mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 13:43:51 +00:00
1b6e068a0c
We have a few places that check if we have the inode locked by doing: ASSERT(inode_is_locked(vfs_inode)); This actually proved to be useful several times as if assertions are enabled (and by default they are in many distros) it immediately triggers a crash which is impossible for users to miss. However that doesn't check if the lock is held by the calling task, so the check passes if some other task locked the inode. Using one of the lockdep functions to check the lock is held, like lockdep_assert_held() for example, does check that the calling task holds the lock, and if that's not the case it produces a warning and stack trace in dmesg. However, despite the misleading "assert" in the name of the lockdep helpers, it does not trigger a crash/BUG_ON(), just a warning and splat in dmesg, which is easy to get unnoticed by users who may have lockdep enabled. So add a helper that does the ASSERT() and calls lockdep_assert_held() immediately after and use it every where we check the inode is locked. Like this if the lock is held by some other task we get the warning in dmesg which is caught by fstests, very helpful during development, and may also be occassionaly noticed by users with lockdep enabled. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1331 lines
39 KiB
C
1331 lines
39 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/sched/mm.h>
|
|
#include "messages.h"
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "extent_io.h"
|
|
#include "disk-io.h"
|
|
#include "compression.h"
|
|
#include "delalloc-space.h"
|
|
#include "qgroup.h"
|
|
#include "subpage.h"
|
|
#include "file.h"
|
|
#include "block-group.h"
|
|
|
|
static struct kmem_cache *btrfs_ordered_extent_cache;
|
|
|
|
static u64 entry_end(struct btrfs_ordered_extent *entry)
|
|
{
|
|
if (entry->file_offset + entry->num_bytes < entry->file_offset)
|
|
return (u64)-1;
|
|
return entry->file_offset + entry->num_bytes;
|
|
}
|
|
|
|
/* returns NULL if the insertion worked, or it returns the node it did find
|
|
* in the tree
|
|
*/
|
|
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset)
|
|
p = &(*p)->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return parent;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* look for a given offset in the tree, and if it can't be found return the
|
|
* first lesser offset
|
|
*/
|
|
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
|
|
struct rb_node **prev_ret)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *test;
|
|
struct btrfs_ordered_extent *entry;
|
|
struct btrfs_ordered_extent *prev_entry = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
prev = n;
|
|
prev_entry = entry;
|
|
|
|
if (file_offset < entry->file_offset)
|
|
n = n->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
if (!prev_ret)
|
|
return NULL;
|
|
|
|
while (prev && file_offset >= entry_end(prev_entry)) {
|
|
test = rb_next(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (file_offset < entry_end(prev_entry))
|
|
break;
|
|
|
|
prev = test;
|
|
}
|
|
if (prev)
|
|
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
while (prev && file_offset < entry_end(prev_entry)) {
|
|
test = rb_prev(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
prev = test;
|
|
}
|
|
*prev_ret = prev;
|
|
return NULL;
|
|
}
|
|
|
|
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
|
|
u64 len)
|
|
{
|
|
if (file_offset + len <= entry->file_offset ||
|
|
entry->file_offset + entry->num_bytes <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look find the first ordered struct that has this offset, otherwise
|
|
* the first one less than this offset
|
|
*/
|
|
static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
|
|
u64 file_offset)
|
|
{
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *ret;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
if (inode->ordered_tree_last) {
|
|
entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
return inode->ordered_tree_last;
|
|
}
|
|
ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
|
|
if (!ret)
|
|
ret = prev;
|
|
if (ret)
|
|
inode->ordered_tree_last = ret;
|
|
return ret;
|
|
}
|
|
|
|
static struct btrfs_ordered_extent *alloc_ordered_extent(
|
|
struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
|
|
u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
|
|
u64 offset, unsigned long flags, int compress_type)
|
|
{
|
|
struct btrfs_ordered_extent *entry;
|
|
int ret;
|
|
u64 qgroup_rsv = 0;
|
|
|
|
if (flags &
|
|
((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
|
|
/* For nocow write, we can release the qgroup rsv right now */
|
|
ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
} else {
|
|
/*
|
|
* The ordered extent has reserved qgroup space, release now
|
|
* and pass the reserved number for qgroup_record to free.
