Waiman Long 8c7e22fc91 cgroup/cpuset: Move cpu.h include to cpuset-internal.h
The newly created cpuset-v1.c file uses cpus_read_lock/unlock() functions
which are defined in cpu.h but not included in cpuset-internal.h yet
leading to compilation error under certain kernel configurations.  Fix it
by moving the cpu.h include from cpuset.c to cpuset-internal.h. While
at it, sort the include files in alphabetic order.

Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202408311612.mQTuO946-lkp@intel.com/
Fixes: 047b83097448 ("cgroup/cpuset: move relax_domain_level to cpuset-v1.c")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2024-09-04 10:46:49 -10:00

4304 lines
121 KiB
C

/*
* kernel/cpuset.c
*
* Processor and Memory placement constraints for sets of tasks.
*
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004-2007 Silicon Graphics, Inc.
* Copyright (C) 2006 Google, Inc
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
*
* 2003-10-10 Written by Simon Derr.
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson.
* 2006 Rework by Paul Menage to use generic cgroups
* 2008 Rework of the scheduler domains and CPU hotplug handling
* by Max Krasnyansky
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include "cgroup-internal.h"
#include "cpuset-internal.h"
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mempolicy.h>
#include <linux/mm.h>
#include <linux/memory.h>
#include <linux/export.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/deadline.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/security.h>
#include <linux/oom.h>
#include <linux/sched/isolation.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
/*
* There could be abnormal cpuset configurations for cpu or memory
* node binding, add this key to provide a quick low-cost judgment
* of the situation.
*/
DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
static const char * const perr_strings[] = {
[PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
[PERR_INVPARENT] = "Parent is an invalid partition root",
[PERR_NOTPART] = "Parent is not a partition root",
[PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
[PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
[PERR_HOTPLUG] = "No cpu available due to hotplug",
[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
[PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
[PERR_ACCESS] = "Enable partition not permitted",
};
/*
* Exclusive CPUs distributed out to sub-partitions of top_cpuset
*/
static cpumask_var_t subpartitions_cpus;
/*
* Exclusive CPUs in isolated partitions
*/
static cpumask_var_t isolated_cpus;
/*
* Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
*/
static cpumask_var_t boot_hk_cpus;
static bool have_boot_isolcpus;
/* List of remote partition root children */
static struct list_head remote_children;
/*
* A flag to force sched domain rebuild at the end of an operation while
* inhibiting it in the intermediate stages when set. Currently it is only
* set in hotplug code.
*/
static bool force_sd_rebuild;
/*
* Partition root states:
*
* 0 - member (not a partition root)
* 1 - partition root
* 2 - partition root without load balancing (isolated)
* -1 - invalid partition root
* -2 - invalid isolated partition root
*
* There are 2 types of partitions - local or remote. Local partitions are
* those whose parents are partition root themselves. Setting of
* cpuset.cpus.exclusive are optional in setting up local partitions.
* Remote partitions are those whose parents are not partition roots. Passing
* down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
* nodes are mandatory in creating a remote partition.
*
* For simplicity, a local partition can be created under a local or remote
* partition but a remote partition cannot have any partition root in its
* ancestor chain except the cgroup root.
*/
#define PRS_MEMBER 0
#define PRS_ROOT 1
#define PRS_ISOLATED 2
#define PRS_INVALID_ROOT -1
#define PRS_INVALID_ISOLATED -2
static inline bool is_prs_invalid(int prs_state)
{
return prs_state < 0;
}
/*
* Temporary cpumasks for working with partitions that are passed among
* functions to avoid memory allocation in inner functions.
*/
struct tmpmasks {
cpumask_var_t addmask, delmask; /* For partition root */
cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
};
void inc_dl_tasks_cs(struct task_struct *p)
{
struct cpuset *cs = task_cs(p);
cs->nr_deadline_tasks++;
}
void dec_dl_tasks_cs(struct task_struct *p)
{
struct cpuset *cs = task_cs(p);
cs->nr_deadline_tasks--;
}
static inline int is_partition_valid(const struct cpuset *cs)
{
return cs->partition_root_state > 0;
}
static inline int is_partition_invalid(const struct cpuset *cs)
{
return cs->partition_root_state < 0;
}
/*
* Callers should hold callback_lock to modify partition_root_state.
*/
static inline void make_partition_invalid(struct cpuset *cs)
{
if (cs->partition_root_state > 0)
cs->partition_root_state = -cs->partition_root_state;
}
/*
* Send notification event of whenever partition_root_state changes.
*/
static inline void notify_partition_change(struct cpuset *cs, int old_prs)
{
if (old_prs == cs->partition_root_state)
return;
cgroup_file_notify(&cs->partition_file);
/* Reset prs_err if not invalid */
if (is_partition_valid(cs))
WRITE_ONCE(cs->prs_err, PERR_NONE);
}
static struct cpuset top_cpuset = {
.flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) |
BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
.partition_root_state = PRS_ROOT,
.relax_domain_level = -1,
.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
};
/*
* There are two global locks guarding cpuset structures - cpuset_mutex and
* callback_lock. We also require taking task_lock() when dereferencing a
* task's cpuset pointer. See "The task_lock() exception", at the end of this
* comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems
* can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
* structures. Note that cpuset_mutex needs to be a mutex as it is used in
* paths that rely on priority inheritance (e.g. scheduler - on RT) for
* correctness.
*
* A task must hold both locks to modify cpusets. If a task holds
* cpuset_mutex, it blocks others, ensuring that it is the only task able to
* also acquire callback_lock and be able to modify cpusets. It can perform
* various checks on the cpuset structure first, knowing nothing will change.
* It can also allocate memory while just holding cpuset_mutex. While it is
* performing these checks, various callback routines can briefly acquire
* callback_lock to query cpusets. Once it is ready to make the changes, it
* takes callback_lock, blocking everyone else.
*
* Calls to the kernel memory allocator can not be made while holding
* callback_lock, as that would risk double tripping on callback_lock
* from one of the callbacks into the cpuset code from within
* __alloc_pages().
*
* If a task is only holding callback_lock, then it has read-only
* access to cpusets.
*
* Now, the task_struct fields mems_allowed and mempolicy may be changed
* by other task, we use alloc_lock in the task_struct fields to protect
* them.
*
* The cpuset_common_seq_show() handlers only hold callback_lock across
* small pieces of code, such as when reading out possibly multi-word
* cpumasks and nodemasks.
*
* Accessing a task's cpuset should be done in accordance with the
* guidelines for accessing subsystem state in kernel/cgroup.c
*/
static DEFINE_MUTEX(cpuset_mutex);
void cpuset_lock(void)
{
mutex_lock(&cpuset_mutex);
}
void cpuset_unlock(void)
{
mutex_unlock(&cpuset_mutex);
}
static DEFINE_SPINLOCK(callback_lock);
void cpuset_callback_lock_irq(void)
{
spin_lock_irq(&callback_lock);
}
void cpuset_callback_unlock_irq(void)
{
spin_unlock_irq(&callback_lock);
}
static struct workqueue_struct *cpuset_migrate_mm_wq;
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
static inline void check_insane_mems_config(nodemask_t *nodes)
{
if (!cpusets_insane_config() &&
movable_only_nodes(nodes)) {
static_branch_enable(&cpusets_insane_config_key);
pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
"Cpuset allocations might fail even with a lot of memory available.\n",
nodemask_pr_args(nodes));
}
}
/*
* decrease cs->attach_in_progress.
* wake_up cpuset_attach_wq if cs->attach_in_progress==0.
*/
static inline void dec_attach_in_progress_locked(struct cpuset *cs)
{
lockdep_assert_held(&cpuset_mutex);
cs->attach_in_progress--;
if (!cs->attach_in_progress)
wake_up(&cpuset_attach_wq);
}
static inline void dec_attach_in_progress(struct cpuset *cs)
{
mutex_lock(&cpuset_mutex);
dec_attach_in_progress_locked(cs);
mutex_unlock(&cpuset_mutex);
}
/*
* Cgroup v2 behavior is used on the "cpus" and "mems" control files when
* on default hierarchy or when the cpuset_v2_mode flag is set by mounting
* the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
* With v2 behavior, "cpus" and "mems" are always what the users have
* requested and won't be changed by hotplug events. Only the effective
* cpus or mems will be affected.
*/
static inline bool is_in_v2_mode(void)
{
return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
(cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}
/**
* partition_is_populated - check if partition has tasks
* @cs: partition root to be checked
* @excluded_child: a child cpuset to be excluded in task checking
* Return: true if there are tasks, false otherwise
*
* It is assumed that @cs is a valid partition root. @excluded_child should
* be non-NULL when this cpuset is going to become a partition itself.
*/
static inline bool partition_is_populated(struct cpuset *cs,
struct cpuset *excluded_child)
{
struct cgroup_subsys_state *css;
struct cpuset *child;
if (cs->css.cgroup->nr_populated_csets)
return true;
if (!excluded_child && !cs->nr_subparts)
return cgroup_is_populated(cs->css.cgroup);
rcu_read_lock();
cpuset_for_each_child(child, css, cs) {
if (child == excluded_child)
continue;
if (is_partition_valid(child))
continue;
if (cgroup_is_populated(child->css.cgroup)) {
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
return false;
}
/*
* Return in pmask the portion of a task's cpusets's cpus_allowed that
* are online and are capable of running the task. If none are found,
* walk up the cpuset hierarchy until we find one that does have some
* appropriate cpus.
*
* One way or another, we guarantee to return some non-empty subset
* of cpu_online_mask.
*
* Call with callback_lock or cpuset_mutex held.
*/
static void guarantee_online_cpus(struct task_struct *tsk,
struct cpumask *pmask)
{
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
struct cpuset *cs;
if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
cpumask_copy(pmask, cpu_online_mask);
rcu_read_lock();
cs = task_cs(tsk);
while (!cpumask_intersects(cs->effective_cpus, pmask))
cs = parent_cs(cs);
cpumask_and(pmask, pmask, cs->effective_cpus);
rcu_read_unlock();
}
/*
* Return in *pmask the portion of a cpusets's mems_allowed that
* are online, with memory. If none are online with memory, walk
* up the cpuset hierarchy until we find one that does have some
* online mems. The top cpuset always has some mems online.
*
* One way or another, we guarantee to return some non-empty subset
* of node_states[N_MEMORY].
*
* Call with callback_lock or cpuset_mutex held.
*/
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
{
while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
cs = parent_cs(cs);
nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
}
/**
* alloc_cpumasks - allocate three cpumasks for cpuset
* @cs: the cpuset that have cpumasks to be allocated.
* @tmp: the tmpmasks structure pointer
* Return: 0 if successful, -ENOMEM otherwise.
*
* Only one of the two input arguments should be non-NULL.
*/
static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
if (cs) {
pmask1 = &cs->cpus_allowed;
pmask2 = &cs->effective_cpus;
pmask3 = &cs->effective_xcpus;
pmask4 = &cs->exclusive_cpus;
} else {
pmask1 = &tmp->new_cpus;
pmask2 = &tmp->addmask;
pmask3 = &tmp->delmask;
pmask4 = NULL;
}
if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
return -ENOMEM;
if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
goto free_one;
if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
goto free_two;
if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
goto free_three;
return 0;
free_three:
free_cpumask_var(*pmask3);
free_two:
free_cpumask_var(*pmask2);
free_one:
free_cpumask_var(*pmask1);
return -ENOMEM;
}
/**
* free_cpumasks - free cpumasks in a tmpmasks structure
* @cs: the cpuset that have cpumasks to be free.
* @tmp: the tmpmasks structure pointer
*/
static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
{
if (cs) {
free_cpumask_var(cs->cpus_allowed);
free_cpumask_var(cs->effective_cpus);
free_cpumask_var(cs->effective_xcpus);
free_cpumask_var(cs->exclusive_cpus);
}
if (tmp) {
free_cpumask_var(tmp->new_cpus);
free_cpumask_var(tmp->addmask);
free_cpumask_var(tmp->delmask);
}
}
/**
* alloc_trial_cpuset - allocate a trial cpuset
* @cs: the cpuset that the trial cpuset duplicates
*/
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
{
struct cpuset *trial;
trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
if (!trial)
return NULL;
if (alloc_cpumasks(trial, NULL)) {
kfree(trial);
return NULL;
}
cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
cpumask_copy(trial->effective_cpus, cs->effective_cpus);
cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
return trial;
}
/**
* free_cpuset - free the cpuset
* @cs: the cpuset to be freed
*/
static inline void free_cpuset(struct cpuset *cs)
{
free_cpumasks(cs, NULL);
kfree(cs);
}
/* Return user specified exclusive CPUs */
static inline struct cpumask *user_xcpus(struct cpuset *cs)
{
return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
: cs->exclusive_cpus;
}
static inline bool xcpus_empty(struct cpuset *cs)
{
return cpumask_empty(cs->cpus_allowed) &&
cpumask_empty(cs->exclusive_cpus);
}
/*
* cpusets_are_exclusive() - check if two cpusets are exclusive
*
* Return true if exclusive, false if not
*/
static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
{
struct cpumask *xcpus1 = user_xcpus(cs1);
struct cpumask *xcpus2 = user_xcpus(cs2);
if (cpumask_intersects(xcpus1, xcpus2))
return false;
return true;
}
/*
* validate_change() - Used to validate that any proposed cpuset change
* follows the structural rules for cpusets.
*
* If we replaced the flag and mask values of the current cpuset
* (cur) with those values in the trial cpuset (trial), would
* our various subset and exclusive rules still be valid? Presumes
* cpuset_mutex held.
*
* 'cur' is the address of an actual, in-use cpuset. Operations
* such as list traversal that depend on the actual address of the
* cpuset in the list must use cur below, not trial.
