linux-stable/net/wireless/scan.c
Benjamin Berg 55e2f924de wifi: cfg80211: set correct param change count in ML element
[ Upstream commit f8599d6340 ]

The ML element generation code to create a BSS entry from a per-STA
profile was not overwriting the BSS parameter change count. This meant
that the incorrect parameter change count would be reported within the
multi-link element.

Fix this by returning the BSS parameter change count from the function
and placing it into the ML element. The returned tbtt info was never
used, so just drop that to simplify the code.

Fixes: 5f478adf1f ("wifi: cfg80211: generate an ML element for per-STA profiles")
Signed-off-by: Benjamin Berg <benjamin.berg@intel.com>
Reviewed-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Miri Korenblit <miriam.rachel.korenblit@intel.com>
Link: https://msgid.link/20240216135047.f2a507634692.I06b122c7a319a38b4e970f5e0bd3d3ef9cac4cbe@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-03-26 18:16:46 -04:00

3965 lines
104 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* cfg80211 scan result handling
*
* Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2016 Intel Deutschland GmbH
* Copyright (C) 2018-2023 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <linux/nl80211.h>
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <linux/bitfield.h>
#include <net/arp.h>
#include <net/cfg80211.h>
#include <net/cfg80211-wext.h>
#include <net/iw_handler.h>
#include <kunit/visibility.h>
#include "core.h"
#include "nl80211.h"
#include "wext-compat.h"
#include "rdev-ops.h"
/**
* DOC: BSS tree/list structure
*
* At the top level, the BSS list is kept in both a list in each
* registered device (@bss_list) as well as an RB-tree for faster
* lookup. In the RB-tree, entries can be looked up using their
* channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
* for other BSSes.
*
* Due to the possibility of hidden SSIDs, there's a second level
* structure, the "hidden_list" and "hidden_beacon_bss" pointer.
* The hidden_list connects all BSSes belonging to a single AP
* that has a hidden SSID, and connects beacon and probe response
* entries. For a probe response entry for a hidden SSID, the
* hidden_beacon_bss pointer points to the BSS struct holding the
* beacon's information.
*
* Reference counting is done for all these references except for
* the hidden_list, so that a beacon BSS struct that is otherwise
* not referenced has one reference for being on the bss_list and
* one for each probe response entry that points to it using the
* hidden_beacon_bss pointer. When a BSS struct that has such a
* pointer is get/put, the refcount update is also propagated to
* the referenced struct, this ensure that it cannot get removed
* while somebody is using the probe response version.
*
* Note that the hidden_beacon_bss pointer never changes, due to
* the reference counting. Therefore, no locking is needed for
* it.
*
* Also note that the hidden_beacon_bss pointer is only relevant
* if the driver uses something other than the IEs, e.g. private
* data stored in the BSS struct, since the beacon IEs are
* also linked into the probe response struct.
*/
/*
* Limit the number of BSS entries stored in mac80211. Each one is
* a bit over 4k at most, so this limits to roughly 4-5M of memory.
* If somebody wants to really attack this though, they'd likely
* use small beacons, and only one type of frame, limiting each of
* the entries to a much smaller size (in order to generate more
* entries in total, so overhead is bigger.)
*/
static int bss_entries_limit = 1000;
module_param(bss_entries_limit, int, 0644);
MODULE_PARM_DESC(bss_entries_limit,
"limit to number of scan BSS entries (per wiphy, default 1000)");
#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
/**
* struct cfg80211_colocated_ap - colocated AP information
*
* @list: linked list to all colocated aPS
* @bssid: BSSID of the reported AP
* @ssid: SSID of the reported AP
* @ssid_len: length of the ssid
* @center_freq: frequency the reported AP is on
* @unsolicited_probe: the reported AP is part of an ESS, where all the APs
* that operate in the same channel as the reported AP and that might be
* detected by a STA receiving this frame, are transmitting unsolicited
* Probe Response frames every 20 TUs
* @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
* @same_ssid: the reported AP has the same SSID as the reporting AP
* @multi_bss: the reported AP is part of a multiple BSSID set
* @transmitted_bssid: the reported AP is the transmitting BSSID
* @colocated_ess: all the APs that share the same ESS as the reported AP are
* colocated and can be discovered via legacy bands.
* @short_ssid_valid: short_ssid is valid and can be used
* @short_ssid: the short SSID for this SSID
* @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
*/
struct cfg80211_colocated_ap {
struct list_head list;
u8 bssid[ETH_ALEN];
u8 ssid[IEEE80211_MAX_SSID_LEN];
size_t ssid_len;
u32 short_ssid;
u32 center_freq;
u8 unsolicited_probe:1,
oct_recommended:1,
same_ssid:1,
multi_bss:1,
transmitted_bssid:1,
colocated_ess:1,
short_ssid_valid:1;
s8 psd_20;
};
static void bss_free(struct cfg80211_internal_bss *bss)
{
struct cfg80211_bss_ies *ies;
if (WARN_ON(atomic_read(&bss->hold)))
return;
ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
if (ies && !bss->pub.hidden_beacon_bss)
kfree_rcu(ies, rcu_head);
ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
if (ies)
kfree_rcu(ies, rcu_head);
/*
* This happens when the module is removed, it doesn't
* really matter any more save for completeness
*/
if (!list_empty(&bss->hidden_list))
list_del(&bss->hidden_list);
kfree(bss);
}
static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
bss->refcount++;
if (bss->pub.hidden_beacon_bss)
bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
if (bss->pub.transmitted_bss)
bss_from_pub(bss->pub.transmitted_bss)->refcount++;
}
static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
if (bss->pub.hidden_beacon_bss) {
struct cfg80211_internal_bss *hbss;
hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
hbss->refcount--;
if (hbss->refcount == 0)
bss_free(hbss);
}
if (bss->pub.transmitted_bss) {
struct cfg80211_internal_bss *tbss;
tbss = bss_from_pub(bss->pub.transmitted_bss);
tbss->refcount--;
if (tbss->refcount == 0)
bss_free(tbss);
}
bss->refcount--;
if (bss->refcount == 0)
bss_free(bss);
}
static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
if (!list_empty(&bss->hidden_list)) {
/*
* don't remove the beacon entry if it has
* probe responses associated with it
*/
if (!bss->pub.hidden_beacon_bss)
return false;
/*
* if it's a probe response entry break its
* link to the other entries in the group
*/
list_del_init(&bss->hidden_list);
}
list_del_init(&bss->list);
list_del_init(&bss->pub.nontrans_list);
rb_erase(&bss->rbn, &rdev->bss_tree);
rdev->bss_entries--;
WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
"rdev bss entries[%d]/list[empty:%d] corruption\n",
rdev->bss_entries, list_empty(&rdev->bss_list));
bss_ref_put(rdev, bss);
return true;
}
bool cfg80211_is_element_inherited(const struct element *elem,
const struct element *non_inherit_elem)
{
u8 id_len, ext_id_len, i, loop_len, id;
const u8 *list;
if (elem->id == WLAN_EID_MULTIPLE_BSSID)
return false;
if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
return false;
if (!non_inherit_elem || non_inherit_elem->datalen < 2)
return true;
/*
* non inheritance element format is:
* ext ID (56) | IDs list len | list | extension IDs list len | list
* Both lists are optional. Both lengths are mandatory.