|
|
*/
|
|
ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
}
|
|
entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
|
|
if (!entry)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
entry->file_offset = file_offset;
|
|
entry->num_bytes = num_bytes;
|
|
entry->ram_bytes = ram_bytes;
|
|
entry->disk_bytenr = disk_bytenr;
|
|
entry->disk_num_bytes = disk_num_bytes;
|
|
entry->offset = offset;
|
|
entry->bytes_left = num_bytes;
|
|
entry->inode = BTRFS_I(igrab(&inode->vfs_inode));
|
|
entry->compress_type = compress_type;
|
|
entry->truncated_len = (u64)-1;
|
|
entry->qgroup_rsv = qgroup_rsv;
|
|
entry->flags = flags;
|
|
refcount_set(&entry->refs, 1);
|
|
init_waitqueue_head(&entry->wait);
|
|
INIT_LIST_HEAD(&entry->list);
|
|
INIT_LIST_HEAD(&entry->log_list);
|
|
INIT_LIST_HEAD(&entry->root_extent_list);
|
|
INIT_LIST_HEAD(&entry->work_list);
|
|
INIT_LIST_HEAD(&entry->bioc_list);
|
|
init_completion(&entry->completion);
|
|
|
|
/*
|
|
* We don't need the count_max_extents here, we can assume that all of
|
|
* that work has been done at higher layers, so this is truly the
|
|
* smallest the extent is going to get.
|
|
*/
|
|
spin_lock(&inode->lock);
|
|
btrfs_mod_outstanding_extents(inode, 1);
|
|
spin_unlock(&inode->lock);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_inode *inode = entry->inode;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct rb_node *node;
|
|
|
|
trace_btrfs_ordered_extent_add(inode, entry);
|
|
|
|
percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
|
|
fs_info->delalloc_batch);
|
|
|
|
/* One ref for the tree. */
|
|
refcount_inc(&entry->refs);
|
|
|
|
spin_lock_irq(&inode->ordered_tree_lock);
|
|
node = tree_insert(&inode->ordered_tree, entry->file_offset,
|
|
&entry->rb_node);
|
|
if (unlikely(node))
|
|
btrfs_panic(fs_info, -EEXIST,
|
|
"inconsistency in ordered tree at offset %llu",
|
|
entry->file_offset);
|
|
spin_unlock_irq(&inode->ordered_tree_lock);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_add_tail(&entry->root_extent_list,
|
|
&root->ordered_extents);
|
|
root->nr_ordered_extents++;
|
|
if (root->nr_ordered_extents == 1) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(!list_empty(&root->ordered_root));
|
|
list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
}
|
|
|
|
/*
|
|
* Add an ordered extent to the per-inode tree.
|
|
*
|
|
* @inode: Inode that this extent is for.
|
|
* @file_offset: Logical offset in file where the extent starts.
|
|
* @num_bytes: Logical length of extent in file.
|
|
* @ram_bytes: Full length of unencoded data.
|
|
* @disk_bytenr: Offset of extent on disk.
|
|
* @disk_num_bytes: Size of extent on disk.
|
|
* @offset: Offset into unencoded data where file data starts.
|
|
* @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
|
|
* @compress_type: Compression algorithm used for data.
|
|
*
|
|
* Most of these parameters correspond to &struct btrfs_file_extent_item. The
|
|
* tree is given a single reference on the ordered extent that was inserted, and
|
|
* the returned pointer is given a second reference.
|
|
*
|
|
* Return: the new ordered extent or error pointer.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
|
|
struct btrfs_inode *inode, u64 file_offset,
|
|
const struct btrfs_file_extent *file_extent, unsigned long flags)
|
|
{
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
|
|
|
|
/*
|
|
* For regular writes, we just use the members in @file_extent.
|
|
*
|
|
* For NOCOW, we don't really care about the numbers except @start and
|
|
* file_extent->num_bytes, as we won't insert a file extent item at all.
|
|
*
|
|
* For PREALLOC, we do not use ordered extent members, but
|
|
* btrfs_mark_extent_written() handles everything.
|
|
*
|
|
* So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
|
|
* or btrfs_split_ordered_extent() cannot handle it correctly.
|
|
*/
|
|
if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
|
|
entry = alloc_ordered_extent(inode, file_offset,
|
|
file_extent->num_bytes,
|
|
file_extent->num_bytes,
|
|
file_extent->disk_bytenr + file_extent->offset,
|
|
file_extent->num_bytes, 0, flags,
|
|
file_extent->compression);
|
|
else
|
|
entry = alloc_ordered_extent(inode, file_offset,
|
|
file_extent->num_bytes,
|
|
file_extent->ram_bytes,
|
|
file_extent->disk_bytenr,
|
|
file_extent->disk_num_bytes,
|
|
file_extent->offset, flags,
|
|
file_extent->compression);
|
|
if (!IS_ERR(entry))
|
|
insert_ordered_extent(entry);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
|
|
* when an ordered extent is finished. If the list covers more than one
|
|
* ordered extent, it is split across multiples.