*
* 'trial' is the address of bulk structure copy of cur, with
* perhaps one or more of the fields cpus_allowed, mems_allowed,
* or flags changed to new, trial values.
*
* Return 0 if valid, -errno if not.
*/
static int validate_change(struct cpuset *cur, struct cpuset *trial)
{
struct cgroup_subsys_state *css;
struct cpuset *c, *par;
int ret = 0;
rcu_read_lock();
if (!is_in_v2_mode())
ret = cpuset1_validate_change(cur, trial);
if (ret)
goto out;
/* Remaining checks don't apply to root cpuset */
if (cur == &top_cpuset)
goto out;
par = parent_cs(cur);
/*
* Cpusets with tasks - existing or newly being attached - can't
* be changed to have empty cpus_allowed or mems_allowed.
*/
ret = -ENOSPC;
if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
if (!cpumask_empty(cur->cpus_allowed) &&
cpumask_empty(trial->cpus_allowed))
goto out;
if (!nodes_empty(cur->mems_allowed) &&
nodes_empty(trial->mems_allowed))
goto out;
}
/*
* We can't shrink if we won't have enough room for SCHED_DEADLINE
* tasks.
*/
ret = -EBUSY;
if (is_cpu_exclusive(cur) &&
!cpuset_cpumask_can_shrink(cur->cpus_allowed,
trial->cpus_allowed))
goto out;
/*
* If either I or some sibling (!= me) is exclusive, we can't
* overlap. exclusive_cpus cannot overlap with each other if set.
*/
ret = -EINVAL;
cpuset_for_each_child(c, css, par) {
bool txset, cxset; /* Are exclusive_cpus set? */
if (c == cur)
continue;
txset = !cpumask_empty(trial->exclusive_cpus);
cxset = !cpumask_empty(c->exclusive_cpus);
if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
(txset && cxset)) {
if (!cpusets_are_exclusive(trial, c))
goto out;
} else if (txset || cxset) {
struct cpumask *xcpus, *acpus;
/*
* When just one of the exclusive_cpus's is set,
* cpus_allowed of the other cpuset, if set, cannot be
* a subset of it or none of those CPUs will be
* available if these exclusive CPUs are activated.
*/
if (txset) {
xcpus = trial->exclusive_cpus;
acpus = c->cpus_allowed;
} else {
xcpus = c->exclusive_cpus;
acpus = trial->cpus_allowed;
}
if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
goto out;
}
if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
nodes_intersects(trial->mems_allowed, c->mems_allowed))
goto out;
}
ret = 0;
out:
rcu_read_unlock();
return ret;
}
#ifdef CONFIG_SMP
/*
* Helper routine for generate_sched_domains().
* Do cpusets a, b have overlapping effective cpus_allowed masks?
*/
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
return cpumask_intersects(a->effective_cpus, b->effective_cpus);
}
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
if (dattr->relax_domain_level < c->relax_domain_level)
dattr->relax_domain_level = c->relax_domain_level;
return;
}
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
struct cpuset *root_cs)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
/* skip the whole subtree if @cp doesn't have any CPU */
if (cpumask_empty(cp->cpus_allowed)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
if (is_sched_load_balance(cp))
update_domain_attr(dattr, cp);
}
rcu_read_unlock();
}
/* Must be called with cpuset_mutex held. */
static inline int nr_cpusets(void)
{
/* jump label reference count + the top-level cpuset */
return static_key_count(&cpusets_enabled_key.key) + 1;
}
/*
* generate_sched_domains()
*
* This function builds a partial partition of the systems CPUs
* A 'partial partition' is a set of non-overlapping subsets whose
* union is a subset of that set.
* The output of this function needs to be passed to kernel/sched/core.c
* partition_sched_domains() routine, which will rebuild the scheduler's
* load balancing domains (sched domains) as specified by that partial
* partition.
*
* See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
* for a background explanation of this.
*
* Does not return errors, on the theory that the callers of this
* routine would rather not worry about failures to rebuild sched
* domains when operating in the severe memory shortage situations
* that could cause allocation failures below.
*
* Must be called with cpuset_mutex held.
*
* The three key local variables below are:
* cp - cpuset pointer, used (together with pos_css) to perform a
* top-down scan of all cpusets. For our purposes, rebuilding
* the schedulers sched domains, we can ignore !is_sched_load_
* balance cpusets.
* csa - (for CpuSet Array) Array of pointers to all the cpusets
* that need to be load balanced, for convenient iterative
* access by the subsequent code that finds the best partition,
* i.e the set of domains (subsets) of CPUs such that the
* cpus_allowed of every cpuset marked is_sched_load_balance
* is a subset of one of these domains, while there are as
* many such domains as possible, each as small as possible.
* doms - Conversion of 'csa' to an array of cpumasks, for passing to
* the kernel/sched/core.c routine partition_sched_domains() in a
* convenient format, that can be easily compared to the prior
* value to determine what partition elements (sched domains)
* were changed (added or removed.)
*
* Finding the best partition (set of domains):
* The double nested loops below over i, j scan over the load
* balanced cpusets (using the array of cpuset pointers in csa[])
* looking for pairs of cpusets that have overlapping cpus_allowed
* and merging them using a union-find algorithm.
*
* The union of the cpus_allowed masks from the set of all cpusets
* having the same root then form the one element of the partition
* (one sched domain) to be passed to partition_sched_domains().
*
*/
static int generate_sched_domains(cpumask_var_t **domains,
struct sched_domain_attr **attributes)
{
struct cpuset *cp; /* top-down scan of cpusets */
struct cpuset **csa; /* array of all cpuset ptrs */
int csn; /* how many cpuset ptrs in csa so far */
int i, j; /* indices for partition finding loops */
cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
struct sched_domain_attr *dattr; /* attributes for custom domains */
int ndoms = 0; /* number of sched domains in result */
int nslot; /* next empty doms[] struct cpumask slot */
struct cgroup_subsys_state *pos_css;
bool root_load_balance = is_sched_load_balance(&top_cpuset);
bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
int nslot_update;
doms = NULL;
dattr = NULL;
csa = NULL;
/* Special case for the 99% of systems with one, full, sched domain */
if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
single_root_domain:
ndoms = 1;
doms = alloc_sched_domains(ndoms);
if (!doms)
goto done;
dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
if (dattr) {
*dattr = SD_ATTR_INIT;
update_domain_attr_tree(dattr, &top_cpuset);
}
cpumask_and(doms[0], top_cpuset.effective_cpus,
housekeeping_cpumask(HK_TYPE_DOMAIN));
goto done;
}
csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
if (!csa)
goto done;
csn = 0;
rcu_read_lock();
if (root_load_balance)
csa[csn++] = &top_cpuset;
cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
if (cp == &top_cpuset)
continue;
if (cgrpv2)
goto v2;
/*
* v1:
* Continue traversing beyond @cp iff @cp has some CPUs and
* isn't load balancing. The former is obvious. The
* latter: All child cpusets contain a subset of the
* parent's cpus, so just skip them, and then we call
* update_domain_attr_tree() to calc relax_domain_level of
* the corresponding sched domain.
*/
if (!cpumask_empty(cp->cpus_allowed) &&
!(is_sched_load_balance(cp) &&
cpumask_intersects(cp->cpus_allowed,
housekeeping_cpumask(HK_TYPE_DOMAIN))))
continue;
if (is_sched_load_balance(cp) &&
!cpumask_empty(cp->effective_cpus))
csa[csn++] = cp;
/* skip @cp's subtree */
pos_css = css_rightmost_descendant(pos_css);
continue;
v2:
/*
* Only valid partition roots that are not isolated and with
* non-empty effective_cpus will be saved into csn[].
*/
if ((cp->partition_root_state == PRS_ROOT) &&
!cpumask_empty(cp->effective_cpus))
csa[csn++] = cp;
/*
* Skip @cp's subtree if not a partition root and has no
* exclusive CPUs to be granted to child cpusets.
*/
if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
pos_css = css_rightmost_descendant(pos_css);
}
rcu_read_unlock();
/*
* If there are only isolated partitions underneath the cgroup root,
* we can optimize out unneeded sched domains scanning.
*/
if (root_load_balance && (csn == 1))
goto single_root_domain;
for (i = 0; i < csn; i++)
uf_node_init(&csa[i]->node);
/* Merge overlapping cpusets */
for (i = 0; i < csn; i++) {
for (j = i + 1; j < csn; j++) {
if (cpusets_overlap(csa[i], csa[j])) {
/*
* Cgroup v2 shouldn't pass down overlapping
* partition root cpusets.
*/
WARN_ON_ONCE(cgrpv2);
uf_union(&csa[i]->node, &csa[j]->node);
}
}
}
/* Count the total number of domains */
for (i = 0; i < csn; i++) {
if (uf_find(&csa[i]->node) == &csa[i]->node)
ndoms++;
}
/*
* Now we know how many domains to create.
* Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
*/
doms = alloc_sched_domains(ndoms);
if (!doms)
goto done;
/*
* The rest of the code, including the scheduler, can deal with
* dattr==NULL case. No need to abort if alloc fails.
*/
dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
GFP_KERNEL);
/*
* Cgroup v2 doesn't support domain attributes, just set all of them
* to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
* subset of HK_TYPE_DOMAIN housekeeping CPUs.
*/
if (cgrpv2) {
for (i = 0; i < ndoms; i++) {
cpumask_copy(doms[i], csa[i]->effective_cpus);
if (dattr)
dattr[i] = SD_ATTR_INIT;
}
goto done;
}
for (nslot = 0, i = 0; i < csn; i++) {
nslot_update = 0;
for (j = i; j < csn; j++) {
if (uf_find(&csa[j]->node) == &csa[i]->node) {
struct cpumask *dp = doms[nslot];
if (i == j) {
nslot_update = 1;
cpumask_clear(dp);
if (dattr)
*(dattr + nslot) = SD_ATTR_INIT;
}
cpumask_or(dp, dp, csa[j]->effective_cpus);
cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
if (dattr)
update_domain_attr_tree(dattr + nslot, csa[j]);
}
}
if (nslot_update)
nslot++;
}
BUG_ON(nslot != ndoms);
done:
kfree(csa);
/*
* Fallback to the default domain if kmalloc() failed.
* See comments in partition_sched_domains().
*/
if (doms == NULL)
ndoms = 1;
*domains = doms;
*attributes = dattr;
return ndoms;
}
static void dl_update_tasks_root_domain(struct cpuset *cs)
{
struct css_task_iter it;
struct task_struct *task;
if (cs->nr_deadline_tasks == 0)
return;
css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it)))
dl_add_task_root_domain(task);
css_task_iter_end(&it);
}
static void dl_rebuild_rd_accounting(void)
{
struct cpuset *cs = NULL;
struct cgroup_subsys_state *pos_css;
lockdep_assert_held(&cpuset_mutex);
lockdep_assert_cpus_held();
lockdep_assert_held(&sched_domains_mutex);
rcu_read_lock();
/*
* Clear default root domain DL accounting, it will be computed again
* if a task belongs to it.
*/
dl_clear_root_domain(&def_root_domain);
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
if (cpumask_empty(cs->effective_cpus)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
css_get(&cs->css);
rcu_read_unlock();
dl_update_tasks_root_domain(cs);
rcu_read_lock();
css_put(&cs->css);
}
rcu_read_unlock();
}
static void
partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
struct sched_domain_attr *dattr_new)
{
mutex_lock(&sched_domains_mutex);
partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
dl_rebuild_rd_accounting();
mutex_unlock(&sched_domains_mutex);
}
/*
* Rebuild scheduler domains.
*
* If the flag 'sched_load_balance' of any cpuset with non-empty
* 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
* which has that flag enabled, or if any cpuset with a non-empty
* 'cpus' is removed, then call this routine to rebuild the
* scheduler's dynamic sched domains.
*
* Call with cpuset_mutex held. Takes cpus_read_lock().
*/
void rebuild_sched_domains_locked(void)
{
struct cgroup_subsys_state *pos_css;
struct sched_domain_attr *attr;
cpumask_var_t *doms;
struct cpuset *cs;
int ndoms;
lockdep_assert_cpus_held();
lockdep_assert_held(&cpuset_mutex);
/*
* If we have raced with CPU hotplug, return early to avoid
* passing doms with offlined cpu to partition_sched_domains().
* Anyways, cpuset_handle_hotplug() will rebuild sched domains.
*
* With no CPUs in any subpartitions, top_cpuset's effective CPUs
* should be the same as the active CPUs, so checking only top_cpuset
* is enough to detect racing CPU offlines.
*/
if (cpumask_empty(subpartitions_cpus) &&
!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
return;
/*
* With subpartition CPUs, however, the effective CPUs of a partition
* root should be only a subset of the active CPUs. Since a CPU in any
* partition root could be offlined, all must be checked.
*/
if (!cpumask_empty(subpartitions_cpus)) {
rcu_read_lock();
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
if (!is_partition_valid(cs)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
if (!cpumask_subset(cs->effective_cpus,
cpu_active_mask)) {
rcu_read_unlock();
return;
}
}
rcu_read_unlock();
}
/* Generate domain masks and attrs */
ndoms = generate_sched_domains(&doms, &attr);
/* Have scheduler rebuild the domains */
partition_and_rebuild_sched_domains(ndoms, doms, attr);
}
#else /* !CONFIG_SMP */
void rebuild_sched_domains_locked(void)
{
}
#endif /* CONFIG_SMP */
static void rebuild_sched_domains_cpuslocked(void)
{
mutex_lock(&cpuset_mutex);
rebuild_sched_domains_locked();
mutex_unlock(&cpuset_mutex);
}
void rebuild_sched_domains(void)
{
cpus_read_lock();
rebuild_sched_domains_cpuslocked();
cpus_read_unlock();
}
/**
* cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
* @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
* @new_cpus: the temp variable for the new effective_cpus mask
*
* Iterate through each task of @cs updating its cpus_allowed to the
* effective cpuset's. As this function is called with cpuset_mutex held,
* cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
* is used instead of effective_cpus to make sure all offline CPUs are also
* included as hotplug code won't update cpumasks for tasks in top_cpuset.