* This means valid length is:
* elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
*/
id_len = non_inherit_elem->data[1];
if (non_inherit_elem->datalen < 3 + id_len)
return true;
ext_id_len = non_inherit_elem->data[2 + id_len];
if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
return true;
if (elem->id == WLAN_EID_EXTENSION) {
if (!ext_id_len)
return true;
loop_len = ext_id_len;
list = &non_inherit_elem->data[3 + id_len];
id = elem->data[0];
} else {
if (!id_len)
return true;
loop_len = id_len;
list = &non_inherit_elem->data[2];
id = elem->id;
}
for (i = 0; i < loop_len; i++) {
if (list[i] == id)
return false;
}
return true;
}
EXPORT_SYMBOL(cfg80211_is_element_inherited);
static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
const u8 *ie, size_t ie_len,
u8 **pos, u8 *buf, size_t buf_len)
{
if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
elem->data + elem->datalen > ie + ie_len))
return 0;
if (elem->datalen + 2 > buf + buf_len - *pos)
return 0;
memcpy(*pos, elem, elem->datalen + 2);
*pos += elem->datalen + 2;
/* Finish if it is not fragmented */
if (elem->datalen != 255)
return *pos - buf;
ie_len = ie + ie_len - elem->data - elem->datalen;
ie = (const u8 *)elem->data + elem->datalen;
for_each_element(elem, ie, ie_len) {
if (elem->id != WLAN_EID_FRAGMENT)
break;
if (elem->datalen + 2 > buf + buf_len - *pos)
return 0;
memcpy(*pos, elem, elem->datalen + 2);
*pos += elem->datalen + 2;
if (elem->datalen != 255)
break;
}
return *pos - buf;
}
VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
const u8 *subie, size_t subie_len,
u8 *new_ie, size_t new_ie_len)
{
const struct element *non_inherit_elem, *parent, *sub;
u8 *pos = new_ie;
u8 id, ext_id;
unsigned int match_len;
non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
subie, subie_len);
/* We copy the elements one by one from the parent to the generated
* elements.
* If they are not inherited (included in subie or in the non
* inheritance element), then we copy all occurrences the first time
* we see this element type.
*/
for_each_element(parent, ie, ielen) {
if (parent->id == WLAN_EID_FRAGMENT)
continue;
if (parent->id == WLAN_EID_EXTENSION) {
if (parent->datalen < 1)
continue;
id = WLAN_EID_EXTENSION;
ext_id = parent->data[0];
match_len = 1;
} else {
id = parent->id;
match_len = 0;
}
/* Find first occurrence in subie */
sub = cfg80211_find_elem_match(id, subie, subie_len,
&ext_id, match_len, 0);
/* Copy from parent if not in subie and inherited */
if (!sub &&
cfg80211_is_element_inherited(parent, non_inherit_elem)) {
if (!cfg80211_copy_elem_with_frags(parent,
ie, ielen,
&pos, new_ie,
new_ie_len))
return 0;
continue;
}
/* Already copied if an earlier element had the same type */
if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
&ext_id, match_len, 0))
continue;
/* Not inheriting, copy all similar elements from subie */
while (sub) {
if (!cfg80211_copy_elem_with_frags(sub,
subie, subie_len,
&pos, new_ie,
new_ie_len))
return 0;
sub = cfg80211_find_elem_match(id,
sub->data + sub->datalen,
subie_len + subie -
(sub->data +
sub->datalen),
&ext_id, match_len, 0);
}
}
/* The above misses elements that are included in subie but not in the
* parent, so do a pass over subie and append those.
* Skip the non-tx BSSID caps and non-inheritance element.
*/
for_each_element(sub, subie, subie_len) {
if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
continue;
if (sub->id == WLAN_EID_FRAGMENT)
continue;
if (sub->id == WLAN_EID_EXTENSION) {
if (sub->datalen < 1)
continue;
id = WLAN_EID_EXTENSION;
ext_id = sub->data[0];
match_len = 1;
if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
continue;
} else {
id = sub->id;
match_len = 0;
}
/* Processed if one was included in the parent */
if (cfg80211_find_elem_match(id, ie, ielen,
&ext_id, match_len, 0))
continue;
if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
&pos, new_ie, new_ie_len))
return 0;
}
return pos - new_ie;
}
EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
const u8 *ssid, size_t ssid_len)
{
const struct cfg80211_bss_ies *ies;
const struct element *ssid_elem;
if (bssid && !ether_addr_equal(a->bssid, bssid))
return false;
if (!ssid)
return true;
ies = rcu_access_pointer(a->ies);
if (!ies)
return false;
ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
if (!ssid_elem)
return false;
if (ssid_elem->datalen != ssid_len)
return false;
return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
}
static int
cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
struct cfg80211_bss *nontrans_bss)
{
const struct element *ssid_elem;
struct cfg80211_bss *bss = NULL;
rcu_read_lock();
ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
if (!ssid_elem) {
rcu_read_unlock();
return -EINVAL;
}
/* check if nontrans_bss is in the list */
list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
ssid_elem->datalen)) {
rcu_read_unlock();
return 0;
}
}
rcu_read_unlock();
/*
* This is a bit weird - it's not on the list, but already on another
* one! The only way that could happen is if there's some BSSID/SSID
* shared by multiple APs in their multi-BSSID profiles, potentially
* with hidden SSID mixed in ... ignore it.
*/
if (!list_empty(&nontrans_bss->nontrans_list))
return -EINVAL;
/* add to the list */
list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
return 0;
}
static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
unsigned long expire_time)
{
struct cfg80211_internal_bss *bss, *tmp;
bool expired = false;
lockdep_assert_held(&rdev->bss_lock);
list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
if (atomic_read(&bss->hold))
continue;
if (!time_after(expire_time, bss->ts))
continue;
if (__cfg80211_unlink_bss(rdev, bss))
expired = true;
}
if (expired)
rdev->bss_generation++;
}
static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
{
struct cfg80211_internal_bss *bss, *oldest = NULL;
bool ret;
lockdep_assert_held(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (atomic_read(&bss->hold))
continue;
if (!list_empty(&bss->hidden_list) &&
!bss->pub.hidden_beacon_bss)
continue;
if (oldest && time_before(oldest->ts, bss->ts))
continue;
oldest = bss;
}
if (WARN_ON(!oldest))
return false;
/*
* The callers make sure to increase rdev->bss_generation if anything
* gets removed (and a new entry added), so there's no need to also do
* it here.
*/
ret = __cfg80211_unlink_bss(rdev, oldest);
WARN_ON(!ret);
return ret;
}
static u8 cfg80211_parse_bss_param(u8 data,
struct cfg80211_colocated_ap *coloc_ap)
{
coloc_ap->oct_recommended =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
coloc_ap->same_ssid =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
coloc_ap->multi_bss =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
coloc_ap->transmitted_bssid =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
coloc_ap->unsolicited_probe =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
coloc_ap->colocated_ess =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
}
static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
const struct element **elem, u32 *s_ssid)
{
*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
return 0;
}
static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
{
struct cfg80211_colocated_ap *ap, *tmp_ap;
list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
list_del(&ap->list);
kfree(ap);
}
}
static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
const u8 *pos, u8 length,
const struct element *ssid_elem,
u32 s_ssid_tmp)
{
u8 bss_params;
entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
/* The length is already verified by the caller to contain bss_params */
if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
entry->short_ssid_valid = true;
bss_params = tbtt_info->bss_params;
/* Ignore disabled links */
if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
if (le16_get_bits(tbtt_info->mld_params.params,
IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
return -EINVAL;
}
if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
psd_20))
entry->psd_20 = tbtt_info->psd_20;
} else {
struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
bss_params = tbtt_info->bss_params;
if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
psd_20))
entry->psd_20 = tbtt_info->psd_20;
}
/* ignore entries with invalid BSSID */
if (!is_valid_ether_addr(entry->bssid))
return -EINVAL;
/* skip non colocated APs */
if (!cfg80211_parse_bss_param(bss_params, entry))
return -EINVAL;
/* no information about the short ssid. Consider the entry valid
* for now. It would later be dropped in case there are explicit
* SSIDs that need to be matched
*/
if (!entry->same_ssid && !entry->short_ssid_valid)
return 0;
if (entry->same_ssid) {
entry->short_ssid = s_ssid_tmp;
entry->short_ssid_valid = true;
/*
* This is safe because we validate datalen in
* cfg80211_parse_colocated_ap(), before calling this
* function.
