linux-stable/fs/afs/write.c
David Howells 3ad216ee73 afs: Fix afs_write_end() when called with copied == 0 [ver #3]
When afs_write_end() is called with copied == 0, it tries to set the
dirty region, but there's no way to actually encode a 0-length region in
the encoding in page->private.

"0,0", for example, indicates a 1-byte region at offset 0.  The maths
miscalculates this and sets it incorrectly.

Fix it to just do nothing but unlock and put the page in this case.  We
don't actually need to mark the page dirty as nothing presumably
changed.

Fixes: 65dd2d6072d3 ("afs: Alter dirty range encoding in page->private")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 11:51:18 -08:00

948 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* handling of writes to regular files and writing back to the server
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/backing-dev.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include "internal.h"
/*
* mark a page as having been made dirty and thus needing writeback
*/
int afs_set_page_dirty(struct page *page)
{
_enter("");
return __set_page_dirty_nobuffers(page);
}
/*
* partly or wholly fill a page that's under preparation for writing
*/
static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
loff_t pos, unsigned int len, struct page *page)
{
struct afs_read *req;
size_t p;
void *data;
int ret;
_enter(",,%llu", (unsigned long long)pos);
if (pos >= vnode->vfs_inode.i_size) {
p = pos & ~PAGE_MASK;
ASSERTCMP(p + len, <=, PAGE_SIZE);
data = kmap(page);
memset(data + p, 0, len);
kunmap(page);
return 0;
}
req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
if (!req)
return -ENOMEM;
refcount_set(&req->usage, 1);
req->pos = pos;
req->len = len;
req->nr_pages = 1;
req->pages = req->array;
req->pages[0] = page;
get_page(page);
ret = afs_fetch_data(vnode, key, req);
afs_put_read(req);
if (ret < 0) {
if (ret == -ENOENT) {
_debug("got NOENT from server"
" - marking file deleted and stale");
set_bit(AFS_VNODE_DELETED, &vnode->flags);
ret = -ESTALE;
}
}
_leave(" = %d", ret);
return ret;
}
/*
* prepare to perform part of a write to a page
*/
int afs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **_page, void **fsdata)
{
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
struct page *page;
struct key *key = afs_file_key(file);
unsigned long priv;
unsigned f, from = pos & (PAGE_SIZE - 1);
unsigned t, to = from + len;
pgoff_t index = pos >> PAGE_SHIFT;
int ret;
_enter("{%llx:%llu},{%lx},%u,%u",
vnode->fid.vid, vnode->fid.vnode, index, from, to);
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
if (!PageUptodate(page) && len != PAGE_SIZE) {
ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
if (ret < 0) {
unlock_page(page);
put_page(page);
_leave(" = %d [prep]", ret);
return ret;
}
SetPageUptodate(page);
}
try_again:
/* See if this page is already partially written in a way that we can
* merge the new write with.
*/
t = f = 0;
if (PagePrivate(page)) {
priv = page_private(page);
f = afs_page_dirty_from(priv);
t = afs_page_dirty_to(priv);
ASSERTCMP(f, <=, t);
}
if (f != t) {
if (PageWriteback(page)) {
trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
page->index, priv);
goto flush_conflicting_write;
}
/* If the file is being filled locally, allow inter-write
* spaces to be merged into writes. If it's not, only write
* back what the user gives us.
*/
if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
(to < f || from > t))
goto flush_conflicting_write;
}
*_page = page;
_leave(" = 0");
return 0;
/* The previous write and this write aren't adjacent or overlapping, so
* flush the page out.
*/
flush_conflicting_write:
_debug("flush conflict");
ret = write_one_page(page);
if (ret < 0)
goto error;
ret = lock_page_killable(page);
if (ret < 0)
goto error;
goto try_again;
error:
put_page(page);
_leave(" = %d", ret);
return ret;
}
/*
* finalise part of a write to a page
*/
int afs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
struct key *key = afs_file_key(file);
unsigned long priv;
unsigned int f, from = pos & (PAGE_SIZE - 1);
unsigned int t, to = from + copied;
loff_t i_size, maybe_i_size;
int ret = 0;
_enter("{%llx:%llu},{%lx}",
vnode->fid.vid, vnode->fid.vnode, page->index);
if (copied == 0)
goto out;
maybe_i_size = pos + copied;
i_size = i_size_read(&vnode->vfs_inode);
if (maybe_i_size > i_size) {
write_seqlock(&vnode->cb_lock);
i_size = i_size_read(&vnode->vfs_inode);
if (maybe_i_size > i_size)
i_size_write(&vnode->vfs_inode, maybe_i_size);
write_sequnlock(&vnode->cb_lock);
}
if (!PageUptodate(page)) {
if (copied < len) {
/* Try and load any missing data from the server. The
* unmarshalling routine will take care of clearing any
* bits that are beyond the EOF.
