == 0)
netif_wake_queue(local->mdev);
} else
__netif_schedule(local->mdev);
}
}
EXPORT_SYMBOL(ieee80211_wake_queue);
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
{
struct ieee80211_local *local = hw_to_local(hw);
if (!ieee80211_qdisc_installed(local->mdev) && queue == 0)
netif_stop_queue(local->mdev);
set_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
}
EXPORT_SYMBOL(ieee80211_stop_queue);
void ieee80211_start_queues(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
int i;
for (i = 0; i < local->hw.queues; i++)
clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[i]);
if (!ieee80211_qdisc_installed(local->mdev))
netif_start_queue(local->mdev);
}
EXPORT_SYMBOL(ieee80211_start_queues);
void ieee80211_stop_queues(struct ieee80211_hw *hw)
{
int i;
for (i = 0; i < hw->queues; i++)
ieee80211_stop_queue(hw, i);
}
EXPORT_SYMBOL(ieee80211_stop_queues);
void ieee80211_wake_queues(struct ieee80211_hw *hw)
{
int i;
for (i = 0; i < hw->queues; i++)
ieee80211_wake_queue(hw, i);
}
EXPORT_SYMBOL(ieee80211_wake_queues);
struct net_device_stats *ieee80211_dev_stats(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
return &sdata->stats;
}
static int __init ieee80211_init(void)
{
struct sk_buff *skb;
int ret;
BUILD_BUG_ON(sizeof(struct ieee80211_tx_packet_data) > sizeof(skb->cb));
ret = ieee80211_wme_register();
if (ret) {
printk(KERN_DEBUG "ieee80211_init: failed to "
"initialize WME (err=%d)\n", ret);
return ret;
}
ieee80211_debugfs_netdev_init();
return 0;
}
static void __exit ieee80211_exit(void)
{
ieee80211_wme_unregister();
ieee80211_debugfs_netdev_exit();
}
module_init(ieee80211_init);
module_exit(ieee80211_exit);
MODULE_DESCRIPTION("IEEE 802.11 subsystem");
MODULE_LICENSE("GPL");