*/
memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
entry->ssid_len = ssid_elem->datalen;
}
return 0;
}
static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
struct list_head *list)
{
struct ieee80211_neighbor_ap_info *ap_info;
const struct element *elem, *ssid_elem;
const u8 *pos, *end;
u32 s_ssid_tmp;
int n_coloc = 0, ret;
LIST_HEAD(ap_list);
ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
if (ret)
return 0;
for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
ies->data, ies->len) {
pos = elem->data;
end = elem->data + elem->datalen;
/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
while (pos + sizeof(*ap_info) <= end) {
enum nl80211_band band;
int freq;
u8 length, i, count;
ap_info = (void *)pos;
count = u8_get_bits(ap_info->tbtt_info_hdr,
IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
length = ap_info->tbtt_info_len;
pos += sizeof(*ap_info);
if (!ieee80211_operating_class_to_band(ap_info->op_class,
&band))
break;
freq = ieee80211_channel_to_frequency(ap_info->channel,
band);
if (end - pos < count * length)
break;
if (u8_get_bits(ap_info->tbtt_info_hdr,
IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
IEEE80211_TBTT_INFO_TYPE_TBTT) {
pos += count * length;
continue;
}
/* TBTT info must include bss param + BSSID +
* (short SSID or same_ssid bit to be set).
* ignore other options, and move to the
* next AP info
*/
if (band != NL80211_BAND_6GHZ ||
!(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
bss_params) ||
length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
bss_params))) {
pos += count * length;
continue;
}
for (i = 0; i < count; i++) {
struct cfg80211_colocated_ap *entry;
entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
GFP_ATOMIC);
if (!entry)
goto error;
entry->center_freq = freq;
if (!cfg80211_parse_ap_info(entry, pos, length,
ssid_elem,
s_ssid_tmp)) {
n_coloc++;
list_add_tail(&entry->list, &ap_list);
} else {
kfree(entry);
}
pos += length;
}
}
error:
if (pos != end) {
cfg80211_free_coloc_ap_list(&ap_list);
return 0;
}
}
list_splice_tail(&ap_list, list);
return n_coloc;
}
static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
struct ieee80211_channel *chan,
bool add_to_6ghz)
{
int i;
u32 n_channels = request->n_channels;
struct cfg80211_scan_6ghz_params *params =
&request->scan_6ghz_params[request->n_6ghz_params];
for (i = 0; i < n_channels; i++) {
if (request->channels[i] == chan) {
if (add_to_6ghz)
params->channel_idx = i;
return;
}
}
request->channels[n_channels] = chan;
if (add_to_6ghz)
request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
n_channels;
request->n_channels++;
}
static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
struct cfg80211_scan_request *request)
{
int i;
u32 s_ssid;
for (i = 0; i < request->n_ssids; i++) {
/* wildcard ssid in the scan request */
if (!request->ssids[i].ssid_len) {
if (ap->multi_bss && !ap->transmitted_bssid)
continue;
return true;
}
if (ap->ssid_len &&
ap->ssid_len == request->ssids[i].ssid_len) {
if (!memcmp(request->ssids[i].ssid, ap->ssid,
ap->ssid_len))
return true;
} else if (ap->short_ssid_valid) {
s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
request->ssids[i].ssid_len);
if (ap->short_ssid == s_ssid)
return true;
}
}
return false;
}
static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
{
u8 i;
struct cfg80211_colocated_ap *ap;
int n_channels, count = 0, err;
struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
LIST_HEAD(coloc_ap_list);
bool need_scan_psc = true;
const struct ieee80211_sband_iftype_data *iftd;
rdev_req->scan_6ghz = true;
if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
return -EOPNOTSUPP;
iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
rdev_req->wdev->iftype);
if (!iftd || !iftd->he_cap.has_he)
return -EOPNOTSUPP;
n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
struct cfg80211_internal_bss *intbss;
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(intbss, &rdev->bss_list, list) {
struct cfg80211_bss *res = &intbss->pub;
const struct cfg80211_bss_ies *ies;
const struct element *ssid_elem;
struct cfg80211_colocated_ap *entry;
u32 s_ssid_tmp;
int ret;
ies = rcu_access_pointer(res->ies);
count += cfg80211_parse_colocated_ap(ies,
&coloc_ap_list);
/* In case the scan request specified a specific BSSID
* and the BSS is found and operating on 6GHz band then
* add this AP to the collocated APs list.
* This is relevant for ML probe requests when the lower
* band APs have not been discovered.
*/
if (is_broadcast_ether_addr(rdev_req->bssid) ||
!ether_addr_equal(rdev_req->bssid, res->bssid) ||
res->channel->band != NL80211_BAND_6GHZ)
continue;
ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
&s_ssid_tmp);
if (ret)
continue;
entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
GFP_ATOMIC);
if (!entry)
continue;
memcpy(entry->bssid, res->bssid, ETH_ALEN);
entry->short_ssid = s_ssid_tmp;
memcpy(entry->ssid, ssid_elem->data,
ssid_elem->datalen);
entry->ssid_len = ssid_elem->datalen;
entry->short_ssid_valid = true;
entry->center_freq = res->channel->center_freq;
list_add_tail(&entry->list, &coloc_ap_list);
count++;
}
spin_unlock_bh(&rdev->bss_lock);
}
request = kzalloc(struct_size(request, channels, n_channels) +
sizeof(*request->scan_6ghz_params) * count +
sizeof(*request->ssids) * rdev_req->n_ssids,
GFP_KERNEL);
if (!request) {
cfg80211_free_coloc_ap_list(&coloc_ap_list);
return -ENOMEM;
}
*request = *rdev_req;
request->n_channels = 0;
request->scan_6ghz_params =
(void *)&request->channels[n_channels];
/*
* PSC channels should not be scanned in case of direct scan with 1 SSID
* and at least one of the reported co-located APs with same SSID
* indicating that all APs in the same ESS are co-located
*/
if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
list_for_each_entry(ap, &coloc_ap_list, list) {
if (ap->colocated_ess &&
cfg80211_find_ssid_match(ap, request)) {
need_scan_psc = false;
break;
}
}
}
/*
* add to the scan request the channels that need to be scanned
* regardless of the collocated APs (PSC channels or all channels
* in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
*/
for (i = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
((need_scan_psc &&
cfg80211_channel_is_psc(rdev_req->channels[i])) ||
!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
cfg80211_scan_req_add_chan(request,
rdev_req->channels[i],
false);
}
}
if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
goto skip;
list_for_each_entry(ap, &coloc_ap_list, list) {
bool found = false;
struct cfg80211_scan_6ghz_params *scan_6ghz_params =
&request->scan_6ghz_params[request->n_6ghz_params];
struct ieee80211_channel *chan =
ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
continue;
for (i = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i] == chan)
found = true;
}
if (!found)
continue;
if (request->n_ssids > 0 &&
!cfg80211_find_ssid_match(ap, request))
continue;
if (!is_broadcast_ether_addr(request->bssid) &&
!ether_addr_equal(request->bssid, ap->bssid))
continue;
if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
continue;
cfg80211_scan_req_add_chan(request, chan, true);
memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
scan_6ghz_params->short_ssid = ap->short_ssid;
scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
scan_6ghz_params->psd_20 = ap->psd_20;
/*
* If a PSC channel is added to the scan and 'need_scan_psc' is
* set to false, then all the APs that the scan logic is
* interested with on the channel are collocated and thus there
* is no need to perform the initial PSC channel listen.