*/
ret = afs_fill_page(vnode, key, pos + copied,
len - copied, page);
if (ret < 0)
goto out;
}
SetPageUptodate(page);
}
if (PagePrivate(page)) {
priv = page_private(page);
f = afs_page_dirty_from(priv);
t = afs_page_dirty_to(priv);
if (from < f)
f = from;
if (to > t)
t = to;
priv = afs_page_dirty(f, t);
set_page_private(page, priv);
trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
page->index, priv);
} else {
priv = afs_page_dirty(from, to);
attach_page_private(page, (void *)priv);
trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
page->index, priv);
}
set_page_dirty(page);
if (PageDirty(page))
_debug("dirtied");
ret = copied;
out:
unlock_page(page);
put_page(page);
return ret;
}
/*
* kill all the pages in the given range
*/
static void afs_kill_pages(struct address_space *mapping,
pgoff_t first, pgoff_t last)
{
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
struct pagevec pv;
unsigned count, loop;
_enter("{%llx:%llu},%lx-%lx",
vnode->fid.vid, vnode->fid.vnode, first, last);
pagevec_init(&pv);
do {
_debug("kill %lx-%lx", first, last);
count = last - first + 1;
if (count > PAGEVEC_SIZE)
count = PAGEVEC_SIZE;
pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
ASSERTCMP(pv.nr, ==, count);
for (loop = 0; loop < count; loop++) {
struct page *page = pv.pages[loop];
ClearPageUptodate(page);
SetPageError(page);
end_page_writeback(page);
if (page->index >= first)
first = page->index + 1;
lock_page(page);
generic_error_remove_page(mapping, page);
unlock_page(page);
}
__pagevec_release(&pv);
} while (first <= last);
_leave("");
}
/*
* Redirty all the pages in a given range.
*/
static void afs_redirty_pages(struct writeback_control *wbc,
struct address_space *mapping,
pgoff_t first, pgoff_t last)
{
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
struct pagevec pv;
unsigned count, loop;
_enter("{%llx:%llu},%lx-%lx",
vnode->fid.vid, vnode->fid.vnode, first, last);
pagevec_init(&pv);
do {
_debug("redirty %lx-%lx", first, last);
count = last - first + 1;
if (count > PAGEVEC_SIZE)
count = PAGEVEC_SIZE;
pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
ASSERTCMP(pv.nr, ==, count);
for (loop = 0; loop < count; loop++) {
struct page *page = pv.pages[loop];
redirty_page_for_writepage(wbc, page);
end_page_writeback(page);
if (page->index >= first)
first = page->index + 1;
}
__pagevec_release(&pv);
} while (first <= last);
_leave("");
}
/*
* completion of write to server
*/
static void afs_pages_written_back(struct afs_vnode *vnode,
pgoff_t first, pgoff_t last)
{
struct pagevec pv;
unsigned long priv;
unsigned count, loop;
_enter("{%llx:%llu},{%lx-%lx}",
vnode->fid.vid, vnode->fid.vnode, first, last);
pagevec_init(&pv);
do {
_debug("done %lx-%lx", first, last);
count = last - first + 1;
if (count > PAGEVEC_SIZE)
count = PAGEVEC_SIZE;
pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
first, count, pv.pages);
ASSERTCMP(pv.nr, ==, count);
for (loop = 0; loop < count; loop++) {
priv = (unsigned long)detach_page_private(pv.pages[loop]);
trace_afs_page_dirty(vnode, tracepoint_string("clear"),
pv.pages[loop]->index, priv);
end_page_writeback(pv.pages[loop]);
}
first += count;
__pagevec_release(&pv);
} while (first <= last);
afs_prune_wb_keys(vnode);
_leave("");
}
/*
* Find a key to use for the writeback. We cached the keys used to author the
* writes on the vnode. *_wbk will contain the last writeback key used or NULL
* and we need to start from there if it's set.
