linux-stable/net/packet/internal.h
Willem de Bruijn 61fad6816f net/packet: tpacket_rcv: avoid a producer race condition
PACKET_RX_RING can cause multiple writers to access the same slot if a
fast writer wraps the ring while a slow writer is still copying. This
is particularly likely with few, large, slots (e.g., GSO packets).

Synchronize kernel thread ownership of rx ring slots with a bitmap.

Writers acquire a slot race-free by testing tp_status TP_STATUS_KERNEL
while holding the sk receive queue lock. They release this lock before
copying and set tp_status to TP_STATUS_USER to release to userspace
when done. During copying, another writer may take the lock, also see
TP_STATUS_KERNEL, and start writing to the same slot.

Introduce a new rx_owner_map bitmap with a bit per slot. To acquire a
slot, test and set with the lock held. To release race-free, update
tp_status and owner bit as a transaction, so take the lock again.

This is the one of a variety of discussed options (see Link below):

* instead of a shadow ring, embed the data in the slot itself, such as
in tp_padding. But any test for this field may match a value left by
userspace, causing deadlock.

* avoid the lock on release. This leaves a small race if releasing the
shadow slot before setting TP_STATUS_USER. The below reproducer showed
that this race is not academic. If releasing the slot after tp_status,
the race is more subtle. See the first link for details.

* add a new tp_status TP_KERNEL_OWNED to avoid the transactional store
of two fields. But, legacy applications may interpret all non-zero
tp_status as owned by the user. As libpcap does. So this is possible
only opt-in by newer processes. It can be added as an optional mode.

* embed the struct at the tail of pg_vec to avoid extra allocation.
The implementation proved no less complex than a separate field.

The additional locking cost on release adds contention, no different
than scaling on multicore or multiqueue h/w. In practice, below
reproducer nor small packet tcpdump showed a noticeable change in
perf report in cycles spent in spinlock. Where contention is
problematic, packet sockets support mitigation through PACKET_FANOUT.
And we can consider adding opt-in state TP_KERNEL_OWNED.

Easy to reproduce by running multiple netperf or similar TCP_STREAM
flows concurrently with `tcpdump -B 129 -n greater 60000`.

Based on an earlier patchset by Jon Rosen. See links below.

I believe this issue goes back to the introduction of tpacket_rcv,
which predates git history.

Link: https://www.mail-archive.com/netdev@vger.kernel.org/msg237222.html
Suggested-by: Jon Rosen <jrosen@cisco.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Jon Rosen <jrosen@cisco.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-15 00:25:25 -07:00

147 lines
3.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __PACKET_INTERNAL_H__
#define __PACKET_INTERNAL_H__
#include <linux/refcount.h>
struct packet_mclist {
struct packet_mclist *next;
int ifindex;
int count;
unsigned short type;
unsigned short alen;
unsigned char addr[MAX_ADDR_LEN];
};
/* kbdq - kernel block descriptor queue */
struct tpacket_kbdq_core {
struct pgv *pkbdq;
unsigned int feature_req_word;
unsigned int hdrlen;
unsigned char reset_pending_on_curr_blk;
unsigned char delete_blk_timer;
unsigned short kactive_blk_num;
unsigned short blk_sizeof_priv;
/* last_kactive_blk_num:
* trick to see if user-space has caught up
* in order to avoid refreshing timer when every single pkt arrives.
*/
unsigned short last_kactive_blk_num;
char *pkblk_start;
char *pkblk_end;
int kblk_size;
unsigned int max_frame_len;
unsigned int knum_blocks;
uint64_t knxt_seq_num;
char *prev;
char *nxt_offset;
struct sk_buff *skb;
atomic_t blk_fill_in_prog;
/* Default is set to 8ms */
#define DEFAULT_PRB_RETIRE_TOV (8)
unsigned short retire_blk_tov;
unsigned short version;
unsigned long tov_in_jiffies;
/* timer to retire an outstanding block */
struct timer_list retire_blk_timer;
};
struct pgv {
char *buffer;
};
struct packet_ring_buffer {
struct pgv *pg_vec;
unsigned int head;
unsigned int frames_per_block;
unsigned int frame_size;
unsigned int frame_max;
unsigned int pg_vec_order;
unsigned int pg_vec_pages;
unsigned int pg_vec_len;
unsigned int __percpu *pending_refcnt;
union {
unsigned long *rx_owner_map;
struct tpacket_kbdq_core prb_bdqc;
};
};
extern struct mutex fanout_mutex;
#define PACKET_FANOUT_MAX 256
struct packet_fanout {
possible_net_t net;
unsigned int num_members;
u16 id;
u8 type;
u8 flags;
union {
atomic_t rr_cur;
struct bpf_prog __rcu *bpf_prog;
};
struct list_head list;
struct sock *arr[PACKET_FANOUT_MAX];
spinlock_t lock;
refcount_t sk_ref;
struct packet_type prot_hook ____cacheline_aligned_in_smp;
};
struct packet_rollover {
int sock;
atomic_long_t num;
atomic_long_t num_huge;
atomic_long_t num_failed;
#define ROLLOVER_HLEN (L1_CACHE_BYTES / sizeof(u32))
u32 history[ROLLOVER_HLEN] ____cacheline_aligned;
} ____cacheline_aligned_in_smp;
struct packet_sock {
/* struct sock has to be the first member of packet_sock */
struct sock sk;
struct packet_fanout *fanout;
union tpacket_stats_u stats;
struct packet_ring_buffer rx_ring;
struct packet_ring_buffer tx_ring;
int copy_thresh;
spinlock_t bind_lock;
struct mutex pg_vec_lock;
unsigned int running; /* bind_lock must be held */
unsigned int auxdata:1, /* writer must hold sock lock */
origdev:1,
has_vnet_hdr:1,
tp_loss:1,
tp_tx_has_off:1;
int pressure;
int ifindex; /* bound device */
__be16 num;
struct packet_rollover *rollover;
struct packet_mclist *mclist;
atomic_t mapped;
enum tpacket_versions tp_version;
unsigned int tp_hdrlen;
unsigned int tp_reserve;
unsigned int tp_tstamp;
struct completion skb_completion;
struct net_device __rcu *cached_dev;
int (*xmit)(struct sk_buff *skb);
struct packet_type prot_hook ____cacheline_aligned_in_smp;
atomic_t tp_drops ____cacheline_aligned_in_smp;
};
static struct packet_sock *pkt_sk(struct sock *sk)
{
return (struct packet_sock *)sk;
}
#endif