|
|
*/
|
|
void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
|
|
struct btrfs_ordered_sum *sum)
|
|
{
|
|
struct btrfs_inode *inode = entry->inode;
|
|
|
|
spin_lock_irq(&inode->ordered_tree_lock);
|
|
list_add_tail(&sum->list, &entry->list);
|
|
spin_unlock_irq(&inode->ordered_tree_lock);
|
|
}
|
|
|
|
void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
|
|
{
|
|
if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
|
|
mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
|
|
}
|
|
|
|
static void finish_ordered_fn(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered_extent;
|
|
|
|
ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
|
|
btrfs_finish_ordered_io(ordered_extent);
|
|
}
|
|
|
|
static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
|
|
struct folio *folio, u64 file_offset,
|
|
u64 len, bool uptodate)
|
|
{
|
|
struct btrfs_inode *inode = ordered->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
|
|
lockdep_assert_held(&inode->ordered_tree_lock);
|
|
|
|
if (folio) {
|
|
ASSERT(folio->mapping);
|
|
ASSERT(folio_pos(folio) <= file_offset);
|
|
ASSERT(file_offset + len <= folio_pos(folio) + folio_size(folio));
|
|
|
|
/*
|
|
* Ordered (Private2) bit indicates whether we still have
|
|
* pending io unfinished for the ordered extent.
|
|
*
|
|
* If there's no such bit, we need to skip to next range.
|
|
*/
|
|
if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
|
|
return false;
|
|
btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
|
|
}
|
|
|
|
/* Now we're fine to update the accounting. */
|
|
if (WARN_ON_ONCE(len > ordered->bytes_left)) {
|
|
btrfs_crit(fs_info,
|
|
"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
|
|
btrfs_root_id(inode->root), btrfs_ino(inode),
|
|
ordered->file_offset, ordered->num_bytes,
|
|
len, ordered->bytes_left);
|
|
ordered->bytes_left = 0;
|
|
} else {
|
|
ordered->bytes_left -= len;
|
|
}
|
|
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
|
|
|
|
if (ordered->bytes_left)
|
|
return false;
|
|
|
|
/*
|
|
* All the IO of the ordered extent is finished, we need to queue
|
|
* the finish_func to be executed.
|
|
*/
|
|
set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
|
|
cond_wake_up(&ordered->wait);
|
|
refcount_inc(&ordered->refs);
|
|
trace_btrfs_ordered_extent_mark_finished(inode, ordered);
|
|
return true;
|
|
}
|
|
|
|
static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
|
|
{
|
|
struct btrfs_inode *inode = ordered->inode;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
|
|
fs_info->endio_freespace_worker : fs_info->endio_write_workers;
|
|
|
|
btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
|
|
btrfs_queue_work(wq, &ordered->work);
|
|
}
|
|
|
|
void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
|
|
struct folio *folio, u64 file_offset, u64 len,
|
|
bool uptodate)
|
|
{
|
|
struct btrfs_inode *inode = ordered->inode;
|
|
unsigned long flags;
|
|
bool ret;
|
|
|
|
trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
|
|
|
|
spin_lock_irqsave(&inode->ordered_tree_lock, flags);
|
|
ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
|
|
uptodate);
|
|
spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
|
|
|
|
/*
|
|
* If this is a COW write it means we created new extent maps for the
|
|
* range and they point to unwritten locations if we got an error either
|
|
* before submitting a bio or during IO.
|
|
*
|
|
* We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
|
|
* are queuing its completion below. During completion, at
|
|
* btrfs_finish_one_ordered(), we will drop the extent maps for the
|
|
* unwritten extents.
|
|
*
|
|
* However because completion runs in a work queue we can end up having
|
|
* a fast fsync running before that. In the case of direct IO, once we
|
|
* unlock the inode the fsync might start, and we queue the completion
|
|
* before unlocking the inode. In the case of buffered IO when writeback
|
|
* finishes (end_bbio_data_write()) we queue the completion, so if the
|
|
* writeback was triggered by a fast fsync, the fsync might start
|
|
* logging before ordered extent completion runs in the work queue.
|
|
*
|
|
* The fast fsync will log file extent items based on the extent maps it
|
|
* finds, so if by the time it collects extent maps the ordered extent
|
|
* completion didn't happen yet, it will log file extent items that
|
|
* point to unwritten extents, resulting in a corruption if a crash
|
|
* happens and the log tree is replayed. Note that a fast fsync does not
|
|
* wait for completion of ordered extents in order to reduce latency.
|
|
*
|
|
* Set a flag in the inode so that the next fast fsync will wait for
|
|
* ordered extents to complete before starting to log.
|
|
*/
|
|
if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
|
|
set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
|
|
|
|
if (ret)
|
|
btrfs_queue_ordered_fn(ordered);
|
|
}
|
|
|
|
/*
|
|
* Mark all ordered extents io inside the specified range finished.
|
|
*
|
|
* @folio: The involved folio for the operation.
|
|
* For uncompressed buffered IO, the folio status also needs to be
|
|
* updated to indicate whether the pending ordered io is finished.
|
|
* Can be NULL for direct IO and compressed write.
|
|
* For these cases, callers are ensured they won't execute the
|
|
* endio function twice.
|
|
*
|
|
* This function is called for endio, thus the range must have ordered
|
|
* extent(s) covering it.
