Jiong Wang a4b1d3c1dd bpf: verifier: insert zero extension according to analysis result
After previous patches, verifier will mark a insn if it really needs zero
extension on dst_reg.

It is then for back-ends to decide how to use such information to eliminate
unnecessary zero extension code-gen during JIT compilation.

One approach is verifier insert explicit zero extension for those insns
that need zero extension in a generic way, JIT back-ends then do not
generate zero extension for sub-register write at default.

However, only those back-ends which do not have hardware zero extension
want this optimization. Back-ends like x86_64 and AArch64 have hardware
zero extension support that the insertion should be disabled.

This patch introduces new target hook "bpf_jit_needs_zext" which returns
false at default, meaning verifier zero extension insertion is disabled at
default. A back-end could override this hook to return true if it doesn't
have hardware support and want verifier insert zero extension explicitly.

Offload targets do not use this native target hook, instead, they could
get the optimization results using bpf_prog_offload_ops.finalize.

NOTE: arches could have diversified features, it is possible for one arch
to have hardware zero extension support for some sub-register write insns
but not for all. For example, PowerPC, SPARC have zero extended loads, but
not for alu32. So when verifier zero extension insertion enabled, these JIT
back-ends need to peephole insns to remove those zero extension inserted
for insn that actually has hardware zero extension support. The peephole
could be as simple as looking the next insn, if it is a special zero
extension insn then it is safe to eliminate it if the current insn has
hardware zero extension support.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-24 18:58:37 -07:00

1202 lines
32 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Linux Socket Filter Data Structures
*/
#ifndef __LINUX_FILTER_H__
#define __LINUX_FILTER_H__
#include <stdarg.h>
#include <linux/atomic.h>
#include <linux/refcount.h>
#include <linux/compat.h>
#include <linux/skbuff.h>
#include <linux/linkage.h>
#include <linux/printk.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
#include <linux/capability.h>
#include <linux/cryptohash.h>
#include <linux/set_memory.h>
#include <linux/kallsyms.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <net/sch_generic.h>
#include <uapi/linux/filter.h>
#include <uapi/linux/bpf.h>
struct sk_buff;
struct sock;
struct seccomp_data;
struct bpf_prog_aux;
struct xdp_rxq_info;
struct xdp_buff;
struct sock_reuseport;
struct ctl_table;
struct ctl_table_header;
/* ArgX, context and stack frame pointer register positions. Note,
* Arg1, Arg2, Arg3, etc are used as argument mappings of function
* calls in BPF_CALL instruction.
*/
#define BPF_REG_ARG1 BPF_REG_1
#define BPF_REG_ARG2 BPF_REG_2
#define BPF_REG_ARG3 BPF_REG_3
#define BPF_REG_ARG4 BPF_REG_4
#define BPF_REG_ARG5 BPF_REG_5
#define BPF_REG_CTX BPF_REG_6
#define BPF_REG_FP BPF_REG_10
/* Additional register mappings for converted user programs. */
#define BPF_REG_A BPF_REG_0
#define BPF_REG_X BPF_REG_7
#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
/* Kernel hidden auxiliary/helper register. */
#define BPF_REG_AX MAX_BPF_REG
#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
/* unused opcode to mark special call to bpf_tail_call() helper */
#define BPF_TAIL_CALL 0xf0
/* unused opcode to mark call to interpreter with arguments */
#define BPF_CALL_ARGS 0xe0
/* As per nm, we expose JITed images as text (code) section for
* kallsyms. That way, tools like perf can find it to match
* addresses.