*/
void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
{
struct css_task_iter it;
struct task_struct *task;
bool top_cs = cs == &top_cpuset;
css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it))) {
const struct cpumask *possible_mask = task_cpu_possible_mask(task);
if (top_cs) {
/*
* Percpu kthreads in top_cpuset are ignored
*/
if (kthread_is_per_cpu(task))
continue;
cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
} else {
cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
}
set_cpus_allowed_ptr(task, new_cpus);
}
css_task_iter_end(&it);
}
/**
* compute_effective_cpumask - Compute the effective cpumask of the cpuset
* @new_cpus: the temp variable for the new effective_cpus mask
* @cs: the cpuset the need to recompute the new effective_cpus mask
* @parent: the parent cpuset
*
* The result is valid only if the given cpuset isn't a partition root.
*/
static void compute_effective_cpumask(struct cpumask *new_cpus,
struct cpuset *cs, struct cpuset *parent)
{
cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
}
/*
* Commands for update_parent_effective_cpumask
*/
enum partition_cmd {
partcmd_enable, /* Enable partition root */
partcmd_enablei, /* Enable isolated partition root */
partcmd_disable, /* Disable partition root */
partcmd_update, /* Update parent's effective_cpus */
partcmd_invalidate, /* Make partition invalid */
};
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
struct tmpmasks *tmp);
/*
* Update partition exclusive flag
*
* Return: 0 if successful, an error code otherwise
*/
static int update_partition_exclusive(struct cpuset *cs, int new_prs)
{
bool exclusive = (new_prs > PRS_MEMBER);
if (exclusive && !is_cpu_exclusive(cs)) {
if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
return PERR_NOTEXCL;
} else if (!exclusive && is_cpu_exclusive(cs)) {
/* Turning off CS_CPU_EXCLUSIVE will not return error */
cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
}
return 0;
}
/*
* Update partition load balance flag and/or rebuild sched domain
*
* Changing load balance flag will automatically call
* rebuild_sched_domains_locked().
* This function is for cgroup v2 only.
*/
static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
{
int new_prs = cs->partition_root_state;
bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
bool new_lb;
/*
* If cs is not a valid partition root, the load balance state
* will follow its parent.
*/
if (new_prs > 0) {
new_lb = (new_prs != PRS_ISOLATED);
} else {
new_lb = is_sched_load_balance(parent_cs(cs));
}
if (new_lb != !!is_sched_load_balance(cs)) {
rebuild_domains = true;
if (new_lb)
set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
else
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}
if (rebuild_domains && !force_sd_rebuild)
rebuild_sched_domains_locked();
}
/*
* tasks_nocpu_error - Return true if tasks will have no effective_cpus
*/
static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
struct cpumask *xcpus)
{
/*
* A populated partition (cs or parent) can't have empty effective_cpus
*/
return (cpumask_subset(parent->effective_cpus, xcpus) &&
partition_is_populated(parent, cs)) ||
(!cpumask_intersects(xcpus, cpu_active_mask) &&
partition_is_populated(cs, NULL));
}
static void reset_partition_data(struct cpuset *cs)
{
struct cpuset *parent = parent_cs(cs);
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
return;
lockdep_assert_held(&callback_lock);
cs->nr_subparts = 0;
if (cpumask_empty(cs->exclusive_cpus)) {
cpumask_clear(cs->effective_xcpus);
if (is_cpu_exclusive(cs))
clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
}
if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
}
/*
* partition_xcpus_newstate - Exclusive CPUs state change
* @old_prs: old partition_root_state
* @new_prs: new partition_root_state
* @xcpus: exclusive CPUs with state change
*/
static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
{
WARN_ON_ONCE(old_prs == new_prs);
if (new_prs == PRS_ISOLATED)
cpumask_or(isolated_cpus, isolated_cpus, xcpus);
else
cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
}
/*
* partition_xcpus_add - Add new exclusive CPUs to partition
* @new_prs: new partition_root_state
* @parent: parent cpuset
* @xcpus: exclusive CPUs to be added
* Return: true if isolated_cpus modified, false otherwise
*
* Remote partition if parent == NULL
*/
static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
struct cpumask *xcpus)
{
bool isolcpus_updated;
WARN_ON_ONCE(new_prs < 0);
lockdep_assert_held(&callback_lock);
if (!parent)
parent = &top_cpuset;
if (parent == &top_cpuset)
cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
isolcpus_updated = (new_prs != parent->partition_root_state);
if (isolcpus_updated)
partition_xcpus_newstate(parent->partition_root_state, new_prs,
xcpus);
cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
return isolcpus_updated;
}
/*
* partition_xcpus_del - Remove exclusive CPUs from partition
* @old_prs: old partition_root_state
* @parent: parent cpuset
* @xcpus: exclusive CPUs to be removed
* Return: true if isolated_cpus modified, false otherwise
*
* Remote partition if parent == NULL
*/
static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
struct cpumask *xcpus)
{
bool isolcpus_updated;
WARN_ON_ONCE(old_prs < 0);
lockdep_assert_held(&callback_lock);
if (!parent)
parent = &top_cpuset;
if (parent == &top_cpuset)
cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
isolcpus_updated = (old_prs != parent->partition_root_state);
if (isolcpus_updated)
partition_xcpus_newstate(old_prs, parent->partition_root_state,
xcpus);
cpumask_and(xcpus, xcpus, cpu_active_mask);
cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
return isolcpus_updated;
}
static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
{
int ret;
lockdep_assert_cpus_held();
if (!isolcpus_updated)
return;
ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
WARN_ON_ONCE(ret < 0);
}
/**
* cpuset_cpu_is_isolated - Check if the given CPU is isolated
* @cpu: the CPU number to be checked
* Return: true if CPU is used in an isolated partition, false otherwise
*/
bool cpuset_cpu_is_isolated(int cpu)
{
return cpumask_test_cpu(cpu, isolated_cpus);
}
EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
/*
* compute_effective_exclusive_cpumask - compute effective exclusive CPUs
* @cs: cpuset
* @xcpus: effective exclusive CPUs value to be set
* Return: true if xcpus is not empty, false otherwise.
*
* Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
* it must be a subset of parent's effective_xcpus.
*/
static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
struct cpumask *xcpus)
{
struct cpuset *parent = parent_cs(cs);
if (!xcpus)
xcpus = cs->effective_xcpus;
return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
}
static inline bool is_remote_partition(struct cpuset *cs)
{
return !list_empty(&cs->remote_sibling);
}
static inline bool is_local_partition(struct cpuset *cs)
{
return is_partition_valid(cs) && !is_remote_partition(cs);
}
/*
* remote_partition_enable - Enable current cpuset as a remote partition root
* @cs: the cpuset to update
* @new_prs: new partition_root_state
* @tmp: temparary masks
* Return: 0 if successful, errcode if error
*
* Enable the current cpuset to become a remote partition root taking CPUs
* directly from the top cpuset. cpuset_mutex must be held by the caller.
*/
static int remote_partition_enable(struct cpuset *cs, int new_prs,
struct tmpmasks *tmp)
{
bool isolcpus_updated;
/*
* The user must have sysadmin privilege.
*/
if (!capable(CAP_SYS_ADMIN))
return PERR_ACCESS;
/*
* The requested exclusive_cpus must not be allocated to other
* partitions and it can't use up all the root's effective_cpus.
*
* Note that if there is any local partition root above it or
* remote partition root underneath it, its exclusive_cpus must
* have overlapped with subpartitions_cpus.
*/
compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
if (cpumask_empty(tmp->new_cpus) ||
cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
return PERR_INVCPUS;
spin_lock_irq(&callback_lock);
isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
list_add(&cs->remote_sibling, &remote_children);
spin_unlock_irq(&callback_lock);
update_unbound_workqueue_cpumask(isolcpus_updated);
/*
* Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
*/
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
return 0;
}
/*
* remote_partition_disable - Remove current cpuset from remote partition list
* @cs: the cpuset to update
* @tmp: temparary masks
*
* The effective_cpus is also updated.
*
* cpuset_mutex must be held by the caller.
*/
static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
{
bool isolcpus_updated;
compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
WARN_ON_ONCE(!is_remote_partition(cs));
WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
spin_lock_irq(&callback_lock);
list_del_init(&cs->remote_sibling);
isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
NULL, tmp->new_cpus);
cs->partition_root_state = -cs->partition_root_state;
if (!cs->prs_err)
cs->prs_err = PERR_INVCPUS;
reset_partition_data(cs);
spin_unlock_irq(&callback_lock);
update_unbound_workqueue_cpumask(isolcpus_updated);
/*
* Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
*/
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
}
/*
* remote_cpus_update - cpus_exclusive change of remote partition
* @cs: the cpuset to be updated
* @newmask: the new effective_xcpus mask
* @tmp: temparary masks
*
* top_cpuset and subpartitions_cpus will be updated or partition can be
* invalidated.
*/
static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
struct tmpmasks *tmp)
{
bool adding, deleting;
int prs = cs->partition_root_state;
int isolcpus_updated = 0;
if (WARN_ON_ONCE(!is_remote_partition(cs)))
return;
WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
if (cpumask_empty(newmask))
goto invalidate;
adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
/*
* Additions of remote CPUs is only allowed if those CPUs are
* not allocated to other partitions and there are effective_cpus
* left in the top cpuset.
*/
if (adding && (!capable(CAP_SYS_ADMIN) ||
cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
goto invalidate;
spin_lock_irq(&callback_lock);
if (adding)
isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
if (deleting)
isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
spin_unlock_irq(&callback_lock);
update_unbound_workqueue_cpumask(isolcpus_updated);
/*
* Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
*/
cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
update_sibling_cpumasks(&top_cpuset, NULL, tmp);
return;
invalidate:
remote_partition_disable(cs, tmp);
}
/*
* remote_partition_check - check if a child remote partition needs update
* @cs: the cpuset to be updated
* @newmask: the new effective_xcpus mask
* @delmask: temporary mask for deletion (not in tmp)
* @tmp: temparary masks
*
* This should be called before the given cs has updated its cpus_allowed
* and/or effective_xcpus.
*/
static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
struct cpumask *delmask, struct tmpmasks *tmp)
{
struct cpuset *child, *next;
int disable_cnt = 0;
/*
* Compute the effective exclusive CPUs that will be deleted.
*/
if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
!cpumask_intersects(delmask, subpartitions_cpus))
return; /* No deletion of exclusive CPUs in partitions */
/*
* Searching the remote children list to look for those that will
* be impacted by the deletion of exclusive CPUs.
*
* Since a cpuset must be removed from the remote children list
* before it can go offline and holding cpuset_mutex will prevent
* any change in cpuset status. RCU read lock isn't needed.
*/
lockdep_assert_held(&cpuset_mutex);
list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
if (cpumask_intersects(child->effective_cpus, delmask)) {
remote_partition_disable(child, tmp);
disable_cnt++;
}
if (disable_cnt && !force_sd_rebuild)
rebuild_sched_domains_locked();
}
/*
* prstate_housekeeping_conflict - check for partition & housekeeping conflicts
* @prstate: partition root state to be checked
* @new_cpus: cpu mask
* Return: true if there is conflict, false otherwise
*
* CPUs outside of boot_hk_cpus, if defined, can only be used in an
* isolated partition.
*/
static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
{
if (!have_boot_isolcpus)
return false;
if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
return true;
return false;
}
/**
* update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
* @cs: The cpuset that requests change in partition root state
* @cmd: Partition root state change command
* @newmask: Optional new cpumask for partcmd_update
* @tmp: Temporary addmask and delmask
* Return: 0 or a partition root state error code
*
* For partcmd_enable*, the cpuset is being transformed from a non-partition
* root to a partition root. The effective_xcpus (cpus_allowed if
* effective_xcpus not set) mask of the given cpuset will be taken away from
* parent's effective_cpus. The function will return 0 if all the CPUs listed
* in effective_xcpus can be granted or an error code will be returned.
*
* For partcmd_disable, the cpuset is being transformed from a partition
* root back to a non-partition root. Any CPUs in effective_xcpus will be
* given back to parent's effective_cpus. 0 will always be returned.
*
* For partcmd_update, if the optional newmask is specified, the cpu list is
* to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
* assumed to remain the same. The cpuset should either be a valid or invalid
* partition root. The partition root state may change from valid to invalid
* or vice versa. An error code will be returned if transitioning from
* invalid to valid violates the exclusivity rule.
*
* For partcmd_invalidate, the current partition will be made invalid.
*
* The partcmd_enable* and partcmd_disable commands are used by
* update_prstate(). An error code may be returned and the caller will check
* for error.
*
* The partcmd_update command is used by update_cpumasks_hier() with newmask
* NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
* by update_cpumask() with NULL newmask. In both cases, the callers won't
* check for error and so partition_root_state and prs_error will be updated
* directly.
*/
static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
struct cpumask *newmask,
struct tmpmasks *tmp)
{
struct cpuset *parent = parent_cs(cs);
int adding; /* Adding cpus to parent's effective_cpus */
int deleting; /* Deleting cpus from parent's effective_cpus */
int old_prs, new_prs;
int part_error = PERR_NONE; /* Partition error? */
int subparts_delta = 0;
struct cpumask *xcpus; /* cs effective_xcpus */
int isolcpus_updated = 0;
bool nocpu;
lockdep_assert_held(&cpuset_mutex);
/*
* new_prs will only be changed for the partcmd_update and
* partcmd_invalidate commands.