|
|
*/
|
|
void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
|
|
struct folio *folio, u64 file_offset,
|
|
u64 num_bytes, bool uptodate)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
u64 cur = file_offset;
|
|
|
|
trace_btrfs_writepage_end_io_hook(inode, file_offset,
|
|
file_offset + num_bytes - 1,
|
|
uptodate);
|
|
|
|
spin_lock_irqsave(&inode->ordered_tree_lock, flags);
|
|
while (cur < file_offset + num_bytes) {
|
|
u64 entry_end;
|
|
u64 end;
|
|
u32 len;
|
|
|
|
node = ordered_tree_search(inode, cur);
|
|
/* No ordered extents at all */
|
|
if (!node)
|
|
break;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
entry_end = entry->file_offset + entry->num_bytes;
|
|
/*
|
|
* |<-- OE --->| |
|
|
* cur
|
|
* Go to next OE.
|
|
*/
|
|
if (cur >= entry_end) {
|
|
node = rb_next(node);
|
|
/* No more ordered extents, exit */
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
|
|
/* Go to next ordered extent and continue */
|
|
cur = entry->file_offset;
|
|
continue;
|
|
}
|
|
/*
|
|
* | |<--- OE --->|
|
|
* cur
|
|
* Go to the start of OE.
|
|
*/
|
|
if (cur < entry->file_offset) {
|
|
cur = entry->file_offset;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now we are definitely inside one ordered extent.
|
|
*
|
|
* |<--- OE --->|
|
|
* |
|
|
* cur
|
|
*/
|
|
end = min(entry->file_offset + entry->num_bytes,
|
|
file_offset + num_bytes) - 1;
|
|
ASSERT(end + 1 - cur < U32_MAX);
|
|
len = end + 1 - cur;
|
|
|
|
if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
|
|
spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
|
|
btrfs_queue_ordered_fn(entry);
|
|
spin_lock_irqsave(&inode->ordered_tree_lock, flags);
|
|
}
|
|
cur += len;
|
|
}
|
|
spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Finish IO for one ordered extent across a given range. The range can only
|
|
* contain one ordered extent.
|
|
*
|
|
* @cached: The cached ordered extent. If not NULL, we can skip the tree
|
|
* search and use the ordered extent directly.
|
|
* Will be also used to store the finished ordered extent.
|
|
* @file_offset: File offset for the finished IO
|
|
* @io_size: Length of the finish IO range
|
|
*
|
|
* Return true if the ordered extent is finished in the range, and update
|
|
* @cached.
|
|
* Return false otherwise.
|
|
*
|
|
* NOTE: The range can NOT cross multiple ordered extents.
|
|
* Thus caller should ensure the range doesn't cross ordered extents.
|
|
*/
|
|
bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 file_offset, u64 io_size)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
bool finished = false;
|
|
|
|
spin_lock_irqsave(&inode->ordered_tree_lock, flags);
|
|
if (cached && *cached) {
|
|
entry = *cached;
|
|
goto have_entry;
|
|
}
|
|
|
|
node = ordered_tree_search(inode, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
have_entry:
|
|
if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
goto out;
|
|
|
|
if (io_size > entry->bytes_left)
|
|
btrfs_crit(inode->root->fs_info,
|
|
"bad ordered accounting left %llu size %llu",
|
|
entry->bytes_left, io_size);
|
|
|
|
entry->bytes_left -= io_size;
|
|
|
|
if (entry->bytes_left == 0) {
|
|
/*
|
|
* Ensure only one caller can set the flag and finished_ret
|
|
* accordingly
|
|
*/
|
|
finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
/* test_and_set_bit implies a barrier */
|
|
cond_wake_up_nomb(&entry->wait);
|
|
}
|
|
out:
|
|
if (finished && cached && entry) {
|
|
*cached = entry;
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
|
|
}
|
|
spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
|
|
return finished;
|
|
}
|
|
|
|
/*
|
|
* used to drop a reference on an ordered extent. This will free
|
|
* the extent if the last reference is dropped
|
|
*/
|
|
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_ordered_sum *sum;
|
|
|
|
trace_btrfs_ordered_extent_put(entry->inode, entry);
|
|
|
|
if (refcount_dec_and_test(&entry->refs)) {
|
|
ASSERT(list_empty(&entry->root_extent_list));
|
|
ASSERT(list_empty(&entry->log_list));
|
|
ASSERT(RB_EMPTY_NODE(&entry->rb_node));
|
|
if (entry->inode)
|
|
btrfs_add_delayed_iput(entry->inode);
|
|
while (!list_empty(&entry->list)) {
|
|
cur = entry->list.next;
|
|
sum = list_entry(cur, struct btrfs_ordered_sum, list);
|
|
list_del(&sum->list);
|
|
kvfree(sum);
|
|
}
|
|
kmem_cache_free(btrfs_ordered_extent_cache, entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* remove an ordered extent from the tree. No references are dropped
|
|
* and waiters are woken up.
