linux-stable/net/wireless/chan.c
Andrei Otcheretianski 41a313d875 wifi: cfg80211: reg: Support P2P operation on DFS channels
FCC-594280 D01 Section B.3 allows peer-to-peer and ad hoc devices to
operate on DFS channels while they operate under the control of a
concurrent DFS master. For example, it is possible to have a P2P GO on a
DFS channel as long as BSS connection is active on the same channel.
Allow such operation by adding additional regulatory flags to indicate
DFS concurrent channels and capable devices. Add the required
relaxations in DFS regulatory checks.

Signed-off-by: Andrei Otcheretianski <andrei.otcheretianski@intel.com>
Reviewed-by: Gregory Greenman <gregory.greenman@intel.com>
Signed-off-by: Miri Korenblit <miriam.rachel.korenblit@intel.com>
Link: https://msgid.link/20231220133549.bdfb8a9c7c54.I973563562969a27fea8ec5685b96a3a47afe142f@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2023-12-21 20:35:14 +01:00

1604 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This file contains helper code to handle channel
* settings and keeping track of what is possible at
* any point in time.
*
* Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2018-2023 Intel Corporation
*/
#include <linux/export.h>
#include <linux/bitfield.h>
#include <net/cfg80211.h>
#include "core.h"
#include "rdev-ops.h"
static bool cfg80211_valid_60g_freq(u32 freq)
{
return freq >= 58320 && freq <= 70200;
}
void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
struct ieee80211_channel *chan,
enum nl80211_channel_type chan_type)
{
if (WARN_ON(!chan))
return;
chandef->chan = chan;
chandef->freq1_offset = chan->freq_offset;
chandef->center_freq2 = 0;
chandef->edmg.bw_config = 0;
chandef->edmg.channels = 0;
switch (chan_type) {
case NL80211_CHAN_NO_HT:
chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
chandef->center_freq1 = chan->center_freq;
break;
case NL80211_CHAN_HT20:
chandef->width = NL80211_CHAN_WIDTH_20;
chandef->center_freq1 = chan->center_freq;
break;
case NL80211_CHAN_HT40PLUS:
chandef->width = NL80211_CHAN_WIDTH_40;
chandef->center_freq1 = chan->center_freq + 10;
break;
case NL80211_CHAN_HT40MINUS:
chandef->width = NL80211_CHAN_WIDTH_40;
chandef->center_freq1 = chan->center_freq - 10;
break;
default:
WARN_ON(1);
}
}
EXPORT_SYMBOL(cfg80211_chandef_create);
static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
{
int max_contiguous = 0;
int num_of_enabled = 0;
int contiguous = 0;
int i;
if (!chandef->edmg.channels || !chandef->edmg.bw_config)
return false;
if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
return false;
for (i = 0; i < 6; i++) {
if (chandef->edmg.channels & BIT(i)) {
contiguous++;
num_of_enabled++;
} else {
contiguous = 0;
}
max_contiguous = max(contiguous, max_contiguous);
}
/* basic verification of edmg configuration according to
* IEEE P802.11ay/D4.0 section 9.4.2.251
*/
/* check bw_config against contiguous edmg channels */
switch (chandef->edmg.bw_config) {
case IEEE80211_EDMG_BW_CONFIG_4:
case IEEE80211_EDMG_BW_CONFIG_8:
case IEEE80211_EDMG_BW_CONFIG_12:
if (max_contiguous < 1)
return false;
break;
case IEEE80211_EDMG_BW_CONFIG_5:
case IEEE80211_EDMG_BW_CONFIG_9:
case IEEE80211_EDMG_BW_CONFIG_13:
if (max_contiguous < 2)
return false;
break;
case IEEE80211_EDMG_BW_CONFIG_6:
case IEEE80211_EDMG_BW_CONFIG_10:
case IEEE80211_EDMG_BW_CONFIG_14:
if (max_contiguous < 3)
return false;
break;
case IEEE80211_EDMG_BW_CONFIG_7:
case IEEE80211_EDMG_BW_CONFIG_11:
case IEEE80211_EDMG_BW_CONFIG_15:
if (max_contiguous < 4)
return false;
break;
default:
return false;
}
/* check bw_config against aggregated (non contiguous) edmg channels */
switch (chandef->edmg.bw_config) {
case IEEE80211_EDMG_BW_CONFIG_4:
case IEEE80211_EDMG_BW_CONFIG_5:
case IEEE80211_EDMG_BW_CONFIG_6:
case IEEE80211_EDMG_BW_CONFIG_7:
break;
case IEEE80211_EDMG_BW_CONFIG_8:
case IEEE80211_EDMG_BW_CONFIG_9:
case IEEE80211_EDMG_BW_CONFIG_10:
case IEEE80211_EDMG_BW_CONFIG_11:
if (num_of_enabled < 2)
return false;
break;
case IEEE80211_EDMG_BW_CONFIG_12:
case IEEE80211_EDMG_BW_CONFIG_13:
case IEEE80211_EDMG_BW_CONFIG_14:
case IEEE80211_EDMG_BW_CONFIG_15:
if (num_of_enabled < 4 || max_contiguous < 2)
return false;
break;
default:
return false;
}
return true;
}
int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
{
int mhz;
switch (chan_width) {
case NL80211_CHAN_WIDTH_1:
mhz = 1;
break;
case NL80211_CHAN_WIDTH_2:
mhz = 2;
break;
case NL80211_CHAN_WIDTH_4:
mhz = 4;
break;
case NL80211_CHAN_WIDTH_8:
mhz = 8;
break;
case NL80211_CHAN_WIDTH_16:
mhz = 16;
break;
case NL80211_CHAN_WIDTH_5:
mhz = 5;
break;
case NL80211_CHAN_WIDTH_10:
mhz = 10;
break;
case NL80211_CHAN_WIDTH_20:
case NL80211_CHAN_WIDTH_20_NOHT:
mhz = 20;
break;
case NL80211_CHAN_WIDTH_40:
mhz = 40;
break;
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_80:
mhz = 80;
break;
case NL80211_CHAN_WIDTH_160:
mhz = 160;
break;
case NL80211_CHAN_WIDTH_320:
mhz = 320;
break;
default:
WARN_ON_ONCE(1);
return -1;
}
return mhz;
}
EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
{
return nl80211_chan_width_to_mhz(c->width);
}
bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
{
u32 control_freq, oper_freq;
int oper_width, control_width;
if (!chandef->chan)
return false;
if (chandef->freq1_offset >= 1000)
return false;
control_freq = chandef->chan->center_freq;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_20:
case NL80211_CHAN_WIDTH_20_NOHT:
if (ieee80211_chandef_to_khz(chandef) !=
ieee80211_channel_to_khz(chandef->chan))
return false;
if (chandef->center_freq2)
return false;
break;
case NL80211_CHAN_WIDTH_1:
case NL80211_CHAN_WIDTH_2:
case NL80211_CHAN_WIDTH_4:
case NL80211_CHAN_WIDTH_8:
case NL80211_CHAN_WIDTH_16:
if (chandef->chan->band != NL80211_BAND_S1GHZ)
return false;
control_freq = ieee80211_channel_to_khz(chandef->chan);
oper_freq = ieee80211_chandef_to_khz(chandef);
control_width = nl80211_chan_width_to_mhz(
ieee80211_s1g_channel_width(
chandef->chan));
oper_width = cfg80211_chandef_get_width(chandef);
if (oper_width < 0 || control_width < 0)
return false;
if (chandef->center_freq2)
return false;
if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
oper_freq + MHZ_TO_KHZ(oper_width) / 2)
return false;
if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
oper_freq - MHZ_TO_KHZ(oper_width) / 2)
return false;
break;
case NL80211_CHAN_WIDTH_80P80:
if (!chandef->center_freq2)
return false;
/* adjacent is not allowed -- that's a 160 MHz channel */
if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
chandef->center_freq2 - chandef->center_freq1 == 80)
return false;
break;
default:
if (chandef->center_freq2)
return false;
break;
}
switch (chandef->width) {
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
case NL80211_CHAN_WIDTH_20:
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_1:
case NL80211_CHAN_WIDTH_2:
case NL80211_CHAN_WIDTH_4:
case NL80211_CHAN_WIDTH_8:
case NL80211_CHAN_WIDTH_16:
/* all checked above */
break;
case NL80211_CHAN_WIDTH_320:
if (chandef->center_freq1 == control_freq + 150 ||
chandef->center_freq1 == control_freq + 130 ||
chandef->center_freq1 == control_freq + 110 ||
chandef->center_freq1 == control_freq + 90 ||
chandef->center_freq1 == control_freq - 90 ||
chandef->center_freq1 == control_freq - 110 ||
chandef->center_freq1 == control_freq - 130 ||
chandef->center_freq1 == control_freq - 150)
break;
fallthrough;
case NL80211_CHAN_WIDTH_160:
if (chandef->center_freq1 == control_freq + 70 ||
chandef->center_freq1 == control_freq + 50 ||
chandef->center_freq1 == control_freq - 50 ||
chandef->center_freq1 == control_freq - 70)
break;
fallthrough;
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_80:
if (chandef->center_freq1 == control_freq + 30 ||
chandef->center_freq1 == control_freq - 30)
break;
fallthrough;
case NL80211_CHAN_WIDTH_40:
if (chandef->center_freq1 == control_freq + 10 ||
chandef->center_freq1 == control_freq - 10)
break;
fallthrough;
default:
return false;
}
/* channel 14 is only for IEEE 802.11b */
if (chandef->center_freq1 == 2484 &&
chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
return false;
if (cfg80211_chandef_is_edmg(chandef) &&
!cfg80211_edmg_chandef_valid(chandef))
return false;
return true;
}
EXPORT_SYMBOL(cfg80211_chandef_valid);
static void chandef_primary_freqs(const struct cfg80211_chan_def *c,
u32 *pri40, u32 *pri80, u32 *pri160)
{
int tmp;
switch (c->width) {
case NL80211_CHAN_WIDTH_40:
*pri40 = c->center_freq1;
*pri80 = 0;
*pri160 = 0;
break;
case NL80211_CHAN_WIDTH_80:
case NL80211_CHAN_WIDTH_80P80:
*pri160 = 0;
*pri80 = c->center_freq1;
/* n_P20 */
tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
/* n_P40 */
tmp /= 2;
/* freq_P40 */
*pri40 = c->center_freq1 - 20 + 40 * tmp;
break;
case NL80211_CHAN_WIDTH_160:
*pri160 = c->center_freq1;
/* n_P20 */
tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
/* n_P40 */
tmp /= 2;
/* freq_P40 */
*pri40 = c->center_freq1 - 60 + 40 * tmp;
/* n_P80 */
tmp /= 2;
*pri80 = c->center_freq1 - 40 + 80 * tmp;
break;
case NL80211_CHAN_WIDTH_320:
/* n_P20 */
tmp = (150 + c->chan->center_freq - c->center_freq1) / 20;
/* n_P40 */
tmp /= 2;
/* freq_P40 */
*pri40 = c->center_freq1 - 140 + 40 * tmp;
/* n_P80 */
tmp /= 2;
*pri80 = c->center_freq1 - 120 + 80 * tmp;
/* n_P160 */
tmp /= 2;
*pri160 = c->center_freq1 - 80 + 160 * tmp;
break;
default:
WARN_ON_ONCE(1);
}
}
const struct cfg80211_chan_def *
cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
const struct cfg80211_chan_def *c2)
{
u32 c1_pri40, c1_pri80, c2_pri40, c2_pri80, c1_pri160, c2_pri160;
/* If they are identical, return */
if (cfg80211_chandef_identical(c1, c2))
return c1;
/* otherwise, must have same control channel */
if (c1->chan != c2->chan)
return NULL;
/*
* If they have the same width, but aren't identical,
* then they can't be compatible.
*/
if (c1->width == c2->width)
return NULL;
/*
* can't be compatible if one of them is 5 or 10 MHz,
* but they don't have the same width.
*/
if (c1->width == NL80211_CHAN_WIDTH_5 ||
c1->width == NL80211_CHAN_WIDTH_10 ||
c2->width == NL80211_CHAN_WIDTH_5 ||
c2->width == NL80211_CHAN_WIDTH_10)
return NULL;
if (c1->width == NL80211_CHAN_WIDTH_20_NOHT ||
c1->width == NL80211_CHAN_WIDTH_20)
return c2;
if (c2->width == NL80211_CHAN_WIDTH_20_NOHT ||
c2->width == NL80211_CHAN_WIDTH_20)
return c1;
chandef_primary_freqs(c1, &c1_pri40, &c1_pri80, &c1_pri160);
chandef_primary_freqs(c2, &c2_pri40, &c2_pri80, &c2_pri160);
if (c1_pri40 != c2_pri40)
return NULL;
if (c1->width == NL80211_CHAN_WIDTH_40)
return c2;
if (c2->width == NL80211_CHAN_WIDTH_40)
return c1;
if (c1_pri80 != c2_pri80)
return NULL;
if (c1->width == NL80211_CHAN_WIDTH_80 &&
c2->width > NL80211_CHAN_WIDTH_80)
return c2;
if (c2->width == NL80211_CHAN_WIDTH_80 &&
c1->width > NL80211_CHAN_WIDTH_80)
return c1;
WARN_ON(!c1_pri160 && !c2_pri160);
if (c1_pri160 && c2_pri160 && c1_pri160 != c2_pri160)
return NULL;
if (c1->width > c2->width)
return c1;
return c2;
}
EXPORT_SYMBOL(cfg80211_chandef_compatible);
static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq,
u32 bandwidth,
enum nl80211_dfs_state dfs_state)
{
struct ieee80211_channel *c;
u32 freq;
for (freq = center_freq - bandwidth/2 + 10;
freq <= center_freq + bandwidth/2 - 10;
freq += 20) {
c = ieee80211_get_channel(wiphy, freq);
if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
continue;
c->dfs_state = dfs_state;
c->dfs_state_entered = jiffies;
}
}
void cfg80211_set_dfs_state(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef,
enum nl80211_dfs_state dfs_state)
{
int width;
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
return;
width = cfg80211_chandef_get_width(chandef);
if (width < 0)
return;
cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1,
width, dfs_state);
if (!chandef->center_freq2)
return;
cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2,
width, dfs_state);
}
static u32 cfg80211_get_start_freq(u32 center_freq,
u32 bandwidth)
{
u32 start_freq;
bandwidth = MHZ_TO_KHZ(bandwidth);
if (bandwidth <= MHZ_TO_KHZ(20))
start_freq = center_freq;
else
start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
return start_freq;
}
static u32 cfg80211_get_end_freq(u32 center_freq,
u32 bandwidth)
{
u32 end_freq;
bandwidth = MHZ_TO_KHZ(bandwidth);
if (bandwidth <= MHZ_TO_KHZ(20))
end_freq = center_freq;
else
end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
return end_freq;
}
static bool
cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
enum nl80211_iftype iftype,
struct wireless_dev *wdev,
struct ieee80211_channel *chan)
{
unsigned int link_id;
for_each_valid_link(wdev, link_id) {
struct ieee80211_channel *other_chan = NULL;