*/
static int afs_get_writeback_key(struct afs_vnode *vnode,
struct afs_wb_key **_wbk)
{
struct afs_wb_key *wbk = NULL;
struct list_head *p;
int ret = -ENOKEY, ret2;
spin_lock(&vnode->wb_lock);
if (*_wbk)
p = (*_wbk)->vnode_link.next;
else
p = vnode->wb_keys.next;
while (p != &vnode->wb_keys) {
wbk = list_entry(p, struct afs_wb_key, vnode_link);
_debug("wbk %u", key_serial(wbk->key));
ret2 = key_validate(wbk->key);
if (ret2 == 0) {
refcount_inc(&wbk->usage);
_debug("USE WB KEY %u", key_serial(wbk->key));
break;
}
wbk = NULL;
if (ret == -ENOKEY)
ret = ret2;
p = p->next;
}
spin_unlock(&vnode->wb_lock);
if (*_wbk)
afs_put_wb_key(*_wbk);
*_wbk = wbk;
return 0;
}
static void afs_store_data_success(struct afs_operation *op)
{
struct afs_vnode *vnode = op->file[0].vnode;
op->ctime = op->file[0].scb.status.mtime_client;
afs_vnode_commit_status(op, &op->file[0]);
if (op->error == 0) {
if (!op->store.laundering)
afs_pages_written_back(vnode, op->store.first, op->store.last);
afs_stat_v(vnode, n_stores);
atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
(op->store.first * PAGE_SIZE + op->store.first_offset),
&afs_v2net(vnode)->n_store_bytes);
}
}
static const struct afs_operation_ops afs_store_data_operation = {
.issue_afs_rpc = afs_fs_store_data,
.issue_yfs_rpc = yfs_fs_store_data,
.success = afs_store_data_success,
};
/*
* write to a file
*/
static int afs_store_data(struct address_space *mapping,
pgoff_t first, pgoff_t last,
unsigned offset, unsigned to, bool laundering)
{
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
struct afs_operation *op;
struct afs_wb_key *wbk = NULL;
int ret;
_enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
vnode->volume->name,
vnode->fid.vid,
vnode->fid.vnode,
vnode->fid.unique,
first, last, offset, to);
ret = afs_get_writeback_key(vnode, &wbk);
if (ret) {
_leave(" = %d [no keys]", ret);
return ret;
}
op = afs_alloc_operation(wbk->key, vnode->volume);
if (IS_ERR(op)) {
afs_put_wb_key(wbk);
return -ENOMEM;
}
afs_op_set_vnode(op, 0, vnode);
op->file[0].dv_delta = 1;
op->store.mapping = mapping;
op->store.first = first;
op->store.last = last;
op->store.first_offset = offset;
op->store.last_to = to;
op->store.laundering = laundering;
op->mtime = vnode->vfs_inode.i_mtime;
op->flags |= AFS_OPERATION_UNINTR;
op->ops = &afs_store_data_operation;
try_next_key:
afs_begin_vnode_operation(op);
afs_wait_for_operation(op);
switch (op->error) {
case -EACCES:
case -EPERM:
case -ENOKEY:
case -EKEYEXPIRED:
case -EKEYREJECTED:
case -EKEYREVOKED:
_debug("next");
ret = afs_get_writeback_key(vnode, &wbk);
if (ret == 0) {
key_put(op->key);
op->key = key_get(wbk->key);
goto try_next_key;
}
break;
}
afs_put_wb_key(wbk);
_leave(" = %d", op->error);
return afs_put_operation(op);
}
/*
* Synchronously write back the locked page and any subsequent non-locked dirty
* pages.
*/
static int afs_write_back_from_locked_page(struct address_space *mapping,
struct writeback_control *wbc,
struct page *primary_page,
pgoff_t final_page)
{
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
struct page *pages[8], *page;
unsigned long count, priv;
unsigned n, offset, to, f, t;
pgoff_t start, first, last;
loff_t i_size, end;
int loop, ret;
_enter(",%lx", primary_page->index);
count = 1;
if (test_set_page_writeback(primary_page))
BUG();
/* Find all consecutive lockable dirty pages that have contiguous
* written regions, stopping when we find a page that is not
* immediately lockable, is not dirty or is missing, or we reach the
* end of the range.