*/
if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
scan_6ghz_params->psc_no_listen = true;
request->n_6ghz_params++;
}
skip:
cfg80211_free_coloc_ap_list(&coloc_ap_list);
if (request->n_channels) {
struct cfg80211_scan_request *old = rdev->int_scan_req;
rdev->int_scan_req = request;
/*
* Add the ssids from the parent scan request to the new scan
* request, so the driver would be able to use them in its
* probe requests to discover hidden APs on PSC channels.
*/
request->ssids = (void *)&request->channels[request->n_channels];
request->n_ssids = rdev_req->n_ssids;
memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
request->n_ssids);
/*
* If this scan follows a previous scan, save the scan start
* info from the first part of the scan
*/
if (old)
rdev->int_scan_req->info = old->info;
err = rdev_scan(rdev, request);
if (err) {
rdev->int_scan_req = old;
kfree(request);
} else {
kfree(old);
}
return err;
}
kfree(request);
return -EINVAL;
}
int cfg80211_scan(struct cfg80211_registered_device *rdev)
{
struct cfg80211_scan_request *request;
struct cfg80211_scan_request *rdev_req = rdev->scan_req;
u32 n_channels = 0, idx, i;
if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
return rdev_scan(rdev, rdev_req);
for (i = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
n_channels++;
}
if (!n_channels)
return cfg80211_scan_6ghz(rdev);
request = kzalloc(struct_size(request, channels, n_channels),
GFP_KERNEL);
if (!request)
return -ENOMEM;
*request = *rdev_req;
request->n_channels = n_channels;
for (i = idx = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
request->channels[idx++] = rdev_req->channels[i];
}
rdev_req->scan_6ghz = false;
rdev->int_scan_req = request;
return rdev_scan(rdev, request);
}
void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
bool send_message)
{
struct cfg80211_scan_request *request, *rdev_req;
struct wireless_dev *wdev;
struct sk_buff *msg;
#ifdef CONFIG_CFG80211_WEXT
union iwreq_data wrqu;
#endif
lockdep_assert_held(&rdev->wiphy.mtx);
if (rdev->scan_msg) {
nl80211_send_scan_msg(rdev, rdev->scan_msg);
rdev->scan_msg = NULL;
return;
}
rdev_req = rdev->scan_req;
if (!rdev_req)
return;
wdev = rdev_req->wdev;
request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
if (wdev_running(wdev) &&
(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
!rdev_req->scan_6ghz && !request->info.aborted &&
!cfg80211_scan_6ghz(rdev))
return;
/*
* This must be before sending the other events!
* Otherwise, wpa_supplicant gets completely confused with
* wext events.
*/
if (wdev->netdev)
cfg80211_sme_scan_done(wdev->netdev);
if (!request->info.aborted &&
request->flags & NL80211_SCAN_FLAG_FLUSH) {
/* flush entries from previous scans */
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, request->scan_start);
spin_unlock_bh(&rdev->bss_lock);
}
msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
#ifdef CONFIG_CFG80211_WEXT
if (wdev->netdev && !request->info.aborted) {
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
}
#endif
dev_put(wdev->netdev);
kfree(rdev->int_scan_req);
rdev->int_scan_req = NULL;
kfree(rdev->scan_req);
rdev->scan_req = NULL;
if (!send_message)
rdev->scan_msg = msg;
else
nl80211_send_scan_msg(rdev, msg);
}
void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
{
___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
}
void cfg80211_scan_done(struct cfg80211_scan_request *request,
struct cfg80211_scan_info *info)
{
struct cfg80211_scan_info old_info = request->info;
trace_cfg80211_scan_done(request, info);
WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
request != wiphy_to_rdev(request->wiphy)->int_scan_req);
request->info = *info;
/*
* In case the scan is split, the scan_start_tsf and tsf_bssid should
* be of the first part. In such a case old_info.scan_start_tsf should
* be non zero.
*/
if (request->scan_6ghz && old_info.scan_start_tsf) {
request->info.scan_start_tsf = old_info.scan_start_tsf;
memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
sizeof(request->info.tsf_bssid));
}
request->notified = true;
wiphy_work_queue(request->wiphy,
&wiphy_to_rdev(request->wiphy)->scan_done_wk);
}
EXPORT_SYMBOL(cfg80211_scan_done);
void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req)
{
lockdep_assert_held(&rdev->wiphy.mtx);
list_add_rcu(&req->list, &rdev->sched_scan_req_list);
}
static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req)
{
lockdep_assert_held(&rdev->wiphy.mtx);
list_del_rcu(&req->list);
kfree_rcu(req, rcu_head);
}
static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
{
struct cfg80211_sched_scan_request *pos;
list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
lockdep_is_held(&rdev->wiphy.mtx)) {
if (pos->reqid == reqid)
return pos;
}
return NULL;
}
/*
* Determines if a scheduled scan request can be handled. When a legacy
* scheduled scan is running no other scheduled scan is allowed regardless
* whether the request is for legacy or multi-support scan. When a multi-support
* scheduled scan is running a request for legacy scan is not allowed. In this
* case a request for multi-support scan can be handled if resources are
* available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
*/
int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
bool want_multi)
{
struct cfg80211_sched_scan_request *pos;
int i = 0;
list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
/* request id zero means legacy in progress */
if (!i && !pos->reqid)
return -EINPROGRESS;
i++;
}
if (i) {
/* no legacy allowed when multi request(s) are active */
if (!want_multi)
return -EINPROGRESS;
/* resource limit reached */
if (i == rdev->wiphy.max_sched_scan_reqs)
return -ENOSPC;
}
return 0;
}
void cfg80211_sched_scan_results_wk(struct work_struct *work)
{
struct cfg80211_registered_device *rdev;
struct cfg80211_sched_scan_request *req, *tmp;
rdev = container_of(work, struct cfg80211_registered_device,
sched_scan_res_wk);
wiphy_lock(&rdev->wiphy);
list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
if (req->report_results) {
req->report_results = false;
if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
/* flush entries from previous scans */
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, req->scan_start);
spin_unlock_bh(&rdev->bss_lock);
req->scan_start = jiffies;
}
nl80211_send_sched_scan(req,
NL80211_CMD_SCHED_SCAN_RESULTS);
}
}
wiphy_unlock(&rdev->wiphy);
}
void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_sched_scan_request *request;
trace_cfg80211_sched_scan_results(wiphy, reqid);
/* ignore if we're not scanning */
rcu_read_lock();
request = cfg80211_find_sched_scan_req(rdev, reqid);
if (request) {
request->report_results = true;
queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(cfg80211_sched_scan_results);
void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
lockdep_assert_held(&wiphy->mtx);
trace_cfg80211_sched_scan_stopped(wiphy, reqid);
__cfg80211_stop_sched_scan(rdev, reqid, true);
}
EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
{
wiphy_lock(wiphy);
cfg80211_sched_scan_stopped_locked(wiphy, reqid);
wiphy_unlock(wiphy);
}
EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req,
bool driver_initiated)
{
lockdep_assert_held(&rdev->wiphy.mtx);
if (!driver_initiated) {
int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
if (err)
return err;
}
nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
cfg80211_del_sched_scan_req(rdev, req);
return 0;
}
int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
u64 reqid, bool driver_initiated)
{
struct cfg80211_sched_scan_request *sched_scan_req;
lockdep_assert_held(&rdev->wiphy.mtx);
sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
if (!sched_scan_req)
return -ENOENT;
return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
driver_initiated);
}
void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
unsigned long age_secs)
{
struct cfg80211_internal_bss *bss;
unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list)
bss->ts -= age_jiffies;
spin_unlock_bh(&rdev->bss_lock);
}
void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