*/
#define BPF_SYM_ELF_TYPE 't'
/* BPF program can access up to 512 bytes of stack space. */
#define MAX_BPF_STACK 512
/* Helper macros for filter block array initializers. */
/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
#define BPF_ALU64_REG(OP, DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
#define BPF_ALU32_REG(OP, DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
#define BPF_ALU64_IMM(OP, DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
#define BPF_ALU32_IMM(OP, DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
#define BPF_ENDIAN(TYPE, DST, LEN) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = LEN })
/* Short form of mov, dst_reg = src_reg */
#define BPF_MOV64_REG(DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_MOV | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
#define BPF_MOV32_REG(DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
/* Short form of mov, dst_reg = imm32 */
#define BPF_MOV64_IMM(DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_MOV | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
#define BPF_MOV32_IMM(DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
/* Special form of mov32, used for doing explicit zero extension on dst. */
#define BPF_ZEXT_REG(DST) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_X, \
.dst_reg = DST, \
.src_reg = DST, \
.off = 0, \
.imm = 1 })
static inline bool insn_is_zext(const struct bpf_insn *insn)
{
return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
}
/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
#define BPF_LD_IMM64(DST, IMM) \
BPF_LD_IMM64_RAW(DST, 0, IMM)
#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_LD | BPF_DW | BPF_IMM, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = (__u32) (IMM) }), \
((struct bpf_insn) { \
.code = 0, /* zero is reserved opcode */ \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = ((__u64) (IMM)) >> 32 })
/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
#define BPF_LD_MAP_FD(DST, MAP_FD) \
BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = IMM })
#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = IMM })
/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
#define BPF_LD_ABS(SIZE, IMM) \
((struct bpf_insn) { \
.code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
#define BPF_LD_IND(SIZE, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
.dst_reg = 0, \
.src_reg = SRC, \
.off = 0, \
.imm = IMM })
/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
((struct bpf_insn) { \
.code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
.dst_reg = DST, \
.src_reg = 0, \
.off = OFF, \
.imm = IMM })
/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
#define BPF_JMP_REG(OP, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = OFF, \
.imm = IMM })
/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = OFF, \
.imm = IMM })
/* Unconditional jumps, goto pc + off16 */
#define BPF_JMP_A(OFF) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_JA, \
.dst_reg = 0, \
.src_reg = 0, \
.off = OFF, \
.imm = 0 })
/* Relative call */
#define BPF_CALL_REL(TGT) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_CALL, \
.dst_reg = 0, \
.src_reg = BPF_PSEUDO_CALL, \
.off = 0, \
.imm = TGT })
/* Function call */
#define BPF_CAST_CALL(x) \
((u64 (*)(u64, u64, u64, u64, u64))(x))
#define BPF_EMIT_CALL(FUNC) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_CALL, \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = ((FUNC) - __bpf_call_base) })
/* Raw code statement block */
#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
((struct bpf_insn) { \
.code = CODE, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = IMM })
/* Program exit */
#define BPF_EXIT_INSN() \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_EXIT, \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = 0 })
/* Internal classic blocks for direct assignment */
#define __BPF_STMT(CODE, K) \
((struct sock_filter) BPF_STMT(CODE, K))
#define __BPF_JUMP(CODE, K, JT, JF) \
((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
#define bytes_to_bpf_size(bytes) \
({ \
int bpf_size = -EINVAL; \
\
if (bytes == sizeof(u8)) \
bpf_size = BPF_B; \
else if (bytes == sizeof(u16)) \
bpf_size = BPF_H; \
else if (bytes == sizeof(u32)) \
bpf_size = BPF_W; \
else if (bytes == sizeof(u64)) \
bpf_size = BPF_DW; \
\
bpf_size; \
})
#define bpf_size_to_bytes(bpf_size) \
({ \
int bytes = -EINVAL; \
\
if (bpf_size == BPF_B) \
bytes = sizeof(u8); \
else if (bpf_size == BPF_H) \
bytes = sizeof(u16); \
else if (bpf_size == BPF_W) \
bytes = sizeof(u32); \
else if (bpf_size == BPF_DW) \
bytes = sizeof(u64); \
\
bytes; \
})
#define BPF_SIZEOF(type) \
({ \