*/
adding = deleting = false;
old_prs = new_prs = cs->partition_root_state;
xcpus = user_xcpus(cs);
if (cmd == partcmd_invalidate) {
if (is_prs_invalid(old_prs))
return 0;
/*
* Make the current partition invalid.
*/
if (is_partition_valid(parent))
adding = cpumask_and(tmp->addmask,
xcpus, parent->effective_xcpus);
if (old_prs > 0) {
new_prs = -old_prs;
subparts_delta--;
}
goto write_error;
}
/*
* The parent must be a partition root.
* The new cpumask, if present, or the current cpus_allowed must
* not be empty.
*/
if (!is_partition_valid(parent)) {
return is_partition_invalid(parent)
? PERR_INVPARENT : PERR_NOTPART;
}
if (!newmask && xcpus_empty(cs))
return PERR_CPUSEMPTY;
nocpu = tasks_nocpu_error(parent, cs, xcpus);
if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
/*
* Enabling partition root is not allowed if its
* effective_xcpus is empty or doesn't overlap with
* parent's effective_xcpus.
*/
if (cpumask_empty(xcpus) ||
!cpumask_intersects(xcpus, parent->effective_xcpus))
return PERR_INVCPUS;
if (prstate_housekeeping_conflict(new_prs, xcpus))
return PERR_HKEEPING;
/*
* A parent can be left with no CPU as long as there is no
* task directly associated with the parent partition.
*/
if (nocpu)
return PERR_NOCPUS;
cpumask_copy(tmp->delmask, xcpus);
deleting = true;
subparts_delta++;
new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
} else if (cmd == partcmd_disable) {
/*
* May need to add cpus to parent's effective_cpus for
* valid partition root.
*/
adding = !is_prs_invalid(old_prs) &&
cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
if (adding)
subparts_delta--;
new_prs = PRS_MEMBER;
} else if (newmask) {
/*
* Empty cpumask is not allowed
*/
if (cpumask_empty(newmask)) {
part_error = PERR_CPUSEMPTY;
goto write_error;
}
/* Check newmask again, whether cpus are available for parent/cs */
nocpu |= tasks_nocpu_error(parent, cs, newmask);
/*
* partcmd_update with newmask:
*
* Compute add/delete mask to/from effective_cpus
*
* For valid partition:
* addmask = exclusive_cpus & ~newmask
* & parent->effective_xcpus
* delmask = newmask & ~exclusive_cpus
* & parent->effective_xcpus
*
* For invalid partition:
* delmask = newmask & parent->effective_xcpus
*/
if (is_prs_invalid(old_prs)) {
adding = false;
deleting = cpumask_and(tmp->delmask,
newmask, parent->effective_xcpus);
} else {
cpumask_andnot(tmp->addmask, xcpus, newmask);
adding = cpumask_and(tmp->addmask, tmp->addmask,
parent->effective_xcpus);
cpumask_andnot(tmp->delmask, newmask, xcpus);
deleting = cpumask_and(tmp->delmask, tmp->delmask,
parent->effective_xcpus);
}
/*
* Make partition invalid if parent's effective_cpus could
* become empty and there are tasks in the parent.
*/
if (nocpu && (!adding ||
!cpumask_intersects(tmp->addmask, cpu_active_mask))) {
part_error = PERR_NOCPUS;
deleting = false;
adding = cpumask_and(tmp->addmask,
xcpus, parent->effective_xcpus);
}
} else {
/*
* partcmd_update w/o newmask
*
* delmask = effective_xcpus & parent->effective_cpus
*
* This can be called from:
* 1) update_cpumasks_hier()
* 2) cpuset_hotplug_update_tasks()
*
* Check to see if it can be transitioned from valid to
* invalid partition or vice versa.
*
* A partition error happens when parent has tasks and all
* its effective CPUs will have to be distributed out.
*/
WARN_ON_ONCE(!is_partition_valid(parent));
if (nocpu) {
part_error = PERR_NOCPUS;
if (is_partition_valid(cs))
adding = cpumask_and(tmp->addmask,
xcpus, parent->effective_xcpus);
} else if (is_partition_invalid(cs) &&
cpumask_subset(xcpus, parent->effective_xcpus)) {
struct cgroup_subsys_state *css;
struct cpuset *child;
bool exclusive = true;
/*
* Convert invalid partition to valid has to
* pass the cpu exclusivity test.
*/
rcu_read_lock();
cpuset_for_each_child(child, css, parent) {
if (child == cs)
continue;
if (!cpusets_are_exclusive(cs, child)) {
exclusive = false;
break;
}
}
rcu_read_unlock();
if (exclusive)
deleting = cpumask_and(tmp->delmask,
xcpus, parent->effective_cpus);
else
part_error = PERR_NOTEXCL;
}
}
write_error:
if (part_error)
WRITE_ONCE(cs->prs_err, part_error);
if (cmd == partcmd_update) {
/*
* Check for possible transition between valid and invalid
* partition root.
*/
switch (cs->partition_root_state) {
case PRS_ROOT:
case PRS_ISOLATED:
if (part_error) {
new_prs = -old_prs;
subparts_delta--;
}
break;
case PRS_INVALID_ROOT:
case PRS_INVALID_ISOLATED:
if (!part_error) {
new_prs = -old_prs;
subparts_delta++;
}
break;
}
}
if (!adding && !deleting && (new_prs == old_prs))
return 0;
/*
* Transitioning between invalid to valid or vice versa may require
* changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
* validate_change() has already been successfully called and
* CPU lists in cs haven't been updated yet. So defer it to later.
*/
if ((old_prs != new_prs) && (cmd != partcmd_update)) {
int err = update_partition_exclusive(cs, new_prs);
if (err)
return err;
}
/*
* Change the parent's effective_cpus & effective_xcpus (top cpuset
* only).
*
* Newly added CPUs will be removed from effective_cpus and
* newly deleted ones will be added back to effective_cpus.
*/
spin_lock_irq(&callback_lock);
if (old_prs != new_prs) {
cs->partition_root_state = new_prs;
if (new_prs <= 0)
cs->nr_subparts = 0;
}
/*
* Adding to parent's effective_cpus means deletion CPUs from cs
* and vice versa.
*/
if (adding)
isolcpus_updated += partition_xcpus_del(old_prs, parent,
tmp->addmask);
if (deleting)
isolcpus_updated += partition_xcpus_add(new_prs, parent,
tmp->delmask);
if (is_partition_valid(parent)) {
parent->nr_subparts += subparts_delta;
WARN_ON_ONCE(parent->nr_subparts < 0);
}
spin_unlock_irq(&callback_lock);
update_unbound_workqueue_cpumask(isolcpus_updated);
if ((old_prs != new_prs) && (cmd == partcmd_update))
update_partition_exclusive(cs, new_prs);
if (adding || deleting) {
cpuset_update_tasks_cpumask(parent, tmp->addmask);
update_sibling_cpumasks(parent, cs, tmp);
}
/*
* For partcmd_update without newmask, it is being called from
* cpuset_handle_hotplug(). Update the load balance flag and
* scheduling domain accordingly.
*/
if ((cmd == partcmd_update) && !newmask)
update_partition_sd_lb(cs, old_prs);
notify_partition_change(cs, old_prs);
return 0;
}
/**
* compute_partition_effective_cpumask - compute effective_cpus for partition
* @cs: partition root cpuset
* @new_ecpus: previously computed effective_cpus to be updated
*
* Compute the effective_cpus of a partition root by scanning effective_xcpus
* of child partition roots and excluding their effective_xcpus.
*
* This has the side effect of invalidating valid child partition roots,
* if necessary. Since it is called from either cpuset_hotplug_update_tasks()
* or update_cpumasks_hier() where parent and children are modified
* successively, we don't need to call update_parent_effective_cpumask()
* and the child's effective_cpus will be updated in later iterations.
*
* Note that rcu_read_lock() is assumed to be held.
*/
static void compute_partition_effective_cpumask(struct cpuset *cs,
struct cpumask *new_ecpus)
{
struct cgroup_subsys_state *css;
struct cpuset *child;
bool populated = partition_is_populated(cs, NULL);
/*
* Check child partition roots to see if they should be
* invalidated when
* 1) child effective_xcpus not a subset of new
* excluisve_cpus
* 2) All the effective_cpus will be used up and cp
* has tasks
*/
compute_effective_exclusive_cpumask(cs, new_ecpus);
cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
rcu_read_lock();
cpuset_for_each_child(child, css, cs) {
if (!is_partition_valid(child))
continue;
child->prs_err = 0;
if (!cpumask_subset(child->effective_xcpus,
cs->effective_xcpus))
child->prs_err = PERR_INVCPUS;
else if (populated &&
cpumask_subset(new_ecpus, child->effective_xcpus))
child->prs_err = PERR_NOCPUS;
if (child->prs_err) {
int old_prs = child->partition_root_state;
/*
* Invalidate child partition
*/
spin_lock_irq(&callback_lock);
make_partition_invalid(child);
cs->nr_subparts--;
child->nr_subparts = 0;
spin_unlock_irq(&callback_lock);
notify_partition_change(child, old_prs);
continue;
}
cpumask_andnot(new_ecpus, new_ecpus,
child->effective_xcpus);
}
rcu_read_unlock();
}
/*
* update_cpumasks_hier() flags
*/
#define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */
#define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */
/*
* update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
* @cs: the cpuset to consider
* @tmp: temp variables for calculating effective_cpus & partition setup
* @force: don't skip any descendant cpusets if set
*
* When configured cpumask is changed, the effective cpumasks of this cpuset
* and all its descendants need to be updated.
*
* On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
*
* Called with cpuset_mutex held
*/
static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
int flags)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
bool need_rebuild_sched_domains = false;
int old_prs, new_prs;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
struct cpuset *parent = parent_cs(cp);
bool remote = is_remote_partition(cp);
bool update_parent = false;
/*
* Skip descendent remote partition that acquires CPUs
* directly from top cpuset unless it is cs.
*/
if (remote && (cp != cs)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
/*
* Update effective_xcpus if exclusive_cpus set.
* The case when exclusive_cpus isn't set is handled later.
*/
if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
spin_lock_irq(&callback_lock);
compute_effective_exclusive_cpumask(cp, NULL);
spin_unlock_irq(&callback_lock);
}
old_prs = new_prs = cp->partition_root_state;
if (remote || (is_partition_valid(parent) &&
is_partition_valid(cp)))
compute_partition_effective_cpumask(cp, tmp->new_cpus);
else
compute_effective_cpumask(tmp->new_cpus, cp, parent);
/*
* A partition with no effective_cpus is allowed as long as
* there is no task associated with it. Call
* update_parent_effective_cpumask() to check it.
*/
if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
update_parent = true;
goto update_parent_effective;
}
/*
* If it becomes empty, inherit the effective mask of the
* parent, which is guaranteed to have some CPUs unless
* it is a partition root that has explicitly distributed
* out all its CPUs.
*/
if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
cpumask_copy(tmp->new_cpus, parent->effective_cpus);
if (remote)
goto get_css;
/*
* Skip the whole subtree if
* 1) the cpumask remains the same,
* 2) has no partition root state,
* 3) HIER_CHECKALL flag not set, and
* 4) for v2 load balance state same as its parent.
*/
if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
(is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
update_parent_effective:
/*
* update_parent_effective_cpumask() should have been called
* for cs already in update_cpumask(). We should also call
* cpuset_update_tasks_cpumask() again for tasks in the parent
* cpuset if the parent's effective_cpus changes.
*/
if ((cp != cs) && old_prs) {
switch (parent->partition_root_state) {
case PRS_ROOT:
case PRS_ISOLATED:
update_parent = true;
break;
default:
/*
* When parent is not a partition root or is
* invalid, child partition roots become
* invalid too.
*/
if (is_partition_valid(cp))
new_prs = -cp->partition_root_state;
WRITE_ONCE(cp->prs_err,
is_partition_invalid(parent)
? PERR_INVPARENT : PERR_NOTPART);
break;
}
}
get_css:
if (!css_tryget_online(&cp->css))
continue;
rcu_read_unlock();
if (update_parent) {
update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
/*
* The cpuset partition_root_state may become
* invalid. Capture it.
*/
new_prs = cp->partition_root_state;
}
spin_lock_irq(&callback_lock);
cpumask_copy(cp->effective_cpus, tmp->new_cpus);
cp->partition_root_state = new_prs;
/*
* Make sure effective_xcpus is properly set for a valid
* partition root.
*/
if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
cpumask_and(cp->effective_xcpus,
cp->cpus_allowed, parent->effective_xcpus);
else if (new_prs < 0)
reset_partition_data(cp);
spin_unlock_irq(&callback_lock);
notify_partition_change(cp, old_prs);
WARN_ON(!is_in_v2_mode() &&
!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
/*
* On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
* from parent if current cpuset isn't a valid partition root
* and their load balance states differ.
*/
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
!is_partition_valid(cp) &&
(is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
if (is_sched_load_balance(parent))
set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
else
clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
}
/*
* On legacy hierarchy, if the effective cpumask of any non-
* empty cpuset is changed, we need to rebuild sched domains.
* On default hierarchy, the cpuset needs to be a partition
* root as well.
