Jason Gunthorpe 6e0954b11c RDMA/uverbs: Allow drivers to create a new HW object during rereg_mr
mlx5 has an ugly flow where it tries to allocate a new MR and replace the
existing MR in the same memory during rereg. This is very complicated and
buggy. Instead of trying to replace in-place inside the driver, provide
support from uverbs to change the entire HW object assigned to a handle
during rereg_mr.

Since destroying a MR is allowed to fail (ie if a MW is pointing at it)
and can't be detected in advance, the algorithm creates a completely new
uobject to hold the new MR and swaps the IDR entries of the two objects.

The old MR in the temporary IDR entry is destroyed, and if it fails
rereg_mr succeeds and destruction is deferred to FD release. This
complexity is why this cannot live in a driver safely.

Link: https://lore.kernel.org/r/20201130075839.278575-4-leon@kernel.org
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2020-12-07 14:06:23 -04:00

719 lines
19 KiB
C

/*
* Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/slab.h>
#include <rdma/ib_user_verbs.h>
#include "mlx4_ib.h"
static u32 convert_access(int acc)
{
return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) |
(acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) |
(acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) |
(acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) |
(acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) |
MLX4_PERM_LOCAL_READ;
}
static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
{
switch (type) {
case IB_MW_TYPE_1: return MLX4_MW_TYPE_1;
case IB_MW_TYPE_2: return MLX4_MW_TYPE_2;
default: return -1;
}
}
struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
{
struct mlx4_ib_mr *mr;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
~0ull, convert_access(acc), 0, 0, &mr->mmr);
if (err)
goto err_free;
err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
if (err)
goto err_mr;
mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
mr->umem = NULL;
return &mr->ibmr;
err_mr:
(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
err_free:
kfree(mr);
return ERR_PTR(err);
}
enum {
MLX4_MAX_MTT_SHIFT = 31
};
static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
struct mlx4_mtt *mtt,
u64 mtt_size, u64 mtt_shift, u64 len,
u64 cur_start_addr, u64 *pages,
int *start_index, int *npages)
{
u64 cur_end_addr = cur_start_addr + len;
u64 cur_end_addr_aligned = 0;
u64 mtt_entries;
int err = 0;
int k;
len += (cur_start_addr & (mtt_size - 1ULL));
cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
len += (cur_end_addr_aligned - cur_end_addr);
if (len & (mtt_size - 1ULL)) {
pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
len, mtt_size);
return -EINVAL;
}
mtt_entries = (len >> mtt_shift);
/*
* Align the MTT start address to the mtt_size.
* Required to handle cases when the MR starts in the middle of an MTT
* record. Was not required in old code since the physical addresses
* provided by the dma subsystem were page aligned, which was also the
* MTT size.
*/
cur_start_addr = round_down(cur_start_addr, mtt_size);
/* A new block is started ... */
for (k = 0; k < mtt_entries; ++k) {
pages[*npages] = cur_start_addr + (mtt_size * k);
(*npages)++;
/*
* Be friendly to mlx4_write_mtt() and pass it chunks of
* appropriate size.
*/
if (*npages == PAGE_SIZE / sizeof(u64)) {
err = mlx4_write_mtt(dev->dev, mtt, *start_index,
*npages, pages);
if (err)
return err;
(*start_index) += *npages;
*npages = 0;
}
}
return 0;
}
static inline u64 alignment_of(u64 ptr)
{
return ilog2(ptr & (~(ptr - 1)));
}
static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
u64 current_block_end,
u64 block_shift)
{
/* Check whether the alignment of the new block is aligned as well as
* the previous block.
* Block address must start with zeros till size of entity_size.
*/
if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
/*
* It is not as well aligned as the previous block-reduce the
* mtt size accordingly. Here we take the last right bit which
* is 1.
*/
block_shift = alignment_of(next_block_start);
/*
* Check whether the alignment of the end of previous block - is it
* aligned as well as the start of the block
*/
if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
/*
* It is not as well aligned as the start of the block -
* reduce the mtt size accordingly.