{
__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
}
void cfg80211_bss_flush(struct wiphy *wiphy)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, jiffies);
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_bss_flush);
const struct element *
cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
const u8 *match, unsigned int match_len,
unsigned int match_offset)
{
const struct element *elem;
for_each_element_id(elem, eid, ies, len) {
if (elem->datalen >= match_offset + match_len &&
!memcmp(elem->data + match_offset, match, match_len))
return elem;
}
return NULL;
}
EXPORT_SYMBOL(cfg80211_find_elem_match);
const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
const u8 *ies,
unsigned int len)
{
const struct element *elem;
u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
int match_len = (oui_type < 0) ? 3 : sizeof(match);
if (WARN_ON(oui_type > 0xff))
return NULL;
elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
match, match_len, 0);
if (!elem || elem->datalen < 4)
return NULL;
return elem;
}
EXPORT_SYMBOL(cfg80211_find_vendor_elem);
/**
* enum bss_compare_mode - BSS compare mode
* @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
* @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
* @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
*/
enum bss_compare_mode {
BSS_CMP_REGULAR,
BSS_CMP_HIDE_ZLEN,
BSS_CMP_HIDE_NUL,
};
static int cmp_bss(struct cfg80211_bss *a,
struct cfg80211_bss *b,
enum bss_compare_mode mode)
{
const struct cfg80211_bss_ies *a_ies, *b_ies;
const u8 *ie1 = NULL;
const u8 *ie2 = NULL;
int i, r;
if (a->channel != b->channel)
return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
(a->channel->center_freq * 1000 + a->channel->freq_offset);
a_ies = rcu_access_pointer(a->ies);
if (!a_ies)
return -1;
b_ies = rcu_access_pointer(b->ies);
if (!b_ies)
return 1;
if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
a_ies->data, a_ies->len);
if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
b_ies->data, b_ies->len);
if (ie1 && ie2) {
int mesh_id_cmp;
if (ie1[1] == ie2[1])
mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
else
mesh_id_cmp = ie2[1] - ie1[1];
ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
a_ies->data, a_ies->len);
ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
b_ies->data, b_ies->len);
if (ie1 && ie2) {
if (mesh_id_cmp)
return mesh_id_cmp;
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
}
}
r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
if (r)
return r;
ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
if (!ie1 && !ie2)
return 0;
/*
* Note that with "hide_ssid", the function returns a match if
* the already-present BSS ("b") is a hidden SSID beacon for
* the new BSS ("a").
*/
/* sort missing IE before (left of) present IE */
if (!ie1)
return -1;
if (!ie2)
return 1;
switch (mode) {
case BSS_CMP_HIDE_ZLEN:
/*
* In ZLEN mode we assume the BSS entry we're
* looking for has a zero-length SSID. So if
* the one we're looking at right now has that,
* return 0. Otherwise, return the difference
* in length, but since we're looking for the
* 0-length it's really equivalent to returning
* the length of the one we're looking at.
*
* No content comparison is needed as we assume
* the content length is zero.
*/
return ie2[1];
case BSS_CMP_REGULAR:
default:
/* sort by length first, then by contents */
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
case BSS_CMP_HIDE_NUL:
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
for (i = 0; i < ie2[1]; i++)
if (ie2[i + 2])
return -1;
return 0;
}
}
static bool cfg80211_bss_type_match(u16 capability,
enum nl80211_band band,
enum ieee80211_bss_type bss_type)
{
bool ret = true;
u16 mask, val;
if (bss_type == IEEE80211_BSS_TYPE_ANY)
return ret;
if (band == NL80211_BAND_60GHZ) {
mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
switch (bss_type) {
case IEEE80211_BSS_TYPE_ESS:
val = WLAN_CAPABILITY_DMG_TYPE_AP;
break;
case IEEE80211_BSS_TYPE_PBSS:
val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
break;
case IEEE80211_BSS_TYPE_IBSS:
val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
break;
default:
return false;
}
} else {
mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
switch (bss_type) {
case IEEE80211_BSS_TYPE_ESS:
val = WLAN_CAPABILITY_ESS;
break;
case IEEE80211_BSS_TYPE_IBSS:
val = WLAN_CAPABILITY_IBSS;
break;
case IEEE80211_BSS_TYPE_MBSS:
val = 0;
break;
default:
return false;
}
}
ret = ((capability & mask) == val);
return ret;
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *bssid,
const u8 *ssid, size_t ssid_len,
enum ieee80211_bss_type bss_type,
enum ieee80211_privacy privacy,
u32 use_for)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss, *res = NULL;
unsigned long now = jiffies;
int bss_privacy;
trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
privacy);
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!cfg80211_bss_type_match(bss->pub.capability,
bss->pub.channel->band, bss_type))
continue;
bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
(privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
continue;
if (channel && bss->pub.channel != channel)
continue;
if (!is_valid_ether_addr(bss->pub.bssid))
continue;
if ((bss->pub.use_for & use_for) != use_for)
continue;
/* Don't get expired BSS structs */
if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
!atomic_read(&bss->hold))
continue;
if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
res = bss;
bss_ref_get(rdev, res);
break;
}
}
spin_unlock_bh(&rdev->bss_lock);
if (!res)
return NULL;
trace_cfg80211_return_bss(&res->pub);
return &res->pub;
}
EXPORT_SYMBOL(__cfg80211_get_bss);
static void rb_insert_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
struct rb_node **p = &rdev->bss_tree.rb_node;
struct rb_node *parent = NULL;
struct cfg80211_internal_bss *tbss;
int cmp;
while (*p) {
parent = *p;
tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
if (WARN_ON(!cmp)) {
/* will sort of leak this BSS */
return;
}
if (cmp < 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&bss->rbn, parent, p);
rb_insert_color(&bss->rbn, &rdev->bss_tree);
}
static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *res,
enum bss_compare_mode mode)
{
struct rb_node *n = rdev->bss_tree.rb_node;
struct cfg80211_internal_bss *bss;
int r;
while (n) {
bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
r = cmp_bss(&res->pub, &bss->pub, mode);
if (r == 0)
return bss;
else if (r < 0)
n = n->rb_left;
else
n = n->rb_right;
}
return NULL;
}
static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *new)
{
const struct cfg80211_bss_ies *ies;
struct cfg80211_internal_bss *bss;
const u8 *ie;
int i, ssidlen;
u8 fold = 0;
u32 n_entries = 0;
ies = rcu_access_pointer(new->pub.beacon_ies);
if (WARN_ON(!ies))
return false;
ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
if (!ie) {
/* nothing to do */
return true;
}
ssidlen = ie[1];
for (i = 0; i < ssidlen; i++)
fold |= ie[2 + i];
if (fold) {
/* not a hidden SSID */
return true;
}
/* This is the bad part ... */
list_for_each_entry(bss, &rdev->bss_list, list) {
/*
* we're iterating all the entries anyway, so take the
* opportunity to validate the list length accounting
*/
n_entries++;
if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
continue;
if (bss->pub.channel != new->pub.channel)
continue;
if (rcu_access_pointer(bss->pub.beacon_ies))
continue;
ies = rcu_access_pointer(bss->pub.ies);
if (!ies)
continue;
ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
if (!ie)
continue;
if (ssidlen && ie[1] != ssidlen)
continue;
if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
continue;
if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
list_del(&bss->hidden_list);
/* combine them */
list_add(&bss->hidden_list, &new->hidden_list);
bss->pub.hidden_beacon_bss = &new->pub;
new->refcount += bss->refcount;
rcu_assign_pointer(bss->pub.beacon_ies,
new->pub.beacon_ies);
}
WARN_ONCE(n_entries != rdev->bss_entries,
"rdev bss entries[%d]/list[len:%d] corruption\n",
rdev->bss_entries, n_entries);
return true;
}
static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