*/
if (!cpumask_empty(cp->cpus_allowed) &&
is_sched_load_balance(cp) &&
(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
is_partition_valid(cp)))
need_rebuild_sched_domains = true;
rcu_read_lock();
css_put(&cp->css);
}
rcu_read_unlock();
if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD) &&
!force_sd_rebuild)
rebuild_sched_domains_locked();
}
/**
* update_sibling_cpumasks - Update siblings cpumasks
* @parent: Parent cpuset
* @cs: Current cpuset
* @tmp: Temp variables
*/
static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
struct tmpmasks *tmp)
{
struct cpuset *sibling;
struct cgroup_subsys_state *pos_css;
lockdep_assert_held(&cpuset_mutex);
/*
* Check all its siblings and call update_cpumasks_hier()
* if their effective_cpus will need to be changed.
*
* It is possible a change in parent's effective_cpus
* due to a change in a child partition's effective_xcpus will impact
* its siblings even if they do not inherit parent's effective_cpus
* directly.
*
* The update_cpumasks_hier() function may sleep. So we have to
* release the RCU read lock before calling it. HIER_NO_SD_REBUILD
* flag is used to suppress rebuild of sched domains as the callers
* will take care of that.
*/
rcu_read_lock();
cpuset_for_each_child(sibling, pos_css, parent) {
if (sibling == cs)
continue;
if (!is_partition_valid(sibling)) {
compute_effective_cpumask(tmp->new_cpus, sibling,
parent);
if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
continue;
}
if (!css_tryget_online(&sibling->css))
continue;
rcu_read_unlock();
update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
rcu_read_lock();
css_put(&sibling->css);
}
rcu_read_unlock();
}
/**
* update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
* @cs: the cpuset to consider
* @trialcs: trial cpuset
* @buf: buffer of cpu numbers written to this cpuset
*/
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
const char *buf)
{
int retval;
struct tmpmasks tmp;
struct cpuset *parent = parent_cs(cs);
bool invalidate = false;
int hier_flags = 0;
int old_prs = cs->partition_root_state;
/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
if (cs == &top_cpuset)
return -EACCES;
/*
* An empty cpus_allowed is ok only if the cpuset has no tasks.
* Since cpulist_parse() fails on an empty mask, we special case
* that parsing. The validate_change() call ensures that cpusets
* with tasks have cpus.
*/
if (!*buf) {
cpumask_clear(trialcs->cpus_allowed);
if (cpumask_empty(trialcs->exclusive_cpus))
cpumask_clear(trialcs->effective_xcpus);
} else {
retval = cpulist_parse(buf, trialcs->cpus_allowed);
if (retval < 0)
return retval;
if (!cpumask_subset(trialcs->cpus_allowed,
top_cpuset.cpus_allowed))
return -EINVAL;
/*
* When exclusive_cpus isn't explicitly set, it is constrainted
* by cpus_allowed and parent's effective_xcpus. Otherwise,
* trialcs->effective_xcpus is used as a temporary cpumask
* for checking validity of the partition root.
*/
if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
compute_effective_exclusive_cpumask(trialcs, NULL);
}
/* Nothing to do if the cpus didn't change */
if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
return 0;
if (alloc_cpumasks(NULL, &tmp))
return -ENOMEM;
if (old_prs) {
if (is_partition_valid(cs) &&
cpumask_empty(trialcs->effective_xcpus)) {
invalidate = true;
cs->prs_err = PERR_INVCPUS;
} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
invalidate = true;
cs->prs_err = PERR_HKEEPING;
} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
invalidate = true;
cs->prs_err = PERR_NOCPUS;
}
}
/*
* Check all the descendants in update_cpumasks_hier() if
* effective_xcpus is to be changed.
*/
if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
hier_flags = HIER_CHECKALL;
retval = validate_change(cs, trialcs);
if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
struct cgroup_subsys_state *css;
struct cpuset *cp;
/*
* The -EINVAL error code indicates that partition sibling
* CPU exclusivity rule has been violated. We still allow
* the cpumask change to proceed while invalidating the
* partition. However, any conflicting sibling partitions
* have to be marked as invalid too.
*/
invalidate = true;
rcu_read_lock();
cpuset_for_each_child(cp, css, parent) {
struct cpumask *xcpus = user_xcpus(trialcs);
if (is_partition_valid(cp) &&
cpumask_intersects(xcpus, cp->effective_xcpus)) {
rcu_read_unlock();
update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
rcu_read_lock();
}
}
rcu_read_unlock();
retval = 0;
}
if (retval < 0)
goto out_free;
if (is_partition_valid(cs) ||
(is_partition_invalid(cs) && !invalidate)) {
struct cpumask *xcpus = trialcs->effective_xcpus;
if (cpumask_empty(xcpus) && is_partition_invalid(cs))
xcpus = trialcs->cpus_allowed;
/*
* Call remote_cpus_update() to handle valid remote partition
*/
if (is_remote_partition(cs))
remote_cpus_update(cs, xcpus, &tmp);
else if (invalidate)
update_parent_effective_cpumask(cs, partcmd_invalidate,
NULL, &tmp);
else
update_parent_effective_cpumask(cs, partcmd_update,
xcpus, &tmp);
} else if (!cpumask_empty(cs->exclusive_cpus)) {
/*
* Use trialcs->effective_cpus as a temp cpumask
*/
remote_partition_check(cs, trialcs->effective_xcpus,
trialcs->effective_cpus, &tmp);
}
spin_lock_irq(&callback_lock);
cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
if ((old_prs > 0) && !is_partition_valid(cs))
reset_partition_data(cs);
spin_unlock_irq(&callback_lock);
/* effective_cpus/effective_xcpus will be updated here */
update_cpumasks_hier(cs, &tmp, hier_flags);
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
if (cs->partition_root_state)
update_partition_sd_lb(cs, old_prs);
out_free:
free_cpumasks(NULL, &tmp);
return retval;
}
/**
* update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
* @cs: the cpuset to consider
* @trialcs: trial cpuset
* @buf: buffer of cpu numbers written to this cpuset
*
* The tasks' cpumask will be updated if cs is a valid partition root.
*/
static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
const char *buf)
{
int retval;
struct tmpmasks tmp;
struct cpuset *parent = parent_cs(cs);
bool invalidate = false;
int hier_flags = 0;
int old_prs = cs->partition_root_state;
if (!*buf) {
cpumask_clear(trialcs->exclusive_cpus);
cpumask_clear(trialcs->effective_xcpus);
} else {
retval = cpulist_parse(buf, trialcs->exclusive_cpus);
if (retval < 0)
return retval;
}
/* Nothing to do if the CPUs didn't change */
if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
return 0;
if (*buf)
compute_effective_exclusive_cpumask(trialcs, NULL);
/*
* Check all the descendants in update_cpumasks_hier() if
* effective_xcpus is to be changed.
*/
if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
hier_flags = HIER_CHECKALL;
retval = validate_change(cs, trialcs);
if (retval)
return retval;
if (alloc_cpumasks(NULL, &tmp))
return -ENOMEM;
if (old_prs) {
if (cpumask_empty(trialcs->effective_xcpus)) {
invalidate = true;
cs->prs_err = PERR_INVCPUS;
} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
invalidate = true;
cs->prs_err = PERR_HKEEPING;
} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
invalidate = true;
cs->prs_err = PERR_NOCPUS;
}
if (is_remote_partition(cs)) {
if (invalidate)
remote_partition_disable(cs, &tmp);
else
remote_cpus_update(cs, trialcs->effective_xcpus,
&tmp);
} else if (invalidate) {
update_parent_effective_cpumask(cs, partcmd_invalidate,
NULL, &tmp);
} else {
update_parent_effective_cpumask(cs, partcmd_update,
trialcs->effective_xcpus, &tmp);
}
} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
/*
* Use trialcs->effective_cpus as a temp cpumask
*/
remote_partition_check(cs, trialcs->effective_xcpus,
trialcs->effective_cpus, &tmp);
}
spin_lock_irq(&callback_lock);
cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
if ((old_prs > 0) && !is_partition_valid(cs))
reset_partition_data(cs);
spin_unlock_irq(&callback_lock);
/*
* Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
* of the subtree when it is a valid partition root or effective_xcpus
* is updated.
*/
if (is_partition_valid(cs) || hier_flags)
update_cpumasks_hier(cs, &tmp, hier_flags);
/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
if (cs->partition_root_state)
update_partition_sd_lb(cs, old_prs);
free_cpumasks(NULL, &tmp);
return 0;
}
/*
* Migrate memory region from one set of nodes to another. This is
* performed asynchronously as it can be called from process migration path
* holding locks involved in process management. All mm migrations are
* performed in the queued order and can be waited for by flushing
* cpuset_migrate_mm_wq.
*/
struct cpuset_migrate_mm_work {
struct work_struct work;
struct mm_struct *mm;
nodemask_t from;
nodemask_t to;
};
static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
struct cpuset_migrate_mm_work *mwork =
container_of(work, struct cpuset_migrate_mm_work, work);
/* on a wq worker, no need to worry about %current's mems_allowed */
do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
mmput(mwork->mm);
kfree(mwork);
}
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
const nodemask_t *to)
{
struct cpuset_migrate_mm_work *mwork;
if (nodes_equal(*from, *to)) {
mmput(mm);
return;
}
mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
if (mwork) {
mwork->mm = mm;
mwork->from = *from;
mwork->to = *to;
INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
queue_work(cpuset_migrate_mm_wq, &mwork->work);
} else {
mmput(mm);
}
}
static void cpuset_post_attach(void)
{
flush_workqueue(cpuset_migrate_mm_wq);
}
/*
* cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
* @tsk: the task to change
* @newmems: new nodes that the task will be set
*
* We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
* and rebind an eventual tasks' mempolicy. If the task is allocating in
* parallel, it might temporarily see an empty intersection, which results in
* a seqlock check and retry before OOM or allocation failure.
*/
static void cpuset_change_task_nodemask(struct task_struct *tsk,
nodemask_t *newmems)
{
task_lock(tsk);
local_irq_disable();
write_seqcount_begin(&tsk->mems_allowed_seq);
nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
mpol_rebind_task(tsk, newmems);
tsk->mems_allowed = *newmems;
write_seqcount_end(&tsk->mems_allowed_seq);
local_irq_enable();
task_unlock(tsk);
}
static void *cpuset_being_rebound;
/**
* cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
* @cs: the cpuset in which each task's mems_allowed mask needs to be changed
*
* Iterate through each task of @cs updating its mems_allowed to the
* effective cpuset's. As this function is called with cpuset_mutex held,
* cpuset membership stays stable.
*/
void cpuset_update_tasks_nodemask(struct cpuset *cs)
{
static nodemask_t newmems; /* protected by cpuset_mutex */
struct css_task_iter it;
struct task_struct *task;
cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
guarantee_online_mems(cs, &newmems);
/*
* The mpol_rebind_mm() call takes mmap_lock, which we couldn't
* take while holding tasklist_lock. Forks can happen - the
* mpol_dup() cpuset_being_rebound check will catch such forks,
* and rebind their vma mempolicies too. Because we still hold
* the global cpuset_mutex, we know that no other rebind effort
* will be contending for the global variable cpuset_being_rebound.
* It's ok if we rebind the same mm twice; mpol_rebind_mm()
* is idempotent. Also migrate pages in each mm to new nodes.
*/
css_task_iter_start(&cs->css, 0, &it);
while ((task = css_task_iter_next(&it))) {
struct mm_struct *mm;
bool migrate;
cpuset_change_task_nodemask(task, &newmems);
mm = get_task_mm(task);
if (!mm)
continue;
migrate = is_memory_migrate(cs);
mpol_rebind_mm(mm, &cs->mems_allowed);
if (migrate)
cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
else
mmput(mm);
}
css_task_iter_end(&it);
/*
* All the tasks' nodemasks have been updated, update
* cs->old_mems_allowed.
*/
cs->old_mems_allowed = newmems;
/* We're done rebinding vmas to this cpuset's new mems_allowed. */
cpuset_being_rebound = NULL;
}
/*
* update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
* @cs: the cpuset to consider
* @new_mems: a temp variable for calculating new effective_mems
*
* When configured nodemask is changed, the effective nodemasks of this cpuset
* and all its descendants need to be updated.
*
* On legacy hierarchy, effective_mems will be the same with mems_allowed.
*
* Called with cpuset_mutex held
*/
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
{
struct cpuset *cp;
struct cgroup_subsys_state *pos_css;
rcu_read_lock();
cpuset_for_each_descendant_pre(cp, pos_css, cs) {
struct cpuset *parent = parent_cs(cp);
nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
/*
* If it becomes empty, inherit the effective mask of the
* parent, which is guaranteed to have some MEMs.
*/
if (is_in_v2_mode() && nodes_empty(*new_mems))
*new_mems = parent->effective_mems;
/* Skip the whole subtree if the nodemask remains the same. */
if (nodes_equal(*new_mems, cp->effective_mems)) {
pos_css = css_rightmost_descendant(pos_css);
continue;
}
if (!css_tryget_online(&cp->css))
continue;
rcu_read_unlock();
spin_lock_irq(&callback_lock);
cp->effective_mems = *new_mems;
spin_unlock_irq(&callback_lock);
WARN_ON(!is_in_v2_mode() &&
!nodes_equal(cp->mems_allowed, cp->effective_mems));
cpuset_update_tasks_nodemask(cp);
rcu_read_lock();
css_put(&cp->css);
}
rcu_read_unlock();
}
/*
* Handle user request to change the 'mems' memory placement
* of a cpuset. Needs to validate the request, update the
* cpusets mems_allowed, and for each task in the cpuset,
* update mems_allowed and rebind task's mempolicy and any vma
* mempolicies and if the cpuset is marked 'memory_migrate',
* migrate the tasks pages to the new memory.