|
|
*/
|
|
void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
|
|
struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_root *root = btrfs_inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct rb_node *node;
|
|
bool pending;
|
|
bool freespace_inode;
|
|
|
|
/*
|
|
* If this is a free space inode the thread has not acquired the ordered
|
|
* extents lockdep map.
|
|
*/
|
|
freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
|
|
|
|
btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
|
|
/* This is paired with alloc_ordered_extent(). */
|
|
spin_lock(&btrfs_inode->lock);
|
|
btrfs_mod_outstanding_extents(btrfs_inode, -1);
|
|
spin_unlock(&btrfs_inode->lock);
|
|
if (root != fs_info->tree_root) {
|
|
u64 release;
|
|
|
|
if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
|
|
release = entry->disk_num_bytes;
|
|
else
|
|
release = entry->num_bytes;
|
|
btrfs_delalloc_release_metadata(btrfs_inode, release,
|
|
test_bit(BTRFS_ORDERED_IOERR,
|
|
&entry->flags));
|
|
}
|
|
|
|
percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
|
|
fs_info->delalloc_batch);
|
|
|
|
spin_lock_irq(&btrfs_inode->ordered_tree_lock);
|
|
node = &entry->rb_node;
|
|
rb_erase(node, &btrfs_inode->ordered_tree);
|
|
RB_CLEAR_NODE(node);
|
|
if (btrfs_inode->ordered_tree_last == node)
|
|
btrfs_inode->ordered_tree_last = NULL;
|
|
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
|
|
pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
|
|
spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
|
|
|
|
/*
|
|
* The current running transaction is waiting on us, we need to let it
|
|
* know that we're complete and wake it up.
|
|
*/
|
|
if (pending) {
|
|
struct btrfs_transaction *trans;
|
|
|
|
/*
|
|
* The checks for trans are just a formality, it should be set,
|
|
* but if it isn't we don't want to deref/assert under the spin
|
|
* lock, so be nice and check if trans is set, but ASSERT() so
|
|
* if it isn't set a developer will notice.
|
|
*/
|
|
spin_lock(&fs_info->trans_lock);
|
|
trans = fs_info->running_transaction;
|
|
if (trans)
|
|
refcount_inc(&trans->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
ASSERT(trans || BTRFS_FS_ERROR(fs_info));
|
|
if (trans) {
|
|
if (atomic_dec_and_test(&trans->pending_ordered))
|
|
wake_up(&trans->pending_wait);
|
|
btrfs_put_transaction(trans);
|
|
}
|
|
}
|
|
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_del_init(&entry->root_extent_list);
|
|
root->nr_ordered_extents--;
|
|
|
|
trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
|
|
|
|
if (!root->nr_ordered_extents) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(list_empty(&root->ordered_root));
|
|
list_del_init(&root->ordered_root);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
wake_up(&entry->wait);
|
|
if (!freespace_inode)
|
|
btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
|
|
}
|
|
|
|
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
|
|
btrfs_start_ordered_extent(ordered);
|
|
complete(&ordered->completion);
|
|
}
|
|
|
|
/*
|
|
* Wait for all the ordered extents in a root. Use @bg as range or do whole
|
|
* range if it's NULL.
|
|
*/
|
|
u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
|
|
const struct btrfs_block_group *bg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
LIST_HEAD(splice);
|
|
LIST_HEAD(skipped);
|
|
LIST_HEAD(works);
|
|
struct btrfs_ordered_extent *ordered, *next;
|
|
u64 count = 0;
|
|
u64 range_start, range_len;
|
|
u64 range_end;
|
|
|
|
if (bg) {
|
|
range_start = bg->start;
|
|
range_len = bg->length;
|
|
} else {
|
|
range_start = 0;
|
|
range_len = U64_MAX;
|
|
}
|
|
range_end = range_start + range_len;
|
|
|
|
mutex_lock(&root->ordered_extent_mutex);
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_splice_init(&root->ordered_extents, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
|
|
root_extent_list);
|
|
|
|
if (range_end <= ordered->disk_bytenr ||
|
|
ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
|
|
list_move_tail(&ordered->root_extent_list, &skipped);
|
|
cond_resched_lock(&root->ordered_extent_lock);
|
|
continue;
|
|
}
|
|
|
|
list_move_tail(&ordered->root_extent_list,
|
|
&root->ordered_extents);
|
|
refcount_inc(&ordered->refs);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
btrfs_init_work(&ordered->flush_work,
|
|
btrfs_run_ordered_extent_work, NULL);
|
|
list_add_tail(&ordered->work_list, &works);
|
|
btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
|
|
|
|
cond_resched();
|
|
if (nr != U64_MAX)
|
|
nr--;
|
|
count++;
|
|
spin_lock(&root->ordered_extent_lock);
|
|
}
|
|
list_splice_tail(&skipped, &root->ordered_extents);
|
|
list_splice_tail(&splice, &root->ordered_extents);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
list_for_each_entry_safe(ordered, next, &works, work_list) {
|
|
list_del_init(&ordered->work_list);
|
|
wait_for_completion(&ordered->completion);
|
|
btrfs_put_ordered_extent(ordered);
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&root->ordered_extent_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Wait for @nr ordered extents that intersect the @bg, or the whole range of
|
|
* the filesystem if @bg is NULL.