const struct cfg80211_bss_ies *new_ies,
const struct cfg80211_bss_ies *old_ies)
{
struct cfg80211_internal_bss *bss;
/* Assign beacon IEs to all sub entries */
list_for_each_entry(bss, &known->hidden_list, hidden_list) {
const struct cfg80211_bss_ies *ies;
ies = rcu_access_pointer(bss->pub.beacon_ies);
WARN_ON(ies != old_ies);
rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
}
}
static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *known,
const struct cfg80211_bss_ies *old)
{
const struct ieee80211_ext_chansw_ie *ecsa;
const struct element *elem_new, *elem_old;
const struct cfg80211_bss_ies *new, *bcn;
if (known->pub.proberesp_ecsa_stuck)
return;
new = rcu_dereference_protected(known->pub.proberesp_ies,
lockdep_is_held(&rdev->bss_lock));
if (WARN_ON(!new))
return;
if (new->tsf - old->tsf < USEC_PER_SEC)
return;
elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
old->data, old->len);
if (!elem_old)
return;
elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
new->data, new->len);
if (!elem_new)
return;
bcn = rcu_dereference_protected(known->pub.beacon_ies,
lockdep_is_held(&rdev->bss_lock));
if (bcn &&
cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
bcn->data, bcn->len))
return;
if (elem_new->datalen != elem_old->datalen)
return;
if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
return;
if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
return;
ecsa = (void *)elem_new->data;
if (!ecsa->mode)
return;
if (ecsa->new_ch_num !=
ieee80211_frequency_to_channel(known->pub.channel->center_freq))
return;
known->pub.proberesp_ecsa_stuck = 1;
}
static bool
cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *known,
struct cfg80211_internal_bss *new,
bool signal_valid)
{
lockdep_assert_held(&rdev->bss_lock);
/* Update IEs */
if (rcu_access_pointer(new->pub.proberesp_ies)) {
const struct cfg80211_bss_ies *old;
old = rcu_access_pointer(known->pub.proberesp_ies);
rcu_assign_pointer(known->pub.proberesp_ies,
new->pub.proberesp_ies);
/* Override possible earlier Beacon frame IEs */
rcu_assign_pointer(known->pub.ies,
new->pub.proberesp_ies);
if (old) {
cfg80211_check_stuck_ecsa(rdev, known, old);
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
}
}
if (rcu_access_pointer(new->pub.beacon_ies)) {
const struct cfg80211_bss_ies *old;
if (known->pub.hidden_beacon_bss &&
!list_empty(&known->hidden_list)) {
const struct cfg80211_bss_ies *f;
/* The known BSS struct is one of the probe
* response members of a group, but we're
* receiving a beacon (beacon_ies in the new
* bss is used). This can only mean that the
* AP changed its beacon from not having an
* SSID to showing it, which is confusing so
* drop this information.
*/
f = rcu_access_pointer(new->pub.beacon_ies);
kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
return false;
}
old = rcu_access_pointer(known->pub.beacon_ies);
rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
/* Override IEs if they were from a beacon before */
if (old == rcu_access_pointer(known->pub.ies))
rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
cfg80211_update_hidden_bsses(known,
rcu_access_pointer(new->pub.beacon_ies),
old);
if (old)
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
}
known->pub.beacon_interval = new->pub.beacon_interval;
/* don't update the signal if beacon was heard on
* adjacent channel.
*/
if (signal_valid)
known->pub.signal = new->pub.signal;
known->pub.capability = new->pub.capability;
known->ts = new->ts;
known->ts_boottime = new->ts_boottime;
known->parent_tsf = new->parent_tsf;
known->pub.chains = new->pub.chains;
memcpy(known->pub.chain_signal, new->pub.chain_signal,
IEEE80211_MAX_CHAINS);
ether_addr_copy(known->parent_bssid, new->parent_bssid);
known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
known->pub.bssid_index = new->pub.bssid_index;
known->pub.use_for &= new->pub.use_for;
known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
return true;
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *tmp,
bool signal_valid, unsigned long ts)
{
struct cfg80211_internal_bss *found = NULL;
struct cfg80211_bss_ies *ies;
if (WARN_ON(!tmp->pub.channel))
goto free_ies;
tmp->ts = ts;
if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
goto free_ies;
found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
if (found) {
if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
return NULL;
} else {
struct cfg80211_internal_bss *new;
struct cfg80211_internal_bss *hidden;
/*
* create a copy -- the "res" variable that is passed in
* is allocated on the stack since it's not needed in the
* more common case of an update
*/
new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
GFP_ATOMIC);
if (!new)
goto free_ies;
memcpy(new, tmp, sizeof(*new));
new->refcount = 1;
INIT_LIST_HEAD(&new->hidden_list);
INIT_LIST_HEAD(&new->pub.nontrans_list);
/* we'll set this later if it was non-NULL */
new->pub.transmitted_bss = NULL;
if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
if (!hidden)
hidden = rb_find_bss(rdev, tmp,
BSS_CMP_HIDE_NUL);
if (hidden) {
new->pub.hidden_beacon_bss = &hidden->pub;
list_add(&new->hidden_list,
&hidden->hidden_list);
hidden->refcount++;
ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
rcu_assign_pointer(new->pub.beacon_ies,
hidden->pub.beacon_ies);
if (ies)
kfree_rcu(ies, rcu_head);
}
} else {
/*
* Ok so we found a beacon, and don't have an entry. If
* it's a beacon with hidden SSID, we might be in for an
* expensive search for any probe responses that should
* be grouped with this beacon for updates ...
*/
if (!cfg80211_combine_bsses(rdev, new)) {
bss_ref_put(rdev, new);
return NULL;
}
}
if (rdev->bss_entries >= bss_entries_limit &&
!cfg80211_bss_expire_oldest(rdev)) {
bss_ref_put(rdev, new);
return NULL;
}
/* This must be before the call to bss_ref_get */
if (tmp->pub.transmitted_bss) {
new->pub.transmitted_bss = tmp->pub.transmitted_bss;
bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
}
list_add_tail(&new->list, &rdev->bss_list);
rdev->bss_entries++;
rb_insert_bss(rdev, new);
found = new;
}
rdev->bss_generation++;
bss_ref_get(rdev, found);
return found;
free_ies:
ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
if (ies)
kfree_rcu(ies, rcu_head);
ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
if (ies)
kfree_rcu(ies, rcu_head);
return NULL;
}
struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *tmp,
bool signal_valid, unsigned long ts)
{
struct cfg80211_internal_bss *res;
spin_lock_bh(&rdev->bss_lock);
res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
spin_unlock_bh(&rdev->bss_lock);
return res;
}
int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
enum nl80211_band band)
{
const struct element *tmp;
if (band == NL80211_BAND_6GHZ) {
struct ieee80211_he_operation *he_oper;
tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
ielen);
if (tmp && tmp->datalen >= sizeof(*he_oper) &&
tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
he_oper = (void *)&tmp->data[1];
he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
if (!he_6ghz_oper)
return -1;
return he_6ghz_oper->primary;
}
} else if (band == NL80211_BAND_S1GHZ) {
tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
return s1gop->oper_ch;
}
} else {
tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
if (tmp && tmp->datalen == 1)
return tmp->data[0];
tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
if (tmp &&
tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
struct ieee80211_ht_operation *htop = (void *)tmp->data;
return htop->primary_chan;
}
}
return -1;
}
EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
/*
* Update RX channel information based on the available frame payload
* information. This is mainly for the 2.4 GHz band where frames can be received
* from neighboring channels and the Beacon frames use the DSSS Parameter Set
* element to indicate the current (transmitting) channel, but this might also
* be needed on other bands if RX frequency does not match with the actual
* operating channel of a BSS, or if the AP reports a different primary channel.