*
* Call with cpuset_mutex held. May take callback_lock during call.
* Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
* lock each such tasks mm->mmap_lock, scan its vma's and rebind
* their mempolicies to the cpusets new mems_allowed.
*/
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
const char *buf)
{
int retval;
/*
* top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
* it's read-only
*/
if (cs == &top_cpuset) {
retval = -EACCES;
goto done;
}
/*
* An empty mems_allowed is ok iff there are no tasks in the cpuset.
* Since nodelist_parse() fails on an empty mask, we special case
* that parsing. The validate_change() call ensures that cpusets
* with tasks have memory.
*/
if (!*buf) {
nodes_clear(trialcs->mems_allowed);
} else {
retval = nodelist_parse(buf, trialcs->mems_allowed);
if (retval < 0)
goto done;
if (!nodes_subset(trialcs->mems_allowed,
top_cpuset.mems_allowed)) {
retval = -EINVAL;
goto done;
}
}
if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
retval = 0; /* Too easy - nothing to do */
goto done;
}
retval = validate_change(cs, trialcs);
if (retval < 0)
goto done;
check_insane_mems_config(&trialcs->mems_allowed);
spin_lock_irq(&callback_lock);
cs->mems_allowed = trialcs->mems_allowed;
spin_unlock_irq(&callback_lock);
/* use trialcs->mems_allowed as a temp variable */
update_nodemasks_hier(cs, &trialcs->mems_allowed);
done:
return retval;
}
bool current_cpuset_is_being_rebound(void)
{
bool ret;
rcu_read_lock();
ret = task_cs(current) == cpuset_being_rebound;
rcu_read_unlock();
return ret;
}
/*
* cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
* bit: the bit to update (see cpuset_flagbits_t)
* cs: the cpuset to update
* turning_on: whether the flag is being set or cleared
*
* Call with cpuset_mutex held.
*/
int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
int turning_on)
{
struct cpuset *trialcs;
int balance_flag_changed;
int spread_flag_changed;
int err;
trialcs = alloc_trial_cpuset(cs);
if (!trialcs)
return -ENOMEM;
if (turning_on)
set_bit(bit, &trialcs->flags);
else
clear_bit(bit, &trialcs->flags);
err = validate_change(cs, trialcs);
if (err < 0)
goto out;
balance_flag_changed = (is_sched_load_balance(cs) !=
is_sched_load_balance(trialcs));
spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
|| (is_spread_page(cs) != is_spread_page(trialcs)));
spin_lock_irq(&callback_lock);
cs->flags = trialcs->flags;
spin_unlock_irq(&callback_lock);
if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed &&
!force_sd_rebuild)
rebuild_sched_domains_locked();
if (spread_flag_changed)
cpuset1_update_tasks_flags(cs);
out:
free_cpuset(trialcs);
return err;
}
/**
* update_prstate - update partition_root_state
* @cs: the cpuset to update
* @new_prs: new partition root state
* Return: 0 if successful, != 0 if error
*
* Call with cpuset_mutex held.
*/
static int update_prstate(struct cpuset *cs, int new_prs)
{
int err = PERR_NONE, old_prs = cs->partition_root_state;
struct cpuset *parent = parent_cs(cs);
struct tmpmasks tmpmask;
bool new_xcpus_state = false;
if (old_prs == new_prs)
return 0;
/*
* Treat a previously invalid partition root as if it is a "member".
*/
if (new_prs && is_prs_invalid(old_prs))
old_prs = PRS_MEMBER;
if (alloc_cpumasks(NULL, &tmpmask))
return -ENOMEM;
/*
* Setup effective_xcpus if not properly set yet, it will be cleared
* later if partition becomes invalid.
*/
if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
spin_lock_irq(&callback_lock);
cpumask_and(cs->effective_xcpus,
cs->cpus_allowed, parent->effective_xcpus);
spin_unlock_irq(&callback_lock);
}
err = update_partition_exclusive(cs, new_prs);
if (err)
goto out;
if (!old_prs) {
/*
* cpus_allowed and exclusive_cpus cannot be both empty.
*/
if (xcpus_empty(cs)) {
err = PERR_CPUSEMPTY;
goto out;
}
/*
* If parent is valid partition, enable local partiion.
* Otherwise, enable a remote partition.
*/
if (is_partition_valid(parent)) {
enum partition_cmd cmd = (new_prs == PRS_ROOT)
? partcmd_enable : partcmd_enablei;
err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
} else {
err = remote_partition_enable(cs, new_prs, &tmpmask);
}
} else if (old_prs && new_prs) {
/*
* A change in load balance state only, no change in cpumasks.
*/
new_xcpus_state = true;
} else {
/*
* Switching back to member is always allowed even if it
* disables child partitions.
*/
if (is_remote_partition(cs))
remote_partition_disable(cs, &tmpmask);
else
update_parent_effective_cpumask(cs, partcmd_disable,
NULL, &tmpmask);
/*
* Invalidation of child partitions will be done in
* update_cpumasks_hier().
*/
}
out:
/*
* Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
* happens.
*/
if (err) {
new_prs = -new_prs;
update_partition_exclusive(cs, new_prs);
}
spin_lock_irq(&callback_lock);
cs->partition_root_state = new_prs;
WRITE_ONCE(cs->prs_err, err);
if (!is_partition_valid(cs))
reset_partition_data(cs);
else if (new_xcpus_state)
partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
spin_unlock_irq(&callback_lock);
update_unbound_workqueue_cpumask(new_xcpus_state);
/* Force update if switching back to member */
update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
/* Update sched domains and load balance flag */
update_partition_sd_lb(cs, old_prs);
notify_partition_change(cs, old_prs);
free_cpumasks(NULL, &tmpmask);
return 0;
}
static struct cpuset *cpuset_attach_old_cs;
/*
* Check to see if a cpuset can accept a new task
* For v1, cpus_allowed and mems_allowed can't be empty.
* For v2, effective_cpus can't be empty.
* Note that in v1, effective_cpus = cpus_allowed.
*/
static int cpuset_can_attach_check(struct cpuset *cs)
{
if (cpumask_empty(cs->effective_cpus) ||
(!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
return -ENOSPC;
return 0;
}
static void reset_migrate_dl_data(struct cpuset *cs)
{
cs->nr_migrate_dl_tasks = 0;
cs->sum_migrate_dl_bw = 0;
}
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
static int cpuset_can_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct cpuset *cs, *oldcs;
struct task_struct *task;
bool cpus_updated, mems_updated;
int ret;
/* used later by cpuset_attach() */
cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
oldcs = cpuset_attach_old_cs;
cs = css_cs(css);
mutex_lock(&cpuset_mutex);
/* Check to see if task is allowed in the cpuset */
ret = cpuset_can_attach_check(cs);
if (ret)
goto out_unlock;
cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
cgroup_taskset_for_each(task, css, tset) {
ret = task_can_attach(task);
if (ret)
goto out_unlock;
/*
* Skip rights over task check in v2 when nothing changes,
* migration permission derives from hierarchy ownership in
* cgroup_procs_write_permission()).
*/
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
(cpus_updated || mems_updated)) {
ret = security_task_setscheduler(task);
if (ret)
goto out_unlock;
}
if (dl_task(task)) {
cs->nr_migrate_dl_tasks++;
cs->sum_migrate_dl_bw += task->dl.dl_bw;
}
}
if (!cs->nr_migrate_dl_tasks)
goto out_success;
if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
if (unlikely(cpu >= nr_cpu_ids)) {
reset_migrate_dl_data(cs);
ret = -EINVAL;
goto out_unlock;
}
ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
if (ret) {
reset_migrate_dl_data(cs);
goto out_unlock;
}
}
out_success:
/*
* Mark attach is in progress. This makes validate_change() fail
* changes which zero cpus/mems_allowed.
*/
cs->attach_in_progress++;
out_unlock:
mutex_unlock(&cpuset_mutex);
return ret;
}
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
{
struct cgroup_subsys_state *css;
struct cpuset *cs;
cgroup_taskset_first(tset, &css);
cs = css_cs(css);
mutex_lock(&cpuset_mutex);
dec_attach_in_progress_locked(cs);
if (cs->nr_migrate_dl_tasks) {
int cpu = cpumask_any(cs->effective_cpus);
dl_bw_free(cpu, cs->sum_migrate_dl_bw);
reset_migrate_dl_data(cs);
}
mutex_unlock(&cpuset_mutex);
}
/*
* Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
* but we can't allocate it dynamically there. Define it global and
* allocate from cpuset_init().
*/
static cpumask_var_t cpus_attach;
static nodemask_t cpuset_attach_nodemask_to;
static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
{
lockdep_assert_held(&cpuset_mutex);
if (cs != &top_cpuset)
guarantee_online_cpus(task, cpus_attach);
else
cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
subpartitions_cpus);
/*
* can_attach beforehand should guarantee that this doesn't
* fail. TODO: have a better way to handle failure here
*/
WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
cpuset1_update_task_spread_flags(cs, task);
}
static void cpuset_attach(struct cgroup_taskset *tset)
{
struct task_struct *task;
struct task_struct *leader;
struct cgroup_subsys_state *css;
struct cpuset *cs;
struct cpuset *oldcs = cpuset_attach_old_cs;
bool cpus_updated, mems_updated;
cgroup_taskset_first(tset, &css);
cs = css_cs(css);
lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
mutex_lock(&cpuset_mutex);
cpus_updated = !cpumask_equal(cs->effective_cpus,
oldcs->effective_cpus);
mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
/*
* In the default hierarchy, enabling cpuset in the child cgroups
* will trigger a number of cpuset_attach() calls with no change
* in effective cpus and mems. In that case, we can optimize out
* by skipping the task iteration and update.
*/
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
!cpus_updated && !mems_updated) {
cpuset_attach_nodemask_to = cs->effective_mems;
goto out;
}
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
cgroup_taskset_for_each(task, css, tset)
cpuset_attach_task(cs, task);
/*
* Change mm for all threadgroup leaders. This is expensive and may
* sleep and should be moved outside migration path proper. Skip it
* if there is no change in effective_mems and CS_MEMORY_MIGRATE is
* not set.
*/
cpuset_attach_nodemask_to = cs->effective_mems;
if (!is_memory_migrate(cs) && !mems_updated)
goto out;
cgroup_taskset_for_each_leader(leader, css, tset) {
struct mm_struct *mm = get_task_mm(leader);
if (mm) {
mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
/*
* old_mems_allowed is the same with mems_allowed
* here, except if this task is being moved
* automatically due to hotplug. In that case
* @mems_allowed has been updated and is empty, so
* @old_mems_allowed is the right nodesets that we
* migrate mm from.
*/
if (is_memory_migrate(cs))
cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
&cpuset_attach_nodemask_to);
else
mmput(mm);
}
}
out:
cs->old_mems_allowed = cpuset_attach_nodemask_to;
if (cs->nr_migrate_dl_tasks) {
cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
reset_migrate_dl_data(cs);
}
dec_attach_in_progress_locked(cs);
mutex_unlock(&cpuset_mutex);
}
/*
* Common handling for a write to a "cpus" or "mems" file.
*/
ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cpuset *cs = css_cs(of_css(of));
struct cpuset *trialcs;
int retval = -ENODEV;
buf = strstrip(buf);
/*
* CPU or memory hotunplug may leave @cs w/o any execution
* resources, in which case the hotplug code asynchronously updates
* configuration and transfers all tasks to the nearest ancestor
* which can execute.
*
* As writes to "cpus" or "mems" may restore @cs's execution
* resources, wait for the previously scheduled operations before
* proceeding, so that we don't end up keep removing tasks added
* after execution capability is restored.
*
* cpuset_handle_hotplug may call back into cgroup core asynchronously
* via cgroup_transfer_tasks() and waiting for it from a cgroupfs
* operation like this one can lead to a deadlock through kernfs
* active_ref protection. Let's break the protection. Losing the
* protection is okay as we check whether @cs is online after
* grabbing cpuset_mutex anyway. This only happens on the legacy
* hierarchies.
*/
css_get(&cs->css);
kernfs_break_active_protection(of->kn);
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (!is_cpuset_online(cs))
goto out_unlock;
trialcs = alloc_trial_cpuset(cs);
if (!trialcs) {
retval = -ENOMEM;
goto out_unlock;
}
switch (of_cft(of)->private) {
case FILE_CPULIST:
retval = update_cpumask(cs, trialcs, buf);
break;
case FILE_EXCLUSIVE_CPULIST:
retval = update_exclusive_cpumask(cs, trialcs, buf);
break;
case FILE_MEMLIST:
retval = update_nodemask(cs, trialcs, buf);
break;
default:
retval = -EINVAL;
break;
}
free_cpuset(trialcs);
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
kernfs_unbreak_active_protection(of->kn);
css_put(&cs->css);
flush_workqueue(cpuset_migrate_mm_wq);
return retval ?: nbytes;
}
/*
* These ascii lists should be read in a single call, by using a user
* buffer large enough to hold the entire map. If read in smaller
* chunks, there is no guarantee of atomicity. Since the display format
* used, list of ranges of sequential numbers, is variable length,
* and since these maps can change value dynamically, one could read
* gibberish by doing partial reads while a list was changing.