|
|
*/
|
|
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
|
|
const struct btrfs_block_group *bg)
|
|
{
|
|
struct btrfs_root *root;
|
|
LIST_HEAD(splice);
|
|
u64 done;
|
|
|
|
mutex_lock(&fs_info->ordered_operations_mutex);
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
root = btrfs_grab_root(root);
|
|
BUG_ON(!root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
|
|
done = btrfs_wait_ordered_extents(root, nr, bg);
|
|
btrfs_put_root(root);
|
|
|
|
if (nr != U64_MAX)
|
|
nr -= done;
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
}
|
|
list_splice_tail(&splice, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
mutex_unlock(&fs_info->ordered_operations_mutex);
|
|
}
|
|
|
|
/*
|
|
* Start IO and wait for a given ordered extent to finish.
|
|
*
|
|
* Wait on page writeback for all the pages in the extent and the IO completion
|
|
* code to insert metadata into the btree corresponding to the extent.
|
|
*/
|
|
void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
u64 start = entry->file_offset;
|
|
u64 end = start + entry->num_bytes - 1;
|
|
struct btrfs_inode *inode = entry->inode;
|
|
bool freespace_inode;
|
|
|
|
trace_btrfs_ordered_extent_start(inode, entry);
|
|
|
|
/*
|
|
* If this is a free space inode do not take the ordered extents lockdep
|
|
* map.
|
|
*/
|
|
freespace_inode = btrfs_is_free_space_inode(inode);
|
|
|
|
/*
|
|
* pages in the range can be dirty, clean or writeback. We
|
|
* start IO on any dirty ones so the wait doesn't stall waiting
|
|
* for the flusher thread to find them
|
|
*/
|
|
if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
|
|
filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
|
|
|
|
if (!freespace_inode)
|
|
btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
|
|
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
|
|
}
|
|
|
|
/*
|
|
* Used to wait on ordered extents across a large range of bytes.
|
|
*/
|
|
int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
|
|
{
|
|
int ret = 0;
|
|
int ret_wb = 0;
|
|
u64 end;
|
|
u64 orig_end;
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
if (start + len < start) {
|
|
orig_end = OFFSET_MAX;
|
|
} else {
|
|
orig_end = start + len - 1;
|
|
if (orig_end > OFFSET_MAX)
|
|
orig_end = OFFSET_MAX;
|
|
}
|
|
|
|
/* start IO across the range first to instantiate any delalloc
|
|
* extents
|
|
*/
|
|
ret = btrfs_fdatawrite_range(inode, start, orig_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If we have a writeback error don't return immediately. Wait first
|
|
* for any ordered extents that haven't completed yet. This is to make
|
|
* sure no one can dirty the same page ranges and call writepages()
|
|
* before the ordered extents complete - to avoid failures (-EEXIST)
|
|
* when adding the new ordered extents to the ordered tree.
|
|
*/
|
|
ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
|
|
|
|
end = orig_end;
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, end);
|
|
if (!ordered)
|
|
break;
|
|
if (ordered->file_offset > orig_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
if (ordered->file_offset + ordered->num_bytes <= start) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
btrfs_start_ordered_extent(ordered);
|
|
end = ordered->file_offset;
|
|
/*
|
|
* If the ordered extent had an error save the error but don't
|
|
* exit without waiting first for all other ordered extents in
|
|
* the range to complete.
|
|
*/
|
|
if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
|
|
ret = -EIO;
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (end == 0 || end == start)
|
|
break;
|
|
end--;
|
|
}
|
|
return ret_wb ? ret_wb : ret;
|
|
}
|
|
|
|
/*
|
|
* find an ordered extent corresponding to file_offset. return NULL if
|
|
* nothing is found, otherwise take a reference on the extent and return it
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
|
|
u64 file_offset)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&inode->ordered_tree_lock, flags);
|
|
node = ordered_tree_search(inode, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
entry = NULL;
|
|
if (entry) {
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup(inode, entry);
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
|
|
return entry;
|
|
}
|
|
|
|
/* Since the DIO code tries to lock a wide area we need to look for any ordered
|
|
* extents that exist in the range, rather than just the start of the range.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
|
|
struct btrfs_inode *inode, u64 file_offset, u64 len)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
spin_lock_irq(&inode->ordered_tree_lock);
|
|
node = ordered_tree_search(inode, file_offset);
|
|
if (!node) {
|
|
node = ordered_tree_search(inode, file_offset + len);
|
|
if (!node)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
break;
|
|
|
|
if (entry->file_offset >= file_offset + len) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
entry = NULL;
|
|
node = rb_next(node);
|
|
if (!node)
|
|
break;
|
|
}
|
|
out:
|
|
if (entry) {
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup_range(inode, entry);
|
|
}
|
|
spin_unlock_irq(&inode->ordered_tree_lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Adds all ordered extents to the given list. The list ends up sorted by the
|
|
* file_offset of the ordered extents.