const int __size = bytes_to_bpf_size(sizeof(type)); \
BUILD_BUG_ON(__size < 0); \
__size; \
})
#define BPF_FIELD_SIZEOF(type, field) \
({ \
const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
BUILD_BUG_ON(__size < 0); \
__size; \
})
#define BPF_LDST_BYTES(insn) \
({ \
const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
WARN_ON(__size < 0); \
__size; \
})
#define __BPF_MAP_0(m, v, ...) v
#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
#define __BPF_REG_0(...) __BPF_PAD(5)
#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
#define __BPF_CAST(t, a) \
(__force t) \
(__force \
typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
(unsigned long)0, (t)0))) a
#define __BPF_V void
#define __BPF_N
#define __BPF_DECL_ARGS(t, a) t a
#define __BPF_DECL_REGS(t, a) u64 a
#define __BPF_PAD(n) \
__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
u64, __ur_3, u64, __ur_4, u64, __ur_5)
#define BPF_CALL_x(x, name, ...) \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
{ \
return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
} \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
#define bpf_ctx_range(TYPE, MEMBER) \
offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
#if BITS_PER_LONG == 64
# define bpf_ctx_range_ptr(TYPE, MEMBER) \
offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
#else
# define bpf_ctx_range_ptr(TYPE, MEMBER) \
offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
#endif /* BITS_PER_LONG == 64 */
#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
({ \
BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \
*(PTR_SIZE) = (SIZE); \
offsetof(TYPE, MEMBER); \
})
#ifdef CONFIG_COMPAT
/* A struct sock_filter is architecture independent. */
struct compat_sock_fprog {
u16 len;
compat_uptr_t filter; /* struct sock_filter * */
};
#endif
struct sock_fprog_kern {
u16 len;
struct sock_filter *filter;
};
struct bpf_binary_header {
u32 pages;
/* Some arches need word alignment for their instructions */
u8 image[] __aligned(4);
};
struct bpf_prog {
u16 pages; /* Number of allocated pages */
u16 jited:1, /* Is our filter JIT'ed? */
jit_requested:1,/* archs need to JIT the prog */
gpl_compatible:1, /* Is filter GPL compatible? */
cb_access:1, /* Is control block accessed? */
dst_needed:1, /* Do we need dst entry? */
blinded:1, /* Was blinded */
is_func:1, /* program is a bpf function */
kprobe_override:1, /* Do we override a kprobe? */
has_callchain_buf:1; /* callchain buffer allocated? */
enum bpf_prog_type type; /* Type of BPF program */
enum bpf_attach_type expected_attach_type; /* For some prog types */
u32 len; /* Number of filter blocks */
u32 jited_len; /* Size of jited insns in bytes */
u8 tag[BPF_TAG_SIZE];
struct bpf_prog_aux *aux; /* Auxiliary fields */
struct sock_fprog_kern *orig_prog; /* Original BPF program */
unsigned int (*bpf_func)(const void *ctx,
const struct bpf_insn *insn);
/* Instructions for interpreter */
union {
struct sock_filter insns[0];
struct bpf_insn insnsi[0];
};
};
struct sk_filter {
refcount_t refcnt;
struct rcu_head rcu;
struct bpf_prog *prog;
};
DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
#define BPF_PROG_RUN(prog, ctx) ({ \
u32 ret; \
cant_sleep(); \
if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
struct bpf_prog_stats *stats; \
u64 start = sched_clock(); \
ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
stats = this_cpu_ptr(prog->aux->stats); \
u64_stats_update_begin(&stats->syncp); \
stats->cnt++; \
stats->nsecs += sched_clock() - start; \
u64_stats_update_end(&stats->syncp); \
} else { \
ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
} \
ret; })
#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
struct bpf_skb_data_end {
struct qdisc_skb_cb qdisc_cb;
void *data_meta;
void *data_end;
};
struct bpf_redirect_info {
u32 ifindex;
u32 flags;
struct bpf_map *map;
struct bpf_map *map_to_flush;
u32 kern_flags;
};
DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
/* flags for bpf_redirect_info kern_flags */
#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
/* Compute the linear packet data range [data, data_end) which
* will be accessed by various program types (cls_bpf, act_bpf,
* lwt, ...). Subsystems allowing direct data access must (!)
* ensure that cb[] area can be written to when BPF program is
* invoked (otherwise cb[] save/restore is necessary).
*/
static inline void bpf_compute_data_pointers(struct sk_buff *skb)
{
struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
cb->data_meta = skb->data - skb_metadata_len(skb);
cb->data_end = skb->data + skb_headlen(skb);
}
/* Similar to bpf_compute_data_pointers(), except that save orginal
* data in cb->data and cb->meta_data for restore.