*/
block_shift = alignment_of(current_block_end);
return block_shift;
}
int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
struct ib_umem *umem)
{
u64 *pages;
u64 len = 0;
int err = 0;
u64 mtt_size;
u64 cur_start_addr = 0;
u64 mtt_shift;
int start_index = 0;
int npages = 0;
struct scatterlist *sg;
int i;
pages = (u64 *) __get_free_page(GFP_KERNEL);
if (!pages)
return -ENOMEM;
mtt_shift = mtt->page_shift;
mtt_size = 1ULL << mtt_shift;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
if (cur_start_addr + len == sg_dma_address(sg)) {
/* still the same block */
len += sg_dma_len(sg);
continue;
}
/*
* A new block is started ...
* If len is malaligned, write an extra mtt entry to cover the
* misaligned area (round up the division)
*/
err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
mtt_shift, len,
cur_start_addr,
pages, &start_index,
&npages);
if (err)
goto out;
cur_start_addr = sg_dma_address(sg);
len = sg_dma_len(sg);
}
/* Handle the last block */
if (len > 0) {
/*
* If len is malaligned, write an extra mtt entry to cover
* the misaligned area (round up the division)
*/
err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
mtt_shift, len,
cur_start_addr, pages,
&start_index, &npages);
if (err)
goto out;
}
if (npages)
err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
out:
free_page((unsigned long) pages);
return err;
}
/*
* Calculate optimal mtt size based on contiguous pages.
* Function will return also the number of pages that are not aligned to the
* calculated mtt_size to be added to total number of pages. For that we should
* check the first chunk length & last chunk length and if not aligned to
* mtt_size we should increment the non_aligned_pages number. All chunks in the
* middle already handled as part of mtt shift calculation for both their start
* & end addresses.
*/
int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
int *num_of_mtts)
{
u64 block_shift = MLX4_MAX_MTT_SHIFT;
u64 min_shift = PAGE_SHIFT;
u64 last_block_aligned_end = 0;
u64 current_block_start = 0;
u64 first_block_start = 0;
u64 current_block_len = 0;
u64 last_block_end = 0;
struct scatterlist *sg;
u64 current_block_end;
u64 misalignment_bits;
u64 next_block_start;
u64 total_len = 0;
int i;
*num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE);
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
/*
* Initialization - save the first chunk start as the
* current_block_start - block means contiguous pages.
*/
if (current_block_len == 0 && current_block_start == 0) {
current_block_start = sg_dma_address(sg);
first_block_start = current_block_start;
/*
* Find the bits that are different between the physical
* address and the virtual address for the start of the
* MR.
* umem_get aligned the start_va to a page boundary.
* Therefore, we need to align the start va to the same
* boundary.
* misalignment_bits is needed to handle the case of a
* single memory region. In this case, the rest of the
* logic will not reduce the block size. If we use a
* block size which is bigger than the alignment of the
* misalignment bits, we might use the virtual page
* number instead of the physical page number, resulting
* in access to the wrong data.
*/
misalignment_bits =
(start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
current_block_start;
block_shift = min(alignment_of(misalignment_bits),
block_shift);
}
/*
* Go over the scatter entries and check if they continue the
* previous scatter entry.
*/
next_block_start = sg_dma_address(sg);
current_block_end = current_block_start + current_block_len;
/* If we have a split (non-contig.) between two blocks */
if (current_block_end != next_block_start) {
block_shift = mlx4_ib_umem_calc_block_mtt
(next_block_start,
current_block_end,
block_shift);
/*
* If we reached the minimum shift for 4k page we stop
* the loop.
*/
if (block_shift <= min_shift)
goto end;
/*
* If not saved yet we are in first block - we save the
* length of first block to calculate the
* non_aligned_pages number at the end.
*/
total_len += current_block_len;
/* Start a new block */
current_block_start = next_block_start;
current_block_len = sg_dma_len(sg);
continue;
}
/* The scatter entry is another part of the current block,
* increase the block size.