*/
int cpuset_common_seq_show(struct seq_file *sf, void *v)
{
struct cpuset *cs = css_cs(seq_css(sf));
cpuset_filetype_t type = seq_cft(sf)->private;
int ret = 0;
spin_lock_irq(&callback_lock);
switch (type) {
case FILE_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
break;
case FILE_MEMLIST:
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
break;
case FILE_EFFECTIVE_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
break;
case FILE_EFFECTIVE_MEMLIST:
seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
break;
case FILE_EXCLUSIVE_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
break;
case FILE_EFFECTIVE_XCPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
break;
case FILE_SUBPARTS_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
break;
case FILE_ISOLATED_CPULIST:
seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
break;
default:
ret = -EINVAL;
}
spin_unlock_irq(&callback_lock);
return ret;
}
static int sched_partition_show(struct seq_file *seq, void *v)
{
struct cpuset *cs = css_cs(seq_css(seq));
const char *err, *type = NULL;
switch (cs->partition_root_state) {
case PRS_ROOT:
seq_puts(seq, "root\n");
break;
case PRS_ISOLATED:
seq_puts(seq, "isolated\n");
break;
case PRS_MEMBER:
seq_puts(seq, "member\n");
break;
case PRS_INVALID_ROOT:
type = "root";
fallthrough;
case PRS_INVALID_ISOLATED:
if (!type)
type = "isolated";
err = perr_strings[READ_ONCE(cs->prs_err)];
if (err)
seq_printf(seq, "%s invalid (%s)\n", type, err);
else
seq_printf(seq, "%s invalid\n", type);
break;
}
return 0;
}
static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct cpuset *cs = css_cs(of_css(of));
int val;
int retval = -ENODEV;
buf = strstrip(buf);
if (!strcmp(buf, "root"))
val = PRS_ROOT;
else if (!strcmp(buf, "member"))
val = PRS_MEMBER;
else if (!strcmp(buf, "isolated"))
val = PRS_ISOLATED;
else
return -EINVAL;
css_get(&cs->css);
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (!is_cpuset_online(cs))
goto out_unlock;
retval = update_prstate(cs, val);
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
css_put(&cs->css);
return retval ?: nbytes;
}
/*
* This is currently a minimal set for the default hierarchy. It can be
* expanded later on by migrating more features and control files from v1.
*/
static struct cftype dfl_files[] = {
{
.name = "cpus",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_CPULIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "mems",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * MAX_NUMNODES),
.private = FILE_MEMLIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "cpus.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_CPULIST,
},
{
.name = "mems.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_MEMLIST,
},
{
.name = "cpus.partition",
.seq_show = sched_partition_show,
.write = sched_partition_write,
.private = FILE_PARTITION_ROOT,
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct cpuset, partition_file),
},
{
.name = "cpus.exclusive",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_EXCLUSIVE_CPULIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "cpus.exclusive.effective",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_XCPULIST,
.flags = CFTYPE_NOT_ON_ROOT,
},
{
.name = "cpus.subpartitions",
.seq_show = cpuset_common_seq_show,
.private = FILE_SUBPARTS_CPULIST,
.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
},
{
.name = "cpus.isolated",
.seq_show = cpuset_common_seq_show,
.private = FILE_ISOLATED_CPULIST,
.flags = CFTYPE_ONLY_ON_ROOT,
},
{ } /* terminate */
};
/**
* cpuset_css_alloc - Allocate a cpuset css
* @parent_css: Parent css of the control group that the new cpuset will be
* part of
* Return: cpuset css on success, -ENOMEM on failure.
*
* Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
* top cpuset css otherwise.
*/
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct cpuset *cs;
if (!parent_css)
return &top_cpuset.css;
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs)
return ERR_PTR(-ENOMEM);
if (alloc_cpumasks(cs, NULL)) {
kfree(cs);
return ERR_PTR(-ENOMEM);
}
__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
fmeter_init(&cs->fmeter);
cs->relax_domain_level = -1;
INIT_LIST_HEAD(&cs->remote_sibling);
/* Set CS_MEMORY_MIGRATE for default hierarchy */
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
return &cs->css;
}
static int cpuset_css_online(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
struct cpuset *parent = parent_cs(cs);
struct cpuset *tmp_cs;
struct cgroup_subsys_state *pos_css;
if (!parent)
return 0;
cpus_read_lock();
mutex_lock(&cpuset_mutex);
set_bit(CS_ONLINE, &cs->flags);
if (is_spread_page(parent))
set_bit(CS_SPREAD_PAGE, &cs->flags);
if (is_spread_slab(parent))
set_bit(CS_SPREAD_SLAB, &cs->flags);
/*
* For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
*/
if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
!is_sched_load_balance(parent))
clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
cpuset_inc();
spin_lock_irq(&callback_lock);
if (is_in_v2_mode()) {
cpumask_copy(cs->effective_cpus, parent->effective_cpus);
cs->effective_mems = parent->effective_mems;
}
spin_unlock_irq(&callback_lock);
if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
goto out_unlock;
/*
* Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
* set. This flag handling is implemented in cgroup core for
* historical reasons - the flag may be specified during mount.
*
* Currently, if any sibling cpusets have exclusive cpus or mem, we
* refuse to clone the configuration - thereby refusing the task to
* be entered, and as a result refusing the sys_unshare() or
* clone() which initiated it. If this becomes a problem for some
* users who wish to allow that scenario, then this could be
* changed to grant parent->cpus_allowed-sibling_cpus_exclusive
* (and likewise for mems) to the new cgroup.
*/
rcu_read_lock();
cpuset_for_each_child(tmp_cs, pos_css, parent) {
if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
rcu_read_unlock();
goto out_unlock;
}
}
rcu_read_unlock();
spin_lock_irq(&callback_lock);
cs->mems_allowed = parent->mems_allowed;
cs->effective_mems = parent->mems_allowed;
cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
spin_unlock_irq(&callback_lock);
out_unlock:
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
return 0;
}
/*
* If the cpuset being removed has its flag 'sched_load_balance'
* enabled, then simulate turning sched_load_balance off, which
* will call rebuild_sched_domains_locked(). That is not needed
* in the default hierarchy where only changes in partition
* will cause repartitioning.
*
* If the cpuset has the 'sched.partition' flag enabled, simulate
* turning 'sched.partition" off.
*/
static void cpuset_css_offline(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
cpus_read_lock();
mutex_lock(&cpuset_mutex);
if (is_partition_valid(cs))
update_prstate(cs, 0);
if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
is_sched_load_balance(cs))
cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
cpuset_dec();
clear_bit(CS_ONLINE, &cs->flags);
mutex_unlock(&cpuset_mutex);
cpus_read_unlock();
}
static void cpuset_css_free(struct cgroup_subsys_state *css)
{
struct cpuset *cs = css_cs(css);
free_cpuset(cs);
}
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
mutex_lock(&cpuset_mutex);
spin_lock_irq(&callback_lock);
if (is_in_v2_mode()) {
cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
top_cpuset.mems_allowed = node_possible_map;
} else {
cpumask_copy(top_cpuset.cpus_allowed,
top_cpuset.effective_cpus);
top_cpuset.mems_allowed = top_cpuset.effective_mems;
}
spin_unlock_irq(&callback_lock);
mutex_unlock(&cpuset_mutex);
}
/*
* In case the child is cloned into a cpuset different from its parent,
* additional checks are done to see if the move is allowed.
*/
static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
{
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
bool same_cs;
int ret;
rcu_read_lock();
same_cs = (cs == task_cs(current));
rcu_read_unlock();
if (same_cs)
return 0;
lockdep_assert_held(&cgroup_mutex);
mutex_lock(&cpuset_mutex);
/* Check to see if task is allowed in the cpuset */
ret = cpuset_can_attach_check(cs);
if (ret)
goto out_unlock;
ret = task_can_attach(task);
if (ret)
goto out_unlock;
ret = security_task_setscheduler(task);
if (ret)
goto out_unlock;
/*
* Mark attach is in progress. This makes validate_change() fail
* changes which zero cpus/mems_allowed.
*/
cs->attach_in_progress++;
out_unlock:
mutex_unlock(&cpuset_mutex);
return ret;
}
static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
{
struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
bool same_cs;
rcu_read_lock();
same_cs = (cs == task_cs(current));
rcu_read_unlock();
if (same_cs)
return;
dec_attach_in_progress(cs);
}
/*
* Make sure the new task conform to the current state of its parent,
* which could have been changed by cpuset just after it inherits the
* state from the parent and before it sits on the cgroup's task list.
*/
static void cpuset_fork(struct task_struct *task)
{
struct cpuset *cs;
bool same_cs;
rcu_read_lock();
cs = task_cs(task);
same_cs = (cs == task_cs(current));
rcu_read_unlock();
if (same_cs) {
if (cs == &top_cpuset)
return;
set_cpus_allowed_ptr(task, current->cpus_ptr);
task->mems_allowed = current->mems_allowed;
return;
}
/* CLONE_INTO_CGROUP */
mutex_lock(&cpuset_mutex);
guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
cpuset_attach_task(cs, task);
dec_attach_in_progress_locked(cs);
mutex_unlock(&cpuset_mutex);
}
struct cgroup_subsys cpuset_cgrp_subsys = {
.css_alloc = cpuset_css_alloc,
.css_online = cpuset_css_online,
.css_offline = cpuset_css_offline,
.css_free = cpuset_css_free,
.can_attach = cpuset_can_attach,
.cancel_attach = cpuset_cancel_attach,
.attach = cpuset_attach,
.post_attach = cpuset_post_attach,
.bind = cpuset_bind,
.can_fork = cpuset_can_fork,
.cancel_fork = cpuset_cancel_fork,
.fork = cpuset_fork,
#ifdef CONFIG_CPUSETS_V1
.legacy_cftypes = cpuset1_files,
#endif
.dfl_cftypes = dfl_files,
.early_init = true,
.threaded = true,
};
/**
* cpuset_init - initialize cpusets at system boot
*
* Description: Initialize top_cpuset
**/
int __init cpuset_init(void)
{
BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
cpumask_setall(top_cpuset.cpus_allowed);
nodes_setall(top_cpuset.mems_allowed);
cpumask_setall(top_cpuset.effective_cpus);
cpumask_setall(top_cpuset.effective_xcpus);
cpumask_setall(top_cpuset.exclusive_cpus);
nodes_setall(top_cpuset.effective_mems);
fmeter_init(&top_cpuset.fmeter);
INIT_LIST_HEAD(&remote_children);
BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
if (have_boot_isolcpus) {
BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
}
return 0;
}
static void
hotplug_update_tasks(struct cpuset *cs,
struct cpumask *new_cpus, nodemask_t *new_mems,
bool cpus_updated, bool mems_updated)
{
/* A partition root is allowed to have empty effective cpus */
if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
if (nodes_empty(*new_mems))
*new_mems = parent_cs(cs)->effective_mems;
spin_lock_irq(&callback_lock);
cpumask_copy(cs->effective_cpus, new_cpus);
cs->effective_mems = *new_mems;
spin_unlock_irq(&callback_lock);
if (cpus_updated)
cpuset_update_tasks_cpumask(cs, new_cpus);
if (mems_updated)
cpuset_update_tasks_nodemask(cs);
}
void cpuset_force_rebuild(void)
{
force_sd_rebuild = true;
}
/**
* cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
* @cs: cpuset in interest
* @tmp: the tmpmasks structure pointer
*
* Compare @cs's cpu and mem masks against top_cpuset and if some have gone
* offline, update @cs accordingly. If @cs ends up with no CPU or memory,
* all its tasks are moved to the nearest ancestor with both resources.
*/
static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
{
static cpumask_t new_cpus;
static nodemask_t new_mems;
bool cpus_updated;
bool mems_updated;
bool remote;
int partcmd = -1;
struct cpuset *parent;
retry:
wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
mutex_lock(&cpuset_mutex);
/*
* We have raced with task attaching. We wait until attaching
* is finished, so we won't attach a task to an empty cpuset.
*/
if (cs->attach_in_progress) {
mutex_unlock(&cpuset_mutex);
goto retry;
}
parent = parent_cs(cs);
compute_effective_cpumask(&new_cpus, cs, parent);
nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
if (!tmp || !cs->partition_root_state)
goto update_tasks;
/*
* Compute effective_cpus for valid partition root, may invalidate
* child partition roots if necessary.
*/
remote = is_remote_partition(cs);
if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
compute_partition_effective_cpumask(cs, &new_cpus);
if (remote && cpumask_empty(&new_cpus) &&
partition_is_populated(cs, NULL)) {
remote_partition_disable(cs, tmp);
compute_effective_cpumask(&new_cpus, cs, parent);
remote = false;
cpuset_force_rebuild();
}
/*
* Force the partition to become invalid if either one of
* the following conditions hold:
* 1) empty effective cpus but not valid empty partition.
* 2) parent is invalid or doesn't grant any cpus to child
* partitions.
*/
if (is_local_partition(cs) && (!is_partition_valid(parent) ||
tasks_nocpu_error(parent, cs, &new_cpus)))
partcmd = partcmd_invalidate;
/*
* On the other hand, an invalid partition root may be transitioned
* back to a regular one.
*/
else if (is_partition_valid(parent) && is_partition_invalid(cs))
partcmd = partcmd_update;
if (partcmd >= 0) {
update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
compute_partition_effective_cpumask(cs, &new_cpus);
cpuset_force_rebuild();
}
}
update_tasks:
cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
mems_updated = !nodes_equal(new_mems, cs->effective_mems);
if (!cpus_updated && !mems_updated)
goto unlock; /* Hotplug doesn't affect this cpuset */
if (mems_updated)
check_insane_mems_config(&new_mems);
if (is_in_v2_mode())
hotplug_update_tasks(cs, &new_cpus, &new_mems,
cpus_updated, mems_updated);
else
cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
cpus_updated, mems_updated);
unlock:
mutex_unlock(&cpuset_mutex);
}
/**
* cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
*
* This function is called after either CPU or memory configuration has
* changed and updates cpuset accordingly. The top_cpuset is always
* synchronized to cpu_active_mask and N_MEMORY, which is necessary in
* order to make cpusets transparent (of no affect) on systems that are
* actively using CPU hotplug but making no active use of cpusets.