*/
static inline void bpf_compute_and_save_data_end(
struct sk_buff *skb, void **saved_data_end)
{
struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
*saved_data_end = cb->data_end;
cb->data_end = skb->data + skb_headlen(skb);
}
/* Restore data saved by bpf_compute_data_pointers(). */
static inline void bpf_restore_data_end(
struct sk_buff *skb, void *saved_data_end)
{
struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
cb->data_end = saved_data_end;
}
static inline u8 *bpf_skb_cb(struct sk_buff *skb)
{
/* eBPF programs may read/write skb->cb[] area to transfer meta
* data between tail calls. Since this also needs to work with
* tc, that scratch memory is mapped to qdisc_skb_cb's data area.
*
* In some socket filter cases, the cb unfortunately needs to be
* saved/restored so that protocol specific skb->cb[] data won't
* be lost. In any case, due to unpriviledged eBPF programs
* attached to sockets, we need to clear the bpf_skb_cb() area
* to not leak previous contents to user space.
*/
BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
FIELD_SIZEOF(struct qdisc_skb_cb, data));
return qdisc_skb_cb(skb)->data;
}
static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
struct sk_buff *skb)
{
u8 *cb_data = bpf_skb_cb(skb);
u8 cb_saved[BPF_SKB_CB_LEN];
u32 res;
if (unlikely(prog->cb_access)) {
memcpy(cb_saved, cb_data, sizeof(cb_saved));
memset(cb_data, 0, sizeof(cb_saved));
}
res = BPF_PROG_RUN(prog, skb);
if (unlikely(prog->cb_access))
memcpy(cb_data, cb_saved, sizeof(cb_saved));
return res;
}
static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
struct sk_buff *skb)
{
u32 res;
preempt_disable();
res = __bpf_prog_run_save_cb(prog, skb);
preempt_enable();
return res;
}
static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
struct sk_buff *skb)
{
u8 *cb_data = bpf_skb_cb(skb);
u32 res;
if (unlikely(prog->cb_access))
memset(cb_data, 0, BPF_SKB_CB_LEN);
preempt_disable();
res = BPF_PROG_RUN(prog, skb);
preempt_enable();
return res;
}
static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
struct xdp_buff *xdp)
{
/* Caller needs to hold rcu_read_lock() (!), otherwise program
* can be released while still running, or map elements could be
* freed early while still having concurrent users. XDP fastpath
* already takes rcu_read_lock() when fetching the program, so
* it's not necessary here anymore.
*/
return BPF_PROG_RUN(prog, xdp);
}
static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
{
return prog->len * sizeof(struct bpf_insn);
}
static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
{
return round_up(bpf_prog_insn_size(prog) +
sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
}
static inline unsigned int bpf_prog_size(unsigned int proglen)
{
return max(sizeof(struct bpf_prog),
offsetof(struct bpf_prog, insns[proglen]));
}
static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
{
/* When classic BPF programs have been loaded and the arch
* does not have a classic BPF JIT (anymore), they have been
* converted via bpf_migrate_filter() to eBPF and thus always
* have an unspec program type.
*/
return prog->type == BPF_PROG_TYPE_UNSPEC;
}
static inline u32 bpf_ctx_off_adjust_machine(u32 size)
{
const u32 size_machine = sizeof(unsigned long);
if (size > size_machine && size % size_machine == 0)
size = size_machine;
return size;
}
static inline bool
bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
{
return size <= size_default && (size & (size - 1)) == 0;
}
#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
{
set_vm_flush_reset_perms(fp);
set_memory_ro((unsigned long)fp, fp->pages);
}
static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
{
set_vm_flush_reset_perms(hdr);
set_memory_ro((unsigned long)hdr, hdr->pages);
set_memory_x((unsigned long)hdr, hdr->pages);
}
static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog *fp)
{
unsigned long real_start = (unsigned long)fp->bpf_func;
unsigned long addr = real_start & PAGE_MASK;
return (void *)addr;
}
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
{
return sk_filter_trim_cap(sk, skb, 1);
}
struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
void bpf_prog_free(struct bpf_prog *fp);
bool bpf_opcode_in_insntable(u8 code);
void bpf_prog_free_linfo(struct bpf_prog *prog);
void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
const u32 *insn_to_jit_off);
int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
gfp_t gfp_extra_flags);
void __bpf_prog_free(struct bpf_prog *fp);
static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
{
__bpf_prog_free(fp);
}
typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
unsigned int flen);
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
bpf_aux_classic_check_t trans, bool save_orig);
void bpf_prog_destroy(struct bpf_prog *fp);
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_attach_bpf(u32 ufd, struct sock *sk);
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
void sk_reuseport_prog_free(struct bpf_prog *prog);
int sk_detach_filter(struct sock *sk);
int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
unsigned int len);
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
#define __bpf_call_base_args \
((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
__bpf_call_base)
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
void bpf_jit_compile(struct bpf_prog *prog);
bool bpf_jit_needs_zext(void);
bool bpf_helper_changes_pkt_data(void *func);
static inline bool bpf_dump_raw_ok(void)
{
/* Reconstruction of call-sites is dependent on kallsyms,
* thus make dump the same restriction.