|
|
*/
|
|
void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
|
|
struct list_head *list)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
btrfs_assert_inode_locked(inode);
|
|
|
|
spin_lock_irq(&inode->ordered_tree_lock);
|
|
for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
|
|
continue;
|
|
|
|
ASSERT(list_empty(&ordered->log_list));
|
|
list_add_tail(&ordered->log_list, list);
|
|
refcount_inc(&ordered->refs);
|
|
trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
|
|
}
|
|
spin_unlock_irq(&inode->ordered_tree_lock);
|
|
}
|
|
|
|
/*
|
|
* lookup and return any extent before 'file_offset'. NULL is returned
|
|
* if none is found
|
|
*/
|
|
struct btrfs_ordered_extent *
|
|
btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
|
|
{
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
spin_lock_irq(&inode->ordered_tree_lock);
|
|
node = ordered_tree_search(inode, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup_first(inode, entry);
|
|
out:
|
|
spin_unlock_irq(&inode->ordered_tree_lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Lookup the first ordered extent that overlaps the range
|
|
* [@file_offset, @file_offset + @len).
|
|
*
|
|
* The difference between this and btrfs_lookup_first_ordered_extent() is
|
|
* that this one won't return any ordered extent that does not overlap the range.
|
|
* And the difference against btrfs_lookup_ordered_extent() is, this function
|
|
* ensures the first ordered extent gets returned.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
|
|
struct btrfs_inode *inode, u64 file_offset, u64 len)
|
|
{
|
|
struct rb_node *node;
|
|
struct rb_node *cur;
|
|
struct rb_node *prev;
|
|
struct rb_node *next;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
spin_lock_irq(&inode->ordered_tree_lock);
|
|
node = inode->ordered_tree.rb_node;
|
|
/*
|
|
* Here we don't want to use tree_search() which will use tree->last
|
|
* and screw up the search order.
|
|
* And __tree_search() can't return the adjacent ordered extents
|
|
* either, thus here we do our own search.
|
|
*/
|
|
while (node) {
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset) {
|
|
node = node->rb_left;
|
|
} else if (file_offset >= entry_end(entry)) {
|
|
node = node->rb_right;
|
|
} else {
|
|
/*
|
|
* Direct hit, got an ordered extent that starts at
|
|
* @file_offset
|
|
*/
|
|
goto out;
|
|
}
|
|
}
|
|
if (!entry) {
|
|
/* Empty tree */
|
|
goto out;
|
|
}
|
|
|
|
cur = &entry->rb_node;
|
|
/* We got an entry around @file_offset, check adjacent entries */
|
|
if (entry->file_offset < file_offset) {
|
|
prev = cur;
|
|
next = rb_next(cur);
|
|
} else {
|
|
prev = rb_prev(cur);
|
|
next = cur;
|
|
}
|
|
if (prev) {
|
|
entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
goto out;
|
|
}
|
|
if (next) {
|
|
entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
goto out;
|
|
}
|
|
/* No ordered extent in the range */
|
|
entry = NULL;
|
|
out:
|
|
if (entry) {
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
|
|
}
|
|
|
|
spin_unlock_irq(&inode->ordered_tree_lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Lock the passed range and ensures all pending ordered extents in it are run
|
|
* to completion.
|
|
*
|
|
* @inode: Inode whose ordered tree is to be searched
|
|
* @start: Beginning of range to flush
|
|
* @end: Last byte of range to lock
|
|
* @cached_state: If passed, will return the extent state responsible for the
|
|
* locked range. It's the caller's responsibility to free the
|
|
* cached state.
|
|
*
|
|
* Always return with the given range locked, ensuring after it's called no
|
|
* order extent can be pending.
|
|
*/
|
|
void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
|
|
u64 end,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cache = NULL;
|
|
struct extent_state **cachedp = &cache;
|
|
|
|
if (cached_state)
|
|
cachedp = cached_state;
|
|
|
|
while (1) {
|
|
lock_extent(&inode->io_tree, start, end, cachedp);
|
|
ordered = btrfs_lookup_ordered_range(inode, start,
|
|
end - start + 1);
|
|
if (!ordered) {
|
|
/*
|
|
* If no external cached_state has been passed then
|
|
* decrement the extra ref taken for cachedp since we
|
|
* aren't exposing it outside of this function
|
|
*/
|
|
if (!cached_state)
|
|
refcount_dec(&cache->refs);
|
|
break;
|
|
}
|
|
unlock_extent(&inode->io_tree, start, end, cachedp);
|
|
btrfs_start_ordered_extent(ordered);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lock the passed range and ensure all pending ordered extents in it are run
|
|
* to completion in nowait mode.
