Zong Li 9d05c18e8d clocksource: riscv: add notrace to riscv_sched_clock
When enabling ftrace graph tracer, it gets the tracing clock in
ftrace_push_return_trace().  Eventually, it invokes riscv_sched_clock()
to get the clock value.  If riscv_sched_clock() isn't marked with
'notrace', it will call ftrace_push_return_trace() and cause infinite
loop.

The result of failure as follow:

command: echo function_graph >current_tracer
[   46.176787] Unable to handle kernel paging request at virtual address ffffffe04fb38c48
[   46.177309] Oops [#1]
[   46.177478] Modules linked in:
[   46.177770] CPU: 0 PID: 256 Comm: $d Not tainted 5.5.0-rc1 #47
[   46.177981] epc: ffffffe00035e59a ra : ffffffe00035e57e sp : ffffffe03a7569b0
[   46.178216]  gp : ffffffe000d29b90 tp : ffffffe03a756180 t0 : ffffffe03a756968
[   46.178430]  t1 : ffffffe00087f408 t2 : ffffffe03a7569a0 s0 : ffffffe03a7569f0
[   46.178643]  s1 : ffffffe00087f408 a0 : 0000000ac054cda4 a1 : 000000000087f411
[   46.178856]  a2 : 0000000ac054cda4 a3 : 0000000000373ca0 a4 : ffffffe04fb38c48
[   46.179099]  a5 : 00000000153e22a8 a6 : 00000000005522ff a7 : 0000000000000005
[   46.179338]  s2 : ffffffe03a756a90 s3 : ffffffe00032811c s4 : ffffffe03a756a58
[   46.179570]  s5 : ffffffe000d29fe0 s6 : 0000000000000001 s7 : 0000000000000003
[   46.179809]  s8 : 0000000000000003 s9 : 0000000000000002 s10: 0000000000000004
[   46.180053]  s11: 0000000000000000 t3 : 0000003fc815749c t4 : 00000000000efc90
[   46.180293]  t5 : ffffffe000d29658 t6 : 0000000000040000
[   46.180482] status: 0000000000000100 badaddr: ffffffe04fb38c48 cause: 000000000000000f

Signed-off-by: Zong Li <zong.li@sifive.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
[paul.walmsley@sifive.com: cleaned up patch description]
Fixes: 92e0d143fdef ("clocksource/drivers/riscv_timer: Provide the sched_clock")
Cc: stable@vger.kernel.org
Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
2020-01-04 21:48:48 -08:00

139 lines
3.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2017 SiFive
*
* All RISC-V systems have a timer attached to every hart. These timers can
* either be read from the "time" and "timeh" CSRs, and can use the SBI to
* setup events, or directly accessed using MMIO registers.
*/
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/sched_clock.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <asm/smp.h>
#include <asm/sbi.h>
u64 __iomem *riscv_time_cmp;
u64 __iomem *riscv_time_val;
static inline void mmio_set_timer(u64 val)
{
void __iomem *r;
r = riscv_time_cmp + cpuid_to_hartid_map(smp_processor_id());
writeq_relaxed(val, r);
}
static int riscv_clock_next_event(unsigned long delta,
struct clock_event_device *ce)
{
csr_set(CSR_IE, IE_TIE);
if (IS_ENABLED(CONFIG_RISCV_SBI))
sbi_set_timer(get_cycles64() + delta);
else
mmio_set_timer(get_cycles64() + delta);
return 0;
}
static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
.name = "riscv_timer_clockevent",
.features = CLOCK_EVT_FEAT_ONESHOT,
.rating = 100,
.set_next_event = riscv_clock_next_event,
};
/*
* It is guaranteed that all the timers across all the harts are synchronized
* within one tick of each other, so while this could technically go
* backwards when hopping between CPUs, practically it won't happen.
*/
static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
{
return get_cycles64();
}
static u64 notrace riscv_sched_clock(void)
{
return get_cycles64();
}
static struct clocksource riscv_clocksource = {
.name = "riscv_clocksource",
.rating = 300,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.read = riscv_clocksource_rdtime,
};
static int riscv_timer_starting_cpu(unsigned int cpu)
{
struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
ce->cpumask = cpumask_of(cpu);
clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
csr_set(CSR_IE, IE_TIE);
return 0;
}
static int riscv_timer_dying_cpu(unsigned int cpu)
{
csr_clear(CSR_IE, IE_TIE);
return 0;
}
/* called directly from the low-level interrupt handler */
void riscv_timer_interrupt(void)
{
struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
csr_clear(CSR_IE, IE_TIE);
evdev->event_handler(evdev);
}
static int __init riscv_timer_init_dt(struct device_node *n)
{
int cpuid, hartid, error;
hartid = riscv_of_processor_hartid(n);
if (hartid < 0) {
pr_warn("Not valid hartid for node [%pOF] error = [%d]\n",
n, hartid);
return hartid;
}
cpuid = riscv_hartid_to_cpuid(hartid);
if (cpuid < 0) {
pr_warn("Invalid cpuid for hartid [%d]\n", hartid);
return cpuid;
}
if (cpuid != smp_processor_id())
return 0;
pr_info("%s: Registering clocksource cpuid [%d] hartid [%d]\n",
__func__, cpuid, hartid);
error = clocksource_register_hz(&riscv_clocksource, riscv_timebase);
if (error) {
pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
error, cpuid);
return error;
}
sched_clock_register(riscv_sched_clock, 64, riscv_timebase);
error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
"clockevents/riscv/timer:starting",
riscv_timer_starting_cpu, riscv_timer_dying_cpu);
if (error)
pr_err("cpu hp setup state failed for RISCV timer [%d]\n",
error);
return error;
}
TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);