*/
return kallsyms_show_value() == 1;
}
struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
const struct bpf_insn *patch, u32 len);
int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
void bpf_clear_redirect_map(struct bpf_map *map);
static inline bool xdp_return_frame_no_direct(void)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
}
static inline void xdp_set_return_frame_no_direct(void)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
}
static inline void xdp_clear_return_frame_no_direct(void)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
}
static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
unsigned int pktlen)
{
unsigned int len;
if (unlikely(!(fwd->flags & IFF_UP)))
return -ENETDOWN;
len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
if (pktlen > len)
return -EMSGSIZE;
return 0;
}
/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
* same cpu context. Further for best results no more than a single map
* for the do_redirect/do_flush pair should be used. This limitation is
* because we only track one map and force a flush when the map changes.
* This does not appear to be a real limitation for existing software.
*/
int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
struct xdp_buff *xdp, struct bpf_prog *prog);
int xdp_do_redirect(struct net_device *dev,
struct xdp_buff *xdp,
struct bpf_prog *prog);
void xdp_do_flush_map(void);
void bpf_warn_invalid_xdp_action(u32 act);
#ifdef CONFIG_INET
struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
struct bpf_prog *prog, struct sk_buff *skb,
u32 hash);
#else
static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
struct bpf_prog *prog, struct sk_buff *skb,
u32 hash)
{
return NULL;
}
#endif
#ifdef CONFIG_BPF_JIT
extern int bpf_jit_enable;
extern int bpf_jit_harden;
extern int bpf_jit_kallsyms;
extern long bpf_jit_limit;
typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
unsigned int alignment,
bpf_jit_fill_hole_t bpf_fill_ill_insns);
void bpf_jit_binary_free(struct bpf_binary_header *hdr);
u64 bpf_jit_alloc_exec_limit(void);
void *bpf_jit_alloc_exec(unsigned long size);
void bpf_jit_free_exec(void *addr);
void bpf_jit_free(struct bpf_prog *fp);
int bpf_jit_get_func_addr(const struct bpf_prog *prog,
const struct bpf_insn *insn, bool extra_pass,
u64 *func_addr, bool *func_addr_fixed);
struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
u32 pass, void *image)
{
pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
proglen, pass, image, current->comm, task_pid_nr(current));
if (image)
print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
16, 1, image, proglen, false);
}
static inline bool bpf_jit_is_ebpf(void)
{
# ifdef CONFIG_HAVE_EBPF_JIT
return true;
# else
return false;
# endif
}
static inline bool ebpf_jit_enabled(void)
{
return bpf_jit_enable && bpf_jit_is_ebpf();
}
static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
return fp->jited && bpf_jit_is_ebpf();
}
static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
{
/* These are the prerequisites, should someone ever have the
* idea to call blinding outside of them, we make sure to
* bail out.
*/
if (!bpf_jit_is_ebpf())
return false;
if (!prog->jit_requested)
return false;
if (!bpf_jit_harden)
return false;
if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
return false;
return true;
}
static inline bool bpf_jit_kallsyms_enabled(void)
{
/* There are a couple of corner cases where kallsyms should
* not be enabled f.e. on hardening.