* An entry in the scatter can be larger than 4k (page) as of
* dma mapping which merge some blocks together.
*/
current_block_len += sg_dma_len(sg);
}
/* Account for the last block in the total len */
total_len += current_block_len;
/* Add to the first block the misalignment that it suffers from. */
total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
last_block_end = current_block_start + current_block_len;
last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
total_len += (last_block_aligned_end - last_block_end);
if (total_len & ((1ULL << block_shift) - 1ULL))
pr_warn("misaligned total length detected (%llu, %llu)!",
total_len, block_shift);
*num_of_mtts = total_len >> block_shift;
end:
if (block_shift < min_shift) {
/*
* If shift is less than the min we set a warning and return the
* min shift.
*/
pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
block_shift = min_shift;
}
return block_shift;
}
static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start,
u64 length, int access_flags)
{
/*
* Force registering the memory as writable if the underlying pages
* are writable. This is so rereg can change the access permissions
* from readable to writable without having to run through ib_umem_get
* again
*/
if (!ib_access_writable(access_flags)) {
unsigned long untagged_start = untagged_addr(start);
struct vm_area_struct *vma;
mmap_read_lock(current->mm);
/*
* FIXME: Ideally this would iterate over all the vmas that
* cover the memory, but for now it requires a single vma to
* entirely cover the MR to support RO mappings.
*/
vma = find_vma(current->mm, untagged_start);
if (vma && vma->vm_end >= untagged_start + length &&
vma->vm_start <= untagged_start) {
if (vma->vm_flags & VM_WRITE)
access_flags |= IB_ACCESS_LOCAL_WRITE;
} else {
access_flags |= IB_ACCESS_LOCAL_WRITE;
}
mmap_read_unlock(current->mm);
}
return ib_umem_get(device, start, length, access_flags);
}
struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int access_flags,
struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
struct mlx4_ib_mr *mr;
int shift;
int err;
int n;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags);
if (IS_ERR(mr->umem)) {
err = PTR_ERR(mr->umem);
goto err_free;
}
shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
convert_access(access_flags), n, shift, &mr->mmr);
if (err)
goto err_umem;
err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
if (err)
goto err_mr;
err = mlx4_mr_enable(dev->dev, &mr->mmr);
if (err)
goto err_mr;
mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
mr->ibmr.length = length;
mr->ibmr.page_size = 1U << shift;
return &mr->ibmr;
err_mr:
(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
err_umem:
ib_umem_release(mr->umem);
err_free:
kfree(mr);
return ERR_PTR(err);
}
struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start,
u64 length, u64 virt_addr,
int mr_access_flags, struct ib_pd *pd,
struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(mr->device);
struct mlx4_ib_mr *mmr = to_mmr(mr);
struct mlx4_mpt_entry *mpt_entry;
struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
int err;
/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
* we assume that the calls can't run concurrently. Otherwise, a
* race exists.
*/
err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
if (err)
return ERR_PTR(err);
if (flags & IB_MR_REREG_PD) {
err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
to_mpd(pd)->pdn);
if (err)
goto release_mpt_entry;
}
if (flags & IB_MR_REREG_ACCESS) {
if (ib_access_writable(mr_access_flags) &&
!mmr->umem->writable) {
err = -EPERM;
goto release_mpt_entry;
}
err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
convert_access(mr_access_flags));
if (err)
goto release_mpt_entry;
}
if (flags & IB_MR_REREG_TRANS) {
int shift;
int n;
mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
ib_umem_release(mmr->umem);
mmr->umem = mlx4_get_umem_mr(mr->device, start, length,
mr_access_flags);
if (IS_ERR(mmr->umem)) {
err = PTR_ERR(mmr->umem);
/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
mmr->umem = NULL;
goto release_mpt_entry;
}
n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE);
shift = PAGE_SHIFT;
err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
virt_addr, length, n, shift,
*pmpt_entry);
if (err) {
ib_umem_release(mmr->umem);
goto release_mpt_entry;
}
mmr->mmr.iova = virt_addr;
mmr->mmr.size = length;
err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
if (err) {
mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
ib_umem_release(mmr->umem);
goto release_mpt_entry;
}
}
/* If we couldn't transfer the MR to the HCA, just remember to
* return a failure. But dereg_mr will free the resources.