*/
start = primary_page->index;
priv = page_private(primary_page);
offset = afs_page_dirty_from(priv);
to = afs_page_dirty_to(priv);
trace_afs_page_dirty(vnode, tracepoint_string("store"),
primary_page->index, priv);
WARN_ON(offset == to);
if (offset == to)
trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
primary_page->index, priv);
if (start >= final_page ||
(to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
goto no_more;
start++;
do {
_debug("more %lx [%lx]", start, count);
n = final_page - start + 1;
if (n > ARRAY_SIZE(pages))
n = ARRAY_SIZE(pages);
n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
_debug("fgpc %u", n);
if (n == 0)
goto no_more;
if (pages[0]->index != start) {
do {
put_page(pages[--n]);
} while (n > 0);
goto no_more;
}
for (loop = 0; loop < n; loop++) {
page = pages[loop];
if (to != PAGE_SIZE &&
!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
break;
if (page->index > final_page)
break;
if (!trylock_page(page))
break;
if (!PageDirty(page) || PageWriteback(page)) {
unlock_page(page);
break;
}
priv = page_private(page);
f = afs_page_dirty_from(priv);
t = afs_page_dirty_to(priv);
if (f != 0 &&
!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
unlock_page(page);
break;
}
to = t;
trace_afs_page_dirty(vnode, tracepoint_string("store+"),
page->index, priv);
if (!clear_page_dirty_for_io(page))
BUG();
if (test_set_page_writeback(page))
BUG();
unlock_page(page);
put_page(page);
}
count += loop;
if (loop < n) {
for (; loop < n; loop++)
put_page(pages[loop]);
goto no_more;
}
start += loop;
} while (start <= final_page && count < 65536);
no_more:
/* We now have a contiguous set of dirty pages, each with writeback
* set; the first page is still locked at this point, but all the rest
* have been unlocked.
*/
unlock_page(primary_page);
first = primary_page->index;
last = first + count - 1;
end = (loff_t)last * PAGE_SIZE + to;
i_size = i_size_read(&vnode->vfs_inode);
_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
if (end > i_size)
to = i_size & ~PAGE_MASK;
ret = afs_store_data(mapping, first, last, offset, to, false);
switch (ret) {
case 0:
ret = count;
break;
default:
pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
fallthrough;
case -EACCES:
case -EPERM:
case -ENOKEY:
case -EKEYEXPIRED:
case -EKEYREJECTED:
case -EKEYREVOKED:
afs_redirty_pages(wbc, mapping, first, last);
mapping_set_error(mapping, ret);
break;
case -EDQUOT:
case -ENOSPC:
afs_redirty_pages(wbc, mapping, first, last);
mapping_set_error(mapping, -ENOSPC);
break;
case -EROFS:
case -EIO:
case -EREMOTEIO:
case -EFBIG:
case -ENOENT:
case -ENOMEDIUM:
case -ENXIO:
trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
afs_kill_pages(mapping, first, last);
mapping_set_error(mapping, ret);
break;
}
_leave(" = %d", ret);
return ret;
}
/*
* write a page back to the server
* - the caller locked the page for us
*/
int afs_writepage(struct page *page, struct writeback_control *wbc)
{
int ret;
_enter("{%lx},", page->index);
ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
wbc->range_end >> PAGE_SHIFT);
if (ret < 0) {
_leave(" = %d", ret);
return 0;
}
wbc->nr_to_write -= ret;
_leave(" = 0");
return 0;
}
/*
* write a region of pages back to the server
*/
static int afs_writepages_region(struct address_space *mapping,
struct writeback_control *wbc,
pgoff_t index, pgoff_t end, pgoff_t *_next)
{
struct page *page;
int ret, n;
_enter(",,%lx,%lx,", index, end);
do {
n = find_get_pages_range_tag(mapping, &index, end,
PAGECACHE_TAG_DIRTY, 1, &page);
if (!n)
break;
_debug("wback %lx", page->index);
/*
* at this point we hold neither the i_pages lock nor the
* page lock: the page may be truncated or invalidated
* (changing page->mapping to NULL), or even swizzled
* back from swapper_space to tmpfs file mapping
*/
ret = lock_page_killable(page);
if (ret < 0) {
put_page(page);
_leave(" = %d", ret);
return ret;
}
if (page->mapping != mapping || !PageDirty(page)) {
unlock_page(page);
put_page(page);
continue;
}
if (PageWriteback(page)) {
unlock_page(page);
if (wbc->sync_mode != WB_SYNC_NONE)
wait_on_page_writeback(page);
put_page(page);
continue;
}
if (!clear_page_dirty_for_io(page))
BUG();
ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
put_page(page);
if (ret < 0) {
_leave(" = %d", ret);
return ret;
}
wbc->nr_to_write -= ret;
cond_resched();
} while (index < end && wbc->nr_to_write > 0);
*_next = index;
_leave(" = 0 [%lx]", *_next);
return 0;
}
/*
* write some of the pending data back to the server
*/
int afs_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
pgoff_t start, end, next;
int ret;
_enter("");
/* We have to be careful as we can end up racing with setattr()
* truncating the pagecache since the caller doesn't take a lock here
* to prevent it.