*/
static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
struct ieee80211_channel *channel)
{
u32 freq;
int channel_number;
struct ieee80211_channel *alt_channel;
channel_number = cfg80211_get_ies_channel_number(ie, ielen,
channel->band);
if (channel_number < 0) {
/* No channel information in frame payload */
return channel;
}
freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
/*
* Frame info (beacon/prob res) is the same as received channel,
* no need for further processing.
*/
if (freq == ieee80211_channel_to_khz(channel))
return channel;
alt_channel = ieee80211_get_channel_khz(wiphy, freq);
if (!alt_channel) {
if (channel->band == NL80211_BAND_2GHZ ||
channel->band == NL80211_BAND_6GHZ) {
/*
* Better not allow unexpected channels when that could
* be going beyond the 1-11 range (e.g., discovering
* BSS on channel 12 when radio is configured for
* channel 11) or beyond the 6 GHz channel range.
*/
return NULL;
}
/* No match for the payload channel number - ignore it */
return channel;
}
/*
* Use the channel determined through the payload channel number
* instead of the RX channel reported by the driver.
*/
if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
return NULL;
return alt_channel;
}
struct cfg80211_inform_single_bss_data {
struct cfg80211_inform_bss *drv_data;
enum cfg80211_bss_frame_type ftype;
struct ieee80211_channel *channel;
u8 bssid[ETH_ALEN];
u64 tsf;
u16 capability;
u16 beacon_interval;
const u8 *ie;
size_t ielen;
enum {
BSS_SOURCE_DIRECT = 0,
BSS_SOURCE_MBSSID,
BSS_SOURCE_STA_PROFILE,
} bss_source;
/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
struct cfg80211_bss *source_bss;
u8 max_bssid_indicator;
u8 bssid_index;
u8 use_for;
u64 cannot_use_reasons;
};
/* Returned bss is reference counted and must be cleaned up appropriately. */
static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *data,
gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_inform_bss *drv_data = data->drv_data;
struct cfg80211_bss_ies *ies;
struct ieee80211_channel *channel;
struct cfg80211_internal_bss tmp = {}, *res;
int bss_type;
bool signal_valid;
unsigned long ts;
if (WARN_ON(!wiphy))
return NULL;
if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(drv_data->signal < 0 || drv_data->signal > 100)))
return NULL;
if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
return NULL;
channel = data->channel;
if (!channel)
channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
drv_data->chan);
if (!channel)
return NULL;
memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
tmp.pub.channel = channel;
if (data->bss_source != BSS_SOURCE_STA_PROFILE)
tmp.pub.signal = drv_data->signal;
else
tmp.pub.signal = 0;
tmp.pub.beacon_interval = data->beacon_interval;
tmp.pub.capability = data->capability;
tmp.ts_boottime = drv_data->boottime_ns;
tmp.parent_tsf = drv_data->parent_tsf;
ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
tmp.pub.use_for = data->use_for;
tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
if (data->bss_source != BSS_SOURCE_DIRECT) {
tmp.pub.transmitted_bss = data->source_bss;
ts = bss_from_pub(data->source_bss)->ts;
tmp.pub.bssid_index = data->bssid_index;
tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
} else {
ts = jiffies;
if (channel->band == NL80211_BAND_60GHZ) {
bss_type = data->capability &
WLAN_CAPABILITY_DMG_TYPE_MASK;
if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
regulatory_hint_found_beacon(wiphy, channel,
gfp);
} else {
if (data->capability & WLAN_CAPABILITY_ESS)
regulatory_hint_found_beacon(wiphy, channel,
gfp);
}
}
/*
* If we do not know here whether the IEs are from a Beacon or Probe
* Response frame, we need to pick one of the options and only use it
* with the driver that does not provide the full Beacon/Probe Response
* frame. Use Beacon frame pointer to avoid indicating that this should
* override the IEs pointer should we have received an earlier
* indication of Probe Response data.
*/
ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
if (!ies)
return NULL;
ies->len = data->ielen;
ies->tsf = data->tsf;
ies->from_beacon = false;
memcpy(ies->data, data->ie, data->ielen);
switch (data->ftype) {
case CFG80211_BSS_FTYPE_BEACON:
ies->from_beacon = true;
fallthrough;
case CFG80211_BSS_FTYPE_UNKNOWN:
rcu_assign_pointer(tmp.pub.beacon_ies, ies);
break;
case CFG80211_BSS_FTYPE_PRESP:
rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
break;
}
rcu_assign_pointer(tmp.pub.ies, ies);
signal_valid = drv_data->chan == channel;
spin_lock_bh(&rdev->bss_lock);
res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
if (!res)
goto drop;
rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
if (data->bss_source == BSS_SOURCE_MBSSID) {
/* this is a nontransmitting bss, we need to add it to
* transmitting bss' list if it is not there
*/
if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
if (__cfg80211_unlink_bss(rdev, res)) {
rdev->bss_generation++;
res = NULL;
}
}
if (!res)
goto drop;
}
spin_unlock_bh(&rdev->bss_lock);
trace_cfg80211_return_bss(&res->pub);
/* __cfg80211_bss_update gives us a referenced result */
return &res->pub;
drop:
spin_unlock_bh(&rdev->bss_lock);
return NULL;
}
static const struct element
*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
const struct element *mbssid_elem,
const struct element *sub_elem)
{
const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
const struct element *next_mbssid;
const struct element *next_sub;
next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
mbssid_end,
ielen - (mbssid_end - ie));
/*
* If it is not the last subelement in current MBSSID IE or there isn't
* a next MBSSID IE - profile is complete.
*/
if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
!next_mbssid)
return NULL;
/* For any length error, just return NULL */
if (next_mbssid->datalen < 4)
return NULL;
next_sub = (void *)&next_mbssid->data[1];
if (next_mbssid->data + next_mbssid->datalen <
next_sub->data + next_sub->datalen)
return NULL;
if (next_sub->id != 0 || next_sub->datalen < 2)
return NULL;
/*
* Check if the first element in the next sub element is a start
* of a new profile
*/
return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
NULL : next_mbssid;
}
size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
const struct element *mbssid_elem,
const struct element *sub_elem,
u8 *merged_ie, size_t max_copy_len)
{
size_t copied_len = sub_elem->datalen;
const struct element *next_mbssid;
if (sub_elem->datalen > max_copy_len)
return 0;
memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
mbssid_elem,
sub_elem))) {
const struct element *next_sub = (void *)&next_mbssid->data[1];
if (copied_len + next_sub->datalen > max_copy_len)
break;
memcpy(merged_ie + copied_len, next_sub->data,
next_sub->datalen);
copied_len += next_sub->datalen;
}
return copied_len;
}
EXPORT_SYMBOL(cfg80211_merge_profile);
static void
cfg80211_parse_mbssid_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *tx_data,
struct cfg80211_bss *source_bss,
gfp_t gfp)
{
struct cfg80211_inform_single_bss_data data = {
.drv_data = tx_data->drv_data,
.ftype = tx_data->ftype,
.tsf = tx_data->tsf,
.beacon_interval = tx_data->beacon_interval,
.source_bss = source_bss,
.bss_source = BSS_SOURCE_MBSSID,
.use_for = tx_data->use_for,
.cannot_use_reasons = tx_data->cannot_use_reasons,
};
const u8 *mbssid_index_ie;
const struct element *elem, *sub;
u8 *new_ie, *profile;
u64 seen_indices = 0;
struct cfg80211_bss *bss;
if (!source_bss)
return;
if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
tx_data->ie, tx_data->ielen))
return;
if (!wiphy->support_mbssid)
return;
if (wiphy->support_only_he_mbssid &&
!cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
tx_data->ie, tx_data->ielen))
return;
new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
if (!new_ie)
return;
profile = kmalloc(tx_data->ielen, gfp);
if (!profile)
goto out;
for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
tx_data->ie, tx_data->ielen) {
if (elem->datalen < 4)
continue;
if (elem->data[0] < 1 || (int)elem->data[0] > 8)
continue;
for_each_element(sub, elem->data + 1, elem->datalen - 1) {
u8 profile_len;
if (sub->id != 0 || sub->datalen < 4) {
/* not a valid BSS profile */
continue;
}
if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
sub->data[1] != 2) {
/* The first element within the Nontransmitted
* BSSID Profile is not the Nontransmitted
* BSSID Capability element.