struct cfg80211_chan_def chandef = {};
int ret;
/* In order to avoid daisy chaining only allow BSS STA */
if (wdev->iftype != NL80211_IFTYPE_STATION ||
!wdev->links[link_id].client.current_bss)
continue;
other_chan =
wdev->links[link_id].client.current_bss->pub.channel;
if (!other_chan)
continue;
if (chan == other_chan)
return true;
/* continue if we can't get the channel */
ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
if (ret)
continue;
if (cfg80211_is_sub_chan(&chandef, chan, false))
return true;
}
return false;
}
/*
* Check if P2P GO is allowed to operate on a DFS channel
*/
static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
enum nl80211_iftype iftype,
struct ieee80211_channel *chan)
{
struct wireless_dev *wdev;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
lockdep_assert_held(&rdev->wiphy.mtx);
if (!wiphy_ext_feature_isset(&rdev->wiphy,
NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
!(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
return false;
/* only valid for P2P GO */
if (iftype != NL80211_IFTYPE_P2P_GO)
return false;
/*
* Allow only if there's a concurrent BSS
*/
list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
wdev, chan);
if (ret)
return ret;
}
return false;
}
static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
u32 center_freq,
u32 bandwidth,
enum nl80211_iftype iftype)
{
struct ieee80211_channel *c;
u32 freq, start_freq, end_freq;
start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
c = ieee80211_get_channel_khz(wiphy, freq);
if (!c)
return -EINVAL;
if (c->flags & IEEE80211_CHAN_RADAR &&
!cfg80211_dfs_permissive_chan(wiphy, iftype, c))
return 1;
}
return 0;
}
int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef,
enum nl80211_iftype iftype)
{
int width;
int ret;
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
return -EINVAL;
switch (iftype) {
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_MESH_POINT:
width = cfg80211_chandef_get_width(chandef);
if (width < 0)
return -EINVAL;
ret = cfg80211_get_chans_dfs_required(wiphy,
ieee80211_chandef_to_khz(chandef),
width, iftype);
if (ret < 0)
return ret;
else if (ret > 0)
return BIT(chandef->width);
if (!chandef->center_freq2)
return 0;
ret = cfg80211_get_chans_dfs_required(wiphy,
MHZ_TO_KHZ(chandef->center_freq2),
width, iftype);
if (ret < 0)
return ret;
else if (ret > 0)
return BIT(chandef->width);
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_OCB:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_DEVICE:
case NL80211_IFTYPE_NAN:
break;
case NL80211_IFTYPE_WDS:
case NL80211_IFTYPE_UNSPECIFIED:
case NUM_NL80211_IFTYPES:
WARN_ON(1);
}
return 0;
}
EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy,
u32 center_freq,
u32 bandwidth)
{
struct ieee80211_channel *c;
u32 freq, start_freq, end_freq;
int count = 0;
start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
/*
* Check entire range of channels for the bandwidth.
* Check all channels are DFS channels (DFS_USABLE or
* DFS_AVAILABLE). Return number of usable channels
* (require CAC). Allow DFS and non-DFS channel mix.
*/
for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
c = ieee80211_get_channel_khz(wiphy, freq);
if (!c)
return -EINVAL;
if (c->flags & IEEE80211_CHAN_DISABLED)
return -EINVAL;
if (c->flags & IEEE80211_CHAN_RADAR) {
if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
return -EINVAL;
if (c->dfs_state == NL80211_DFS_USABLE)
count++;
}
}
return count;
}
bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef)
{
int width;
int r1, r2 = 0;
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
return false;
width = cfg80211_chandef_get_width(chandef);
if (width < 0)
return false;
r1 = cfg80211_get_chans_dfs_usable(wiphy,
MHZ_TO_KHZ(chandef->center_freq1),
width);
if (r1 < 0)
return false;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_80P80:
WARN_ON(!chandef->center_freq2);
r2 = cfg80211_get_chans_dfs_usable(wiphy,
MHZ_TO_KHZ(chandef->center_freq2),
width);
if (r2 < 0)
return false;
break;
default:
WARN_ON(chandef->center_freq2);
break;
}
return (r1 + r2 > 0);
}
EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
/*
* Checks if center frequency of chan falls with in the bandwidth
* range of chandef.