*/
if (wbc->sync_mode == WB_SYNC_ALL)
down_read(&vnode->validate_lock);
else if (!down_read_trylock(&vnode->validate_lock))
return 0;
if (wbc->range_cyclic) {
start = mapping->writeback_index;
end = -1;
ret = afs_writepages_region(mapping, wbc, start, end, &next);
if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
ret = afs_writepages_region(mapping, wbc, 0, start,
&next);
mapping->writeback_index = next;
} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
ret = afs_writepages_region(mapping, wbc, 0, end, &next);
if (wbc->nr_to_write > 0)
mapping->writeback_index = next;
} else {
start = wbc->range_start >> PAGE_SHIFT;
end = wbc->range_end >> PAGE_SHIFT;
ret = afs_writepages_region(mapping, wbc, start, end, &next);
}
up_read(&vnode->validate_lock);
_leave(" = %d", ret);
return ret;
}
/*
* write to an AFS file
*/
ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
{
struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
ssize_t result;
size_t count = iov_iter_count(from);
_enter("{%llx:%llu},{%zu},",
vnode->fid.vid, vnode->fid.vnode, count);
if (IS_SWAPFILE(&vnode->vfs_inode)) {
printk(KERN_INFO
"AFS: Attempt to write to active swap file!\n");
return -EBUSY;
}
if (!count)
return 0;
result = generic_file_write_iter(iocb, from);
_leave(" = %zd", result);
return result;
}
/*
* flush any dirty pages for this process, and check for write errors.
* - the return status from this call provides a reliable indication of
* whether any write errors occurred for this process.
*/
int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file_inode(file);
struct afs_vnode *vnode = AFS_FS_I(inode);
_enter("{%llx:%llu},{n=%pD},%d",
vnode->fid.vid, vnode->fid.vnode, file,
datasync);
return file_write_and_wait_range(file, start, end);
}
/*
* notification that a previously read-only page is about to become writable
* - if it returns an error, the caller will deliver a bus error signal
*/
vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
{
struct file *file = vmf->vma->vm_file;
struct inode *inode = file_inode(file);
struct afs_vnode *vnode = AFS_FS_I(inode);
unsigned long priv;
_enter("{{%llx:%llu}},{%lx}",
vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
sb_start_pagefault(inode->i_sb);
/* Wait for the page to be written to the cache before we allow it to
* be modified. We then assume the entire page will need writing back.
*/
#ifdef CONFIG_AFS_FSCACHE
fscache_wait_on_page_write(vnode->cache, vmf->page);
#endif
if (PageWriteback(vmf->page) &&
wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
return VM_FAULT_RETRY;
if (lock_page_killable(vmf->page) < 0)
return VM_FAULT_RETRY;
/* We mustn't change page->private until writeback is complete as that
* details the portion of the page we need to write back and we might
* need to redirty the page if there's a problem.
*/
wait_on_page_writeback(vmf->page);
priv = afs_page_dirty(0, PAGE_SIZE);
priv = afs_page_dirty_mmapped(priv);
trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
vmf->page->index, priv);
if (PagePrivate(vmf->page))
set_page_private(vmf->page, priv);
else
attach_page_private(vmf->page, (void *)priv);
file_update_time(file);
sb_end_pagefault(inode->i_sb);
return VM_FAULT_LOCKED;
}
/*
* Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
*/
void afs_prune_wb_keys(struct afs_vnode *vnode)
{
LIST_HEAD(graveyard);
struct afs_wb_key *wbk, *tmp;
/* Discard unused keys */
spin_lock(&vnode->wb_lock);
if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
if (refcount_read(&wbk->usage) == 1)
list_move(&wbk->vnode_link, &graveyard);
}
}
spin_unlock(&vnode->wb_lock);
while (!list_empty(&graveyard)) {
wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
list_del(&wbk->vnode_link);
afs_put_wb_key(wbk);
}
}
/*
* Clean up a page during invalidation.
*/
int afs_launder_page(struct page *page)
{
struct address_space *mapping = page->mapping;
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
unsigned long priv;
unsigned int f, t;
int ret = 0;
_enter("{%lx}", page->index);
priv = page_private(page);
if (clear_page_dirty_for_io(page)) {
f = 0;
t = PAGE_SIZE;
if (PagePrivate(page)) {
f = afs_page_dirty_from(priv);
t = afs_page_dirty_to(priv);
}
trace_afs_page_dirty(vnode, tracepoint_string("launder"),
page->index, priv);
ret = afs_store_data(mapping, page->index, page->index, t, f, true);
}
priv = (unsigned long)detach_page_private(page);
trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
page->index, priv);
#ifdef CONFIG_AFS_FSCACHE
if (PageFsCache(page)) {
fscache_wait_on_page_write(vnode->cache, page);
fscache_uncache_page(vnode->cache, page);
}
#endif
return ret;
}