|
|
*
|
|
* Return true if btrfs_lock_ordered_range does not return any extents,
|
|
* otherwise false.
|
|
*/
|
|
bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
|
|
return false;
|
|
|
|
ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
|
|
if (!ordered)
|
|
return true;
|
|
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent(&inode->io_tree, start, end, cached_state);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Split out a new ordered extent for this first @len bytes of @ordered. */
|
|
struct btrfs_ordered_extent *btrfs_split_ordered_extent(
|
|
struct btrfs_ordered_extent *ordered, u64 len)
|
|
{
|
|
struct btrfs_inode *inode = ordered->inode;
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 file_offset = ordered->file_offset;
|
|
u64 disk_bytenr = ordered->disk_bytenr;
|
|
unsigned long flags = ordered->flags;
|
|
struct btrfs_ordered_sum *sum, *tmpsum;
|
|
struct btrfs_ordered_extent *new;
|
|
struct rb_node *node;
|
|
u64 offset = 0;
|
|
|
|
trace_btrfs_ordered_extent_split(inode, ordered);
|
|
|
|
ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
|
|
|
|
/*
|
|
* The entire bio must be covered by the ordered extent, but we can't
|
|
* reduce the original extent to a zero length either.
|
|
*/
|
|
if (WARN_ON_ONCE(len >= ordered->num_bytes))
|
|
return ERR_PTR(-EINVAL);
|
|
/* We cannot split partially completed ordered extents. */
|
|
if (ordered->bytes_left) {
|
|
ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
|
|
if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
/* We cannot split a compressed ordered extent. */
|
|
if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
|
|
len, 0, flags, ordered->compress_type);
|
|
if (IS_ERR(new))
|
|
return new;
|
|
|
|
/* One ref for the tree. */
|
|
refcount_inc(&new->refs);
|
|
|
|
/*
|
|
* Take the root's ordered_extent_lock to avoid a race with
|
|
* btrfs_wait_ordered_extents() when updating the disk_bytenr and
|
|
* disk_num_bytes fields of the ordered extent below. And we disable
|
|
* IRQs because the inode's ordered_tree_lock is used in IRQ context
|
|
* elsewhere.
|
|
*
|
|
* There's no concern about a previous caller of
|
|
* btrfs_wait_ordered_extents() getting the trimmed ordered extent
|
|
* before we insert the new one, because even if it gets the ordered
|
|
* extent before it's trimmed and the new one inserted, right before it
|
|
* uses it or during its use, the ordered extent might have been
|
|
* trimmed in the meanwhile, and it missed the new ordered extent.
|
|
* There's no way around this and it's harmless for current use cases,
|
|
* so we take the root's ordered_extent_lock to fix that race during
|
|
* trimming and silence tools like KCSAN.
|
|
*/
|
|
spin_lock_irq(&root->ordered_extent_lock);
|
|
spin_lock(&inode->ordered_tree_lock);
|
|
|
|
/*
|
|
* We don't have overlapping ordered extents (that would imply double
|
|
* allocation of extents) and we checked above that the split length
|
|
* does not cross the ordered extent's num_bytes field, so there's
|
|
* no need to remove it and re-insert it in the tree.
|
|
*/
|
|
ordered->file_offset += len;
|
|
ordered->disk_bytenr += len;
|
|
ordered->num_bytes -= len;
|
|
ordered->disk_num_bytes -= len;
|
|
ordered->ram_bytes -= len;
|
|
|
|
if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
|
|
ASSERT(ordered->bytes_left == 0);
|
|
new->bytes_left = 0;
|
|
} else {
|
|
ordered->bytes_left -= len;
|
|
}
|
|
|
|
if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
|
|
if (ordered->truncated_len > len) {
|
|
ordered->truncated_len -= len;
|
|
} else {
|
|
new->truncated_len = ordered->truncated_len;
|
|
ordered->truncated_len = 0;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
|
|
if (offset == len)
|
|
break;
|
|
list_move_tail(&sum->list, &new->list);
|
|
offset += sum->len;
|
|
}
|
|
|
|
node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
|
|
if (unlikely(node))
|
|
btrfs_panic(fs_info, -EEXIST,
|
|
"inconsistency in ordered tree at offset %llu after split",
|
|
new->file_offset);
|
|
spin_unlock(&inode->ordered_tree_lock);
|
|
|
|
list_add_tail(&new->root_extent_list, &root->ordered_extents);
|
|
root->nr_ordered_extents++;
|
|
spin_unlock_irq(&root->ordered_extent_lock);
|
|
return new;
|
|
}
|
|
|
|
int __init ordered_data_init(void)
|
|
{
|
|
btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
|
|
if (!btrfs_ordered_extent_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __cold ordered_data_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_ordered_extent_cache);
|
|
}
|