*/
bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
struct ieee80211_channel *chan,
bool primary_only)
{
int width;
u32 freq;
if (!chandef->chan)
return false;
if (chandef->chan->center_freq == chan->center_freq)
return true;
if (primary_only)
return false;
width = cfg80211_chandef_get_width(chandef);
if (width <= 20)
return false;
for (freq = chandef->center_freq1 - width / 2 + 10;
freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
if (chan->center_freq == freq)
return true;
}
if (!chandef->center_freq2)
return false;
for (freq = chandef->center_freq2 - width / 2 + 10;
freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
if (chan->center_freq == freq)
return true;
}
return false;
}
bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
{
unsigned int link;
lockdep_assert_wiphy(wdev->wiphy);
switch (wdev->iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
for_each_valid_link(wdev, link) {
if (wdev->links[link].ap.beacon_interval)
return true;
}
break;
case NL80211_IFTYPE_ADHOC:
if (wdev->u.ibss.ssid_len)
return true;
break;
case NL80211_IFTYPE_MESH_POINT:
if (wdev->u.mesh.id_len)
return true;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_OCB:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_DEVICE:
/* Can NAN type be considered as beaconing interface? */
case NL80211_IFTYPE_NAN:
break;
case NL80211_IFTYPE_UNSPECIFIED:
case NL80211_IFTYPE_WDS:
case NUM_NL80211_IFTYPES:
WARN_ON(1);
}
return false;
}
bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
struct ieee80211_channel *chan,
bool primary_only)
{
unsigned int link;
switch (wdev->iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
for_each_valid_link(wdev, link) {
if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
chan, primary_only))
return true;
}
break;
case NL80211_IFTYPE_ADHOC:
return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
primary_only);
case NL80211_IFTYPE_MESH_POINT:
return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
primary_only);
default:
break;
}
return false;
}
static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
struct ieee80211_channel *chan)
{
struct wireless_dev *wdev;
lockdep_assert_wiphy(wiphy);
list_for_each_entry(wdev, &wiphy->wdev_list, list) {
if (!cfg80211_beaconing_iface_active(wdev))
continue;
if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
return true;
}
return false;
}
static bool
cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
struct ieee80211_channel *channel)
{
if (!rdev->background_radar_wdev)
return false;
if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
return false;
return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
false);
}
bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
struct ieee80211_channel *chan)
{
struct cfg80211_registered_device *rdev;
ASSERT_RTNL();
if (!(chan->flags & IEEE80211_CHAN_RADAR))
return false;
for_each_rdev(rdev) {
bool found;
if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
continue;
wiphy_lock(&rdev->wiphy);
found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
cfg80211_offchan_chain_is_active(rdev, chan);
wiphy_unlock(&rdev->wiphy);
if (found)
return true;
}
return false;
}
static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy,
u32 center_freq,
u32 bandwidth)
{
struct ieee80211_channel *c;
u32 freq, start_freq, end_freq;
bool dfs_offload;
dfs_offload = wiphy_ext_feature_isset(wiphy,
NL80211_EXT_FEATURE_DFS_OFFLOAD);
start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
/*
* Check entire range of channels for the bandwidth.
* If any channel in between is disabled or has not
* had gone through CAC return false
*/
for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
c = ieee80211_get_channel_khz(wiphy, freq);
if (!c)
return false;
if (c->flags & IEEE80211_CHAN_DISABLED)
return false;
if ((c->flags & IEEE80211_CHAN_RADAR) &&
(c->dfs_state != NL80211_DFS_AVAILABLE) &&
!(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
return false;
}
return true;
}
static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef)
{
int width;
int r;
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
return false;
width = cfg80211_chandef_get_width(chandef);
if (width < 0)
return false;
r = cfg80211_get_chans_dfs_available(wiphy,
MHZ_TO_KHZ(chandef->center_freq1),
width);
/* If any of channels unavailable for cf1 just return */
if (!r)
return r;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_80P80:
WARN_ON(!chandef->center_freq2);
r = cfg80211_get_chans_dfs_available(wiphy,
MHZ_TO_KHZ(chandef->center_freq2),
width);
break;
default:
WARN_ON(chandef->center_freq2);
break;
}
return r;
}
static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy,
u32 center_freq,
u32 bandwidth)
{
struct ieee80211_channel *c;
u32 start_freq, end_freq, freq;
unsigned int dfs_cac_ms = 0;
start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
c = ieee80211_get_channel_khz(wiphy, freq);
if (!c)
return 0;
if (c->flags & IEEE80211_CHAN_DISABLED)
return 0;
if (!(c->flags & IEEE80211_CHAN_RADAR))
continue;
if (c->dfs_cac_ms > dfs_cac_ms)
dfs_cac_ms = c->dfs_cac_ms;
}
return dfs_cac_ms;
}
unsigned int
cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef)
{
int width;
unsigned int t1 = 0, t2 = 0;
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
return 0;
width = cfg80211_chandef_get_width(chandef);
if (width < 0)
return 0;
t1 = cfg80211_get_chans_dfs_cac_time(wiphy,
MHZ_TO_KHZ(chandef->center_freq1),
width);
if (!chandef->center_freq2)
return t1;
t2 = cfg80211_get_chans_dfs_cac_time(wiphy,
MHZ_TO_KHZ(chandef->center_freq2),
width);
return max(t1, t2);
}
EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy,
u32 center_freq, u32 bandwidth,
u32 prohibited_flags)
{
struct ieee80211_channel *c;
u32 freq, start_freq, end_freq;
start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
c = ieee80211_get_channel_khz(wiphy, freq);
if (!c || c->flags & prohibited_flags)
return false;
}
return true;
}
/* check if the operating channels are valid and supported */
static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
enum ieee80211_edmg_bw_config edmg_bw_config,
int primary_channel,
struct ieee80211_edmg *edmg_cap)
{
struct ieee80211_channel *chan;
int i, freq;
int channels_counter = 0;
if (!edmg_channels && !edmg_bw_config)
return true;
if ((!edmg_channels && edmg_bw_config) ||
(edmg_channels && !edmg_bw_config))
return false;
if (!(edmg_channels & BIT(primary_channel - 1)))
return false;
/* 60GHz channels 1..6 */
for (i = 0; i < 6; i++) {
if (!(edmg_channels & BIT(i)))
continue;
if (!(edmg_cap->channels & BIT(i)))
return false;
channels_counter++;
freq = ieee80211_channel_to_frequency(i + 1,
NL80211_BAND_60GHZ);
chan = ieee80211_get_channel(wiphy, freq);
if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
return false;
}
/* IEEE802.11 allows max 4 channels */
if (channels_counter > 4)
return false;
/* check bw_config is a subset of what driver supports
* (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
*/
if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
return false;
if (edmg_bw_config > edmg_cap->bw_config)
return false;
return true;
}
bool cfg80211_chandef_usable(struct wiphy *wiphy,
const struct cfg80211_chan_def *chandef,
u32 prohibited_flags)
{
struct ieee80211_sta_ht_cap *ht_cap;
struct ieee80211_sta_vht_cap *vht_cap;
struct ieee80211_edmg *edmg_cap;
u32 width, control_freq, cap;
bool ext_nss_cap, support_80_80 = false, support_320 = false;
const struct ieee80211_sband_iftype_data *iftd;
struct ieee80211_supported_band *sband;
int i;
if (WARN_ON(!cfg80211_chandef_valid(chandef)))
return false;
ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
if (edmg_cap->channels &&
!cfg80211_edmg_usable(wiphy,
chandef->edmg.channels,
chandef->edmg.bw_config,
chandef->chan->hw_value,
edmg_cap))
return false;
control_freq = chandef->chan->center_freq;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_1:
width = 1;
break;
case NL80211_CHAN_WIDTH_2:
width = 2;
break;
case NL80211_CHAN_WIDTH_4:
width = 4;
break;
case NL80211_CHAN_WIDTH_8:
width = 8;
break;
case NL80211_CHAN_WIDTH_16:
width = 16;
break;
case NL80211_CHAN_WIDTH_5:
width = 5;
break;
case NL80211_CHAN_WIDTH_10:
prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
width = 10;
break;
case NL80211_CHAN_WIDTH_20:
if (!ht_cap->ht_supported &&
chandef->chan->band != NL80211_BAND_6GHZ)
return false;
fallthrough;
case NL80211_CHAN_WIDTH_20_NOHT:
prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
width = 20;
break;
case NL80211_CHAN_WIDTH_40:
width = 40;
if (chandef->chan->band == NL80211_BAND_6GHZ)
break;
if (!ht_cap->ht_supported)
return false;
if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
return false;
if (chandef->center_freq1 < control_freq &&
chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
return false;
if (chandef->center_freq1 > control_freq &&
chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
return false;
break;
case NL80211_CHAN_WIDTH_80P80:
cap = vht_cap->cap;
support_80_80 =
(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
(cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
(ext_nss_cap &&
u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
return false;
fallthrough;
case NL80211_CHAN_WIDTH_80:
prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
width = 80;
if (chandef->chan->band == NL80211_BAND_6GHZ)
break;
if (!vht_cap->vht_supported)
return false;
break;
case NL80211_CHAN_WIDTH_160:
prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
width = 160;
if (chandef->chan->band == NL80211_BAND_6GHZ)
break;
if (!vht_cap->vht_supported)
return false;
cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
!(ext_nss_cap &&
(vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
return false;
break;
case NL80211_CHAN_WIDTH_320:
prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
width = 320;
if (chandef->chan->band != NL80211_BAND_6GHZ)
return false;
sband = wiphy->bands[NL80211_BAND_6GHZ];
if (!sband)
return false;
for_each_sband_iftype_data(sband, i, iftd) {
if (!iftd->eht_cap.has_eht)
continue;
if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
support_320 = true;
break;
}
}
if (!support_320)
return false;
break;
default:
WARN_ON_ONCE(1);
return false;
}
/*
* TODO: What if there are only certain 80/160/80+80 MHz channels
* allowed by the driver, or only certain combinations?
* For 40 MHz the driver can set the NO_HT40 flags, but for
* 80/160 MHz and in particular 80+80 MHz this isn't really
* feasible and we only have NO_80MHZ/NO_160MHZ so far but
* no way to cover 80+80 MHz or more complex restrictions.
* Note that such restrictions also need to be advertised to
* userspace, for example for P2P channel selection.
*/
if (width > 20)
prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
/* 5 and 10 MHz are only defined for the OFDM PHY */
if (width < 20)
prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
if (!cfg80211_secondary_chans_ok(wiphy,
ieee80211_chandef_to_khz(chandef),
width, prohibited_flags))
return false;
if (!chandef->center_freq2)
return true;
return cfg80211_secondary_chans_ok(wiphy,
MHZ_TO_KHZ(chandef->center_freq2),
width, prohibited_flags);
}
EXPORT_SYMBOL(cfg80211_chandef_usable);
static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
struct wireless_dev *wdev,
struct ieee80211_channel *chan)
{
struct ieee80211_channel *other_chan = NULL;
unsigned int link_id;
int r1, r2;
for_each_valid_link(wdev, link_id) {
if (wdev->iftype == NL80211_IFTYPE_STATION &&
wdev->links[link_id].client.current_bss)
other_chan = wdev->links[link_id].client.current_bss->pub.channel;
/*
* If a GO already operates on the same GO_CONCURRENT channel,
* this one (maybe the same one) can beacon as well. We allow
* the operation even if the station we relied on with
* GO_CONCURRENT is disconnected now. But then we must make sure
* we're not outdoor on an indoor-only channel.
*/
if (iftype == NL80211_IFTYPE_P2P_GO &&
wdev->iftype == NL80211_IFTYPE_P2P_GO &&
wdev->links[link_id].ap.beacon_interval &&
!(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
other_chan = wdev->links[link_id].ap.chandef.chan;
if (!other_chan)
continue;
if (chan == other_chan)
return true;
if (chan->band != NL80211_BAND_5GHZ &&
chan->band != NL80211_BAND_6GHZ)
continue;
r1 = cfg80211_get_unii(chan->center_freq);
r2 = cfg80211_get_unii(other_chan->center_freq);
if (r1 != -EINVAL && r1 == r2) {
/*
* At some locations channels 149-165 are considered a
* bundle, but at other locations, e.g., Indonesia,
* channels 149-161 are considered a bundle while
* channel 165 is left out and considered to be in a
* different bundle. Thus, in case that there is a
* station interface connected to an AP on channel 165,
* it is assumed that channels 149-161 are allowed for
* GO operations. However, having a station interface
* connected to an AP on channels 149-161, does not
* allow GO operation on channel 165.
*/
if (chan->center_freq == 5825 &&
other_chan->center_freq != 5825)
continue;
return true;
}
}
return false;
}
/*
* Check if the channel can be used under permissive conditions mandated by
* some regulatory bodies, i.e., the channel is marked with
* IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
* associated to an AP on the same channel or on the same UNII band
* (assuming that the AP is an authorized master).
* In addition allow operation on a channel on which indoor operation is
* allowed, iff we are currently operating in an indoor environment.
*/
static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
enum nl80211_iftype iftype,
struct ieee80211_channel *chan)
{
struct wireless_dev *wdev;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
lockdep_assert_held(&rdev->wiphy.mtx);
if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
!(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
return false;
/* only valid for GO and TDLS off-channel (station/p2p-CL) */
if (iftype != NL80211_IFTYPE_P2P_GO &&
iftype != NL80211_IFTYPE_STATION &&
iftype != NL80211_IFTYPE_P2P_CLIENT)
return false;
if (regulatory_indoor_allowed() &&
(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
return true;
if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
return false;
/*
* Generally, it is possible to rely on another device/driver to allow
* the IR concurrent relaxation, however, since the device can further
* enforce the relaxation (by doing a similar verifications as this),
* and thus fail the GO instantiation, consider only the interfaces of
* the current registered device.