*/
err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
if (!err && flags & IB_MR_REREG_ACCESS)
mmr->mmr.access = mr_access_flags;
release_mpt_entry:
mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
if (err)
return ERR_PTR(err);
return NULL;
}
static int
mlx4_alloc_priv_pages(struct ib_device *device,
struct mlx4_ib_mr *mr,
int max_pages)
{
int ret;
/* Ensure that size is aligned to DMA cacheline
* requirements.
* max_pages is limited to MLX4_MAX_FAST_REG_PAGES
* so page_map_size will never cross PAGE_SIZE.
*/
mr->page_map_size = roundup(max_pages * sizeof(u64),
MLX4_MR_PAGES_ALIGN);
/* Prevent cross page boundary allocation. */
mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
if (!mr->pages)
return -ENOMEM;
mr->page_map = dma_map_single(device->dev.parent, mr->pages,
mr->page_map_size, DMA_TO_DEVICE);
if (dma_mapping_error(device->dev.parent, mr->page_map)) {
ret = -ENOMEM;
goto err;
}
return 0;
err:
free_page((unsigned long)mr->pages);
return ret;
}
static void
mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
{
if (mr->pages) {
struct ib_device *device = mr->ibmr.device;
dma_unmap_single(device->dev.parent, mr->page_map,
mr->page_map_size, DMA_TO_DEVICE);
free_page((unsigned long)mr->pages);
mr->pages = NULL;
}
}
int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
{
struct mlx4_ib_mr *mr = to_mmr(ibmr);
int ret;
mlx4_free_priv_pages(mr);
ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
if (ret)
return ret;
if (mr->umem)
ib_umem_release(mr->umem);
kfree(mr);
return 0;
}
int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(ibmw->device);
struct mlx4_ib_mw *mw = to_mmw(ibmw);
int err;
err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn,
to_mlx4_type(ibmw->type), &mw->mmw);
if (err)
return err;
err = mlx4_mw_enable(dev->dev, &mw->mmw);
if (err)
goto err_mw;
ibmw->rkey = mw->mmw.key;
return 0;
err_mw:
mlx4_mw_free(dev->dev, &mw->mmw);
return err;
}
int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
{
struct mlx4_ib_mw *mw = to_mmw(ibmw);
mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
return 0;
}
struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
struct mlx4_ib_mr *mr;
int err;
if (mr_type != IB_MR_TYPE_MEM_REG ||
max_num_sg > MLX4_MAX_FAST_REG_PAGES)
return ERR_PTR(-EINVAL);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
max_num_sg, 0, &mr->mmr);
if (err)
goto err_free;
err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
if (err)
goto err_free_mr;
mr->max_pages = max_num_sg;
err = mlx4_mr_enable(dev->dev, &mr->mmr);
if (err)
goto err_free_pl;
mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
mr->umem = NULL;
return &mr->ibmr;
err_free_pl:
mr->ibmr.device = pd->device;
mlx4_free_priv_pages(mr);
err_free_mr:
(void) mlx4_mr_free(dev->dev, &mr->mmr);
err_free:
kfree(mr);
return ERR_PTR(err);
}
static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
{
struct mlx4_ib_mr *mr = to_mmr(ibmr);
if (unlikely(mr->npages == mr->max_pages))
return -ENOMEM;
mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
return 0;
}
int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct mlx4_ib_mr *mr = to_mmr(ibmr);
int rc;
mr->npages = 0;
ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
mr->page_map_size, DMA_TO_DEVICE);
rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
mr->page_map_size, DMA_TO_DEVICE);
return rc;
}