*/
continue;
}
memset(profile, 0, tx_data->ielen);
profile_len = cfg80211_merge_profile(tx_data->ie,
tx_data->ielen,
elem,
sub,
profile,
tx_data->ielen);
/* found a Nontransmitted BSSID Profile */
mbssid_index_ie = cfg80211_find_ie
(WLAN_EID_MULTI_BSSID_IDX,
profile, profile_len);
if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
mbssid_index_ie[2] == 0 ||
mbssid_index_ie[2] > 46) {
/* No valid Multiple BSSID-Index element */
continue;
}
if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
/* We don't support legacy split of a profile */
net_dbg_ratelimited("Partial info for BSSID index %d\n",
mbssid_index_ie[2]);
seen_indices |= BIT_ULL(mbssid_index_ie[2]);
data.bssid_index = mbssid_index_ie[2];
data.max_bssid_indicator = elem->data[0];
cfg80211_gen_new_bssid(tx_data->bssid,
data.max_bssid_indicator,
data.bssid_index,
data.bssid);
memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
data.ie = new_ie;
data.ielen = cfg80211_gen_new_ie(tx_data->ie,
tx_data->ielen,
profile,
profile_len,
new_ie,
IEEE80211_MAX_DATA_LEN);
if (!data.ielen)
continue;
data.capability = get_unaligned_le16(profile + 2);
bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
if (!bss)
break;
cfg80211_put_bss(wiphy, bss);
}
}
out:
kfree(new_ie);
kfree(profile);
}
ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
size_t ieslen, u8 *data, size_t data_len,
u8 frag_id)
{
const struct element *next;
ssize_t copied;
u8 elem_datalen;
if (!elem)
return -EINVAL;
/* elem might be invalid after the memmove */
next = (void *)(elem->data + elem->datalen);
elem_datalen = elem->datalen;
if (elem->id == WLAN_EID_EXTENSION) {
copied = elem->datalen - 1;
if (copied > data_len)
return -ENOSPC;
memmove(data, elem->data + 1, copied);
} else {
copied = elem->datalen;
if (copied > data_len)
return -ENOSPC;
memmove(data, elem->data, copied);
}
/* Fragmented elements must have 255 bytes */
if (elem_datalen < 255)
return copied;
for (elem = next;
elem->data < ies + ieslen &&
elem->data + elem->datalen <= ies + ieslen;
elem = next) {
/* elem might be invalid after the memmove */
next = (void *)(elem->data + elem->datalen);
if (elem->id != frag_id)
break;
elem_datalen = elem->datalen;
if (copied + elem_datalen > data_len)
return -ENOSPC;
memmove(data + copied, elem->data, elem_datalen);
copied += elem_datalen;
/* Only the last fragment may be short */
if (elem_datalen != 255)
break;
}
return copied;
}
EXPORT_SYMBOL(cfg80211_defragment_element);
struct cfg80211_mle {
struct ieee80211_multi_link_elem *mle;
struct ieee80211_mle_per_sta_profile
*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
u8 data[];
};
static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
gfp_t gfp)
{
const struct element *elem;
struct cfg80211_mle *res;
size_t buf_len;
ssize_t mle_len;
u8 common_size, idx;
if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
return NULL;
/* Required length for first defragmentation */
buf_len = mle->datalen - 1;
for_each_element(elem, mle->data + mle->datalen,
ielen - sizeof(*mle) + mle->datalen) {
if (elem->id != WLAN_EID_FRAGMENT)
break;
buf_len += elem->datalen;
}
res = kzalloc(struct_size(res, data, buf_len), gfp);
if (!res)
return NULL;
mle_len = cfg80211_defragment_element(mle, ie, ielen,
res->data, buf_len,
WLAN_EID_FRAGMENT);
if (mle_len < 0)
goto error;
res->mle = (void *)res->data;
/* Find the sub-element area in the buffer */
common_size = ieee80211_mle_common_size((u8 *)res->mle);
ie = res->data + common_size;
ielen = mle_len - common_size;
idx = 0;
for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
ie, ielen) {
res->sta_prof[idx] = (void *)elem->data;
res->sta_prof_len[idx] = elem->datalen;
idx++;
if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
break;
}
if (!for_each_element_completed(elem, ie, ielen))
goto error;
/* Defragment sta_info in-place */
for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
idx++) {
if (res->sta_prof_len[idx] < 255)
continue;
elem = (void *)res->sta_prof[idx] - 2;
if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
res->sta_prof[idx + 1])
buf_len = (u8 *)res->sta_prof[idx + 1] -
(u8 *)res->sta_prof[idx];
else
buf_len = ielen + ie - (u8 *)elem;
res->sta_prof_len[idx] =
cfg80211_defragment_element(elem,
(u8 *)elem, buf_len,
(u8 *)res->sta_prof[idx],
buf_len,
IEEE80211_MLE_SUBELEM_FRAGMENT);
if (res->sta_prof_len[idx] < 0)
goto error;
}
return res;
error:
kfree(res);
return NULL;
}
static u8
cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
const struct ieee80211_neighbor_ap_info **ap_info,
u8 *param_ch_count)
{
const struct ieee80211_neighbor_ap_info *info;
const struct element *rnr;
const u8 *pos, *end;
for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
pos = rnr->data;
end = rnr->data + rnr->datalen;
/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
while (sizeof(*info) <= end - pos) {
const struct ieee80211_rnr_mld_params *mld_params;
u16 params;
u8 length, i, count, mld_params_offset;
u8 type, lid;
u32 use_for;
info = (void *)pos;
count = u8_get_bits(info->tbtt_info_hdr,
IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
length = info->tbtt_info_len;
pos += sizeof(*info);
if (count * length > end - pos)
return 0;
type = u8_get_bits(info->tbtt_info_hdr,
IEEE80211_AP_INFO_TBTT_HDR_TYPE);
if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
length >=
offsetofend(struct ieee80211_tbtt_info_ge_11,
mld_params)) {
mld_params_offset =
offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
use_for = NL80211_BSS_USE_FOR_ALL;
} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
length >= sizeof(struct ieee80211_rnr_mld_params)) {
mld_params_offset = 0;
use_for = NL80211_BSS_USE_FOR_MLD_LINK;
} else {
pos += count * length;
continue;
}
for (i = 0; i < count; i++) {
mld_params = (void *)pos + mld_params_offset;
params = le16_to_cpu(mld_params->params);
lid = u16_get_bits(params,
IEEE80211_RNR