*/
if (bpf_jit_harden)
return false;
if (!bpf_jit_kallsyms)
return false;
if (bpf_jit_kallsyms == 1)
return true;
return false;
}
const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char *sym);
bool is_bpf_text_address(unsigned long addr);
int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *sym);
static inline const char *
bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char **modname, char *sym)
{
const char *ret = __bpf_address_lookup(addr, size, off, sym);
if (ret && modname)
*modname = NULL;
return ret;
}
void bpf_prog_kallsyms_add(struct bpf_prog *fp);
void bpf_prog_kallsyms_del(struct bpf_prog *fp);
void bpf_get_prog_name(const struct bpf_prog *prog, char *sym);
#else /* CONFIG_BPF_JIT */
static inline bool ebpf_jit_enabled(void)
{
return false;
}
static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
return false;
}
static inline void bpf_jit_free(struct bpf_prog *fp)
{
bpf_prog_unlock_free(fp);
}
static inline bool bpf_jit_kallsyms_enabled(void)
{
return false;
}
static inline const char *
__bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char *sym)
{
return NULL;
}
static inline bool is_bpf_text_address(unsigned long addr)
{
return false;
}
static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
char *type, char *sym)
{
return -ERANGE;
}
static inline const char *
bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char **modname, char *sym)
{
return NULL;
}
static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
{
}
static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
{
}
static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
{
sym[0] = '\0';
}
#endif /* CONFIG_BPF_JIT */
void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp);
void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
#define BPF_ANC BIT(15)
static inline bool bpf_needs_clear_a(const struct sock_filter *first)
{
switch (first->code) {
case BPF_RET | BPF_K:
case BPF_LD | BPF_W | BPF_LEN:
return false;
case BPF_LD | BPF_W | BPF_ABS:
case BPF_LD | BPF_H | BPF_ABS:
case BPF_LD | BPF_B | BPF_ABS:
if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
return true;
return false;
default:
return true;
}
}
static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
{
BUG_ON(ftest->code & BPF_ANC);
switch (ftest->code) {
case BPF_LD | BPF_W | BPF_ABS:
case BPF_LD | BPF_H | BPF_ABS:
case BPF_LD | BPF_B | BPF_ABS:
#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
return BPF_ANC | SKF_AD_##CODE
switch (ftest->k) {
BPF_ANCILLARY(PROTOCOL);
BPF_ANCILLARY(PKTTYPE);
BPF_ANCILLARY(IFINDEX);
BPF_ANCILLARY(NLATTR);
BPF_ANCILLARY(NLATTR_NEST);
BPF_ANCILLARY(MARK);
BPF_ANCILLARY(QUEUE);
BPF_ANCILLARY(HATYPE);
BPF_ANCILLARY(RXHASH);
BPF_ANCILLARY(CPU);
BPF_ANCILLARY(ALU_XOR_X);
BPF_ANCILLARY(VLAN_TAG);
BPF_ANCILLARY(VLAN_TAG_PRESENT);
BPF_ANCILLARY(PAY_OFFSET);
BPF_ANCILLARY(RANDOM);
BPF_ANCILLARY(VLAN_TPID);
}
/* Fallthrough. */
default:
return ftest->code;
}
}
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
int k, unsigned int size);
static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
unsigned int size, void *buffer)
{
if (k >= 0)
return skb_header_pointer(skb, k, size, buffer);
return bpf_internal_load_pointer_neg_helper(skb, k, size);
}
static inline int bpf_tell_extensions(void)
{
return SKF_AD_MAX;
}
struct bpf_sock_addr_kern {
struct sock *sk;
struct sockaddr *uaddr;
/* Temporary "register" to make indirect stores to nested structures
* defined above. We need three registers to make such a store, but
* only two (src and dst) are available at convert_ctx_access time
*/
u64 tmp_reg;
void *t_ctx; /* Attach type specific context. */
};
struct bpf_sock_ops_kern {
struct sock *sk;
u32 op;
union {
u32 args[4];
u32 reply;
u32 replylong[4];
};
u32 is_fullsock;
u64 temp; /* temp and everything after is not
* initialized to 0 before calling
* the BPF program. New fields that
* should be initialized to 0 should
* be inserted before temp.
* temp is scratch storage used by
* sock_ops_convert_ctx_access
* as temporary storage of a register.
*/
};
struct bpf_sysctl_kern {
struct ctl_table_header *head;
struct ctl_table *table;
void *cur_val;
size_t cur_len;
void *new_val;
size_t new_len;
int new_updated;
int write;
loff_t *ppos;
/* Temporary "register" for indirect stores to ppos. */
u64 tmp_reg;
};
#endif /* __LINUX_FILTER_H__ */