*/
list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
bool ret;
ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
if (ret)
return ret;
}
return false;
}
static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
enum nl80211_iftype iftype,
bool check_no_ir)
{
bool res;
u32 prohibited_flags = IEEE80211_CHAN_DISABLED;
int dfs_required;
trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir);
if (check_no_ir)
prohibited_flags |= IEEE80211_CHAN_NO_IR;
dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
if (dfs_required != 0)
prohibited_flags |= IEEE80211_CHAN_RADAR;
if (dfs_required > 0 &&
cfg80211_chandef_dfs_available(wiphy, chandef)) {
/* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
prohibited_flags = IEEE80211_CHAN_DISABLED;
}
res = cfg80211_chandef_usable(wiphy, chandef, prohibited_flags);
trace_cfg80211_return_bool(res);
return res;
}
bool cfg80211_reg_can_beacon(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
enum nl80211_iftype iftype)
{
return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, true);
}
EXPORT_SYMBOL(cfg80211_reg_can_beacon);
bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
enum nl80211_iftype iftype)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
bool check_no_ir;
lockdep_assert_held(&rdev->wiphy.mtx);
/*
* Under certain conditions suggested by some regulatory bodies a
* GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
* only if such relaxations are not enabled and the conditions are not
* met.
*/
check_no_ir = !cfg80211_ir_permissive_chan(wiphy, iftype,
chandef->chan);
return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir);
}
EXPORT_SYMBOL(cfg80211_reg_can_beacon_relax);
int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
struct cfg80211_chan_def *chandef)
{
if (!rdev->ops->set_monitor_channel)
return -EOPNOTSUPP;
if (!cfg80211_has_monitors_only(rdev))
return -EBUSY;
return rdev_set_monitor_channel(rdev, chandef);
}
bool cfg80211_any_usable_channels(struct wiphy *wiphy,
unsigned long sband_mask,
u32 prohibited_flags)
{
int idx;
prohibited_flags |= IEEE80211_CHAN_DISABLED;
for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
struct ieee80211_supported_band *sband = wiphy->bands[idx];
int chanidx;
if (!sband)
continue;
for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
struct ieee80211_channel *chan;
chan = &sband->channels[chanidx];
if (chan->flags & prohibited_flags)
continue;
return true;
}
}
return false;
}
EXPORT_SYMBOL(cfg80211_any_usable_channels);
struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
unsigned int link_id)
{
lockdep_assert_wiphy(wdev->wiphy);
WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
WARN_ON(!wdev->valid_links && link_id > 0);
switch (wdev->iftype) {
case NL80211_IFTYPE_MESH_POINT:
return &wdev->u.mesh.chandef;
case NL80211_IFTYPE_ADHOC:
return &wdev->u.ibss.chandef;
case NL80211_IFTYPE_OCB:
return &wdev->u.ocb.chandef;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
return &wdev->links[link_id].ap.chandef;
default:
return NULL;
}
}
EXPORT_SYMBOL(wdev_chandef);
struct cfg80211_per_bw_puncturing_values {
u8 len;
const u16 *valid_values;
};
static const u16 puncturing_values_80mhz[] = {
0x8, 0x4, 0x2, 0x1
};
static const u16 puncturing_values_160mhz[] = {
0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
};
static const u16 puncturing_values_320mhz[] = {
0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
};
#define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
{ \
.len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
.valid_values = puncturing_values_ ## _bw ## mhz \
}
static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
};
bool cfg80211_valid_disable_subchannel_bitmap(u16 *bitmap,
const struct cfg80211_chan_def *chandef)
{
u32 idx, i, start_freq;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_80:
idx = 0;
start_freq = chandef->center_freq1 - 40;
break;
case NL80211_CHAN_WIDTH_160:
idx = 1;
start_freq = chandef->center_freq1 - 80;
break;
case NL80211_CHAN_WIDTH_320:
idx = 2;
start_freq = chandef->center_freq1 - 160;
break;
default:
*bitmap = 0;
break;
}
if (!*bitmap)
return true;
/* check if primary channel is punctured */
if (*bitmap & (u16)BIT((chandef->chan->center_freq - start_freq) / 20))
return false;
for (i = 0; i < per_bw_puncturing[idx].len; i++)
if (per_bw_puncturing[idx].valid_values[i] == *bitmap)
return true;
return false;
}
EXPORT_SYMBOL(cfg80211_valid_disable_subchannel_bitmap);