*
* Non-root cpusets are only affected by offlining. If any CPUs or memory
* nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
* all descendants.
*
* Note that CPU offlining during suspend is ignored. We don't modify
* cpusets across suspend/resume cycles at all.
*
* CPU / memory hotplug is handled synchronously.
*/
static void cpuset_handle_hotplug(void)
{
static cpumask_t new_cpus;
static nodemask_t new_mems;
bool cpus_updated, mems_updated;
bool on_dfl = is_in_v2_mode();
struct tmpmasks tmp, *ptmp = NULL;
if (on_dfl && !alloc_cpumasks(NULL, &tmp))
ptmp = &tmp;
lockdep_assert_cpus_held();
mutex_lock(&cpuset_mutex);
/* fetch the available cpus/mems and find out which changed how */
cpumask_copy(&new_cpus, cpu_active_mask);
new_mems = node_states[N_MEMORY];
/*
* If subpartitions_cpus is populated, it is likely that the check
* below will produce a false positive on cpus_updated when the cpu
* list isn't changed. It is extra work, but it is better to be safe.
*/
cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
!cpumask_empty(subpartitions_cpus);
mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
/* For v1, synchronize cpus_allowed to cpu_active_mask */
if (cpus_updated) {
cpuset_force_rebuild();
spin_lock_irq(&callback_lock);
if (!on_dfl)
cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
/*
* Make sure that CPUs allocated to child partitions
* do not show up in effective_cpus. If no CPU is left,
* we clear the subpartitions_cpus & let the child partitions
* fight for the CPUs again.
*/
if (!cpumask_empty(subpartitions_cpus)) {
if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
top_cpuset.nr_subparts = 0;
cpumask_clear(subpartitions_cpus);
} else {
cpumask_andnot(&new_cpus, &new_cpus,
subpartitions_cpus);
}
}
cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
spin_unlock_irq(&callback_lock);
/* we don't mess with cpumasks of tasks in top_cpuset */
}
/* synchronize mems_allowed to N_MEMORY */
if (mems_updated) {
spin_lock_irq(&callback_lock);
if (!on_dfl)
top_cpuset.mems_allowed = new_mems;
top_cpuset.effective_mems = new_mems;
spin_unlock_irq(&callback_lock);
cpuset_update_tasks_nodemask(&top_cpuset);
}
mutex_unlock(&cpuset_mutex);
/* if cpus or mems changed, we need to propagate to descendants */
if (cpus_updated || mems_updated) {
struct cpuset *cs;
struct cgroup_subsys_state *pos_css;
rcu_read_lock();
cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
if (cs == &top_cpuset || !css_tryget_online(&cs->css))
continue;
rcu_read_unlock();
cpuset_hotplug_update_tasks(cs, ptmp);
rcu_read_lock();
css_put(&cs->css);
}
rcu_read_unlock();
}
/* rebuild sched domains if cpus_allowed has changed */
if (force_sd_rebuild) {
force_sd_rebuild = false;
rebuild_sched_domains_cpuslocked();
}
free_cpumasks(NULL, ptmp);
}
void cpuset_update_active_cpus(void)
{
/*
* We're inside cpu hotplug critical region which usually nests
* inside cgroup synchronization. Bounce actual hotplug processing
* to a work item to avoid reverse locking order.
*/
cpuset_handle_hotplug();
}
/*
* Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
* Call this routine anytime after node_states[N_MEMORY] changes.
* See cpuset_update_active_cpus() for CPU hotplug handling.
*/
static int cpuset_track_online_nodes(struct notifier_block *self,
unsigned long action, void *arg)
{
cpuset_handle_hotplug();
return NOTIFY_OK;
}
/**
* cpuset_init_smp - initialize cpus_allowed
*
* Description: Finish top cpuset after cpu, node maps are initialized
*/
void __init cpuset_init_smp(void)
{
/*
* cpus_allowd/mems_allowed set to v2 values in the initial
* cpuset_bind() call will be reset to v1 values in another
* cpuset_bind() call when v1 cpuset is mounted.
*/
top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
top_cpuset.effective_mems = node_states[N_MEMORY];
hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
BUG_ON(!cpuset_migrate_mm_wq);
}
/**
* cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
* @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
*
* Description: Returns the cpumask_var_t cpus_allowed of the cpuset
* attached to the specified @tsk. Guaranteed to return some non-empty
* subset of cpu_online_mask, even if this means going outside the
* tasks cpuset, except when the task is in the top cpuset.
**/
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
{
unsigned long flags;
struct cpuset *cs;
spin_lock_irqsave(&callback_lock, flags);
rcu_read_lock();
cs = task_cs(tsk);
if (cs != &top_cpuset)
guarantee_online_cpus(tsk, pmask);
/*
* Tasks in the top cpuset won't get update to their cpumasks
* when a hotplug online/offline event happens. So we include all
* offline cpus in the allowed cpu list.
*/
if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
/*
* We first exclude cpus allocated to partitions. If there is no
* allowable online cpu left, we fall back to all possible cpus.
*/
cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
if (!cpumask_intersects(pmask, cpu_online_mask))
cpumask_copy(pmask, possible_mask);
}
rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
}
/**
* cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
* @tsk: pointer to task_struct with which the scheduler is struggling
*
* Description: In the case that the scheduler cannot find an allowed cpu in
* tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
* mode however, this value is the same as task_cs(tsk)->effective_cpus,
* which will not contain a sane cpumask during cases such as cpu hotplugging.
* This is the absolute last resort for the scheduler and it is only used if
* _every_ other avenue has been traveled.
*
* Returns true if the affinity of @tsk was changed, false otherwise.
**/
bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
{
const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
const struct cpumask *cs_mask;
bool changed = false;
rcu_read_lock();
cs_mask = task_cs(tsk)->cpus_allowed;
if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
do_set_cpus_allowed(tsk, cs_mask);
changed = true;
}
rcu_read_unlock();
/*
* We own tsk->cpus_allowed, nobody can change it under us.
*
* But we used cs && cs->cpus_allowed lockless and thus can
* race with cgroup_attach_task() or update_cpumask() and get
* the wrong tsk->cpus_allowed. However, both cases imply the
* subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
* which takes task_rq_lock().
*
* If we are called after it dropped the lock we must see all
* changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
* set any mask even if it is not right from task_cs() pov,
* the pending set_cpus_allowed_ptr() will fix things.
*
* select_fallback_rq() will fix things ups and set cpu_possible_mask
* if required.
*/
return changed;
}
void __init cpuset_init_current_mems_allowed(void)
{
nodes_setall(current->mems_allowed);
}
/**
* cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
* @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
*
* Description: Returns the nodemask_t mems_allowed of the cpuset
* attached to the specified @tsk. Guaranteed to return some non-empty
* subset of node_states[N_MEMORY], even if this means going outside the
* tasks cpuset.
**/
nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
nodemask_t mask;
unsigned long flags;
spin_lock_irqsave(&callback_lock, flags);
rcu_read_lock();
guarantee_online_mems(task_cs(tsk), &mask);
rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
return mask;
}
/**
* cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
* @nodemask: the nodemask to be checked
*
* Are any of the nodes in the nodemask allowed in current->mems_allowed?
*/
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
{
return nodes_intersects(*nodemask, current->mems_allowed);
}
/*
* nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
* mem_hardwall ancestor to the specified cpuset. Call holding
* callback_lock. If no ancestor is mem_exclusive or mem_hardwall
* (an unusual configuration), then returns the root cpuset.
*/
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
{
while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
cs = parent_cs(cs);
return cs;
}
/*
* cpuset_node_allowed - Can we allocate on a memory node?
* @node: is this an allowed node?
* @gfp_mask: memory allocation flags
*
* If we're in interrupt, yes, we can always allocate. If @node is set in
* current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
* node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
* yes. If current has access to memory reserves as an oom victim, yes.
* Otherwise, no.
*
* GFP_USER allocations are marked with the __GFP_HARDWALL bit,
* and do not allow allocations outside the current tasks cpuset
* unless the task has been OOM killed.
* GFP_KERNEL allocations are not so marked, so can escape to the
* nearest enclosing hardwalled ancestor cpuset.
*
* Scanning up parent cpusets requires callback_lock. The
* __alloc_pages() routine only calls here with __GFP_HARDWALL bit
* _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
* current tasks mems_allowed came up empty on the first pass over
* the zonelist. So only GFP_KERNEL allocations, if all nodes in the
* cpuset are short of memory, might require taking the callback_lock.
*
* The first call here from mm/page_alloc:get_page_from_freelist()
* has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
* so no allocation on a node outside the cpuset is allowed (unless
* in interrupt, of course).
*
* The second pass through get_page_from_freelist() doesn't even call
* here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
* variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
* in alloc_flags. That logic and the checks below have the combined
* affect that:
* in_interrupt - any node ok (current task context irrelevant)
* GFP_ATOMIC - any node ok
* tsk_is_oom_victim - any node ok
* GFP_KERNEL - any node in enclosing hardwalled cpuset ok
* GFP_USER - only nodes in current tasks mems allowed ok.
*/
bool cpuset_node_allowed(int node, gfp_t gfp_mask)
{
struct cpuset *cs; /* current cpuset ancestors */
bool allowed; /* is allocation in zone z allowed? */
unsigned long flags;
if (in_interrupt())
return true;
if (node_isset(node, current->mems_allowed))
return true;
/*
* Allow tasks that have access to memory reserves because they have
* been OOM killed to get memory anywhere.
*/
if (unlikely(tsk_is_oom_victim(current)))
return true;
if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
return false;
if (current->flags & PF_EXITING) /* Let dying task have memory */
return true;
/* Not hardwall and node outside mems_allowed: scan up cpusets */
spin_lock_irqsave(&callback_lock, flags);
rcu_read_lock();
cs = nearest_hardwall_ancestor(task_cs(current));
allowed = node_isset(node, cs->mems_allowed);
rcu_read_unlock();
spin_unlock_irqrestore(&callback_lock, flags);
return allowed;
}
/**
* cpuset_spread_node() - On which node to begin search for a page
* @rotor: round robin rotor
*
* If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
* tasks in a cpuset with is_spread_page or is_spread_slab set),
* and if the memory allocation used cpuset_mem_spread_node()
* to determine on which node to start looking, as it will for
* certain page cache or slab cache pages such as used for file
* system buffers and inode caches, then instead of starting on the
* local node to look for a free page, rather spread the starting
* node around the tasks mems_allowed nodes.
*
* We don't have to worry about the returned node being offline
* because "it can't happen", and even if it did, it would be ok.
*
* The routines calling guarantee_online_mems() are careful to
* only set nodes in task->mems_allowed that are online. So it
* should not be possible for the following code to return an
* offline node. But if it did, that would be ok, as this routine
* is not returning the node where the allocation must be, only
* the node where the search should start. The zonelist passed to
* __alloc_pages() will include all nodes. If the slab allocator
* is passed an offline node, it will fall back to the local node.
* See kmem_cache_alloc_node().
*/
static int cpuset_spread_node(int *rotor)
{
return *rotor = next_node_in(*rotor, current->mems_allowed);
}
/**
* cpuset_mem_spread_node() - On which node to begin search for a file page
*/
int cpuset_mem_spread_node(void)
{
if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
current->cpuset_mem_spread_rotor =
node_random(&current->mems_allowed);
return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}
/**
* cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
* @tsk1: pointer to task_struct of some task.
* @tsk2: pointer to task_struct of some other task.
*
* Description: Return true if @tsk1's mems_allowed intersects the
* mems_allowed of @tsk2. Used by the OOM killer to determine if
* one of the task's memory usage might impact the memory available
* to the other.
**/
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
const struct task_struct *tsk2)
{
return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
}
/**
* cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
*
* Description: Prints current's name, cpuset name, and cached copy of its
* mems_allowed to the kernel log.
*/
void cpuset_print_current_mems_allowed(void)
{
struct cgroup *cgrp;
rcu_read_lock();
cgrp = task_cs(current)->css.cgroup;
pr_cont(",cpuset=");
pr_cont_cgroup_name(cgrp);
pr_cont(",mems_allowed=%*pbl",
nodemask_pr_args(&current->mems_allowed));
rcu_read_unlock();
}
#ifdef CONFIG_PROC_PID_CPUSET
/*
* proc_cpuset_show()
* - Print tasks cpuset path into seq_file.
* - Used for /proc/<pid>/cpuset.
* - No need to task_lock(tsk) on this tsk->cpuset reference, as it
* doesn't really matter if tsk->cpuset changes after we read it,
* and we take cpuset_mutex, keeping cpuset_attach() from changing it
* anyway.
*/
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *tsk)
{
char *buf;
struct cgroup_subsys_state *css;
int retval;
retval = -ENOMEM;
buf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!buf)
goto out;
rcu_read_lock();
spin_lock_irq(&css_set_lock);
css = task_css(tsk, cpuset_cgrp_id);
retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
current->nsproxy->cgroup_ns);
spin_unlock_irq(&css_set_lock);
rcu_read_unlock();
if (retval == -E2BIG)
retval = -ENAMETOOLONG;
if (retval < 0)
goto out_free;
seq_puts(m, buf);
seq_putc(m, '\n');
retval = 0;
out_free:
kfree(buf);
out:
return retval;
}
#endif /* CONFIG_PROC_PID_CPUSET */
/* Display task mems_allowed in /proc/<pid>/status file. */
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
seq_printf(m, "Mems_allowed:\t%*pb\n",
nodemask_pr_args(&task->mems_allowed));
seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
nodemask_pr_args(&task->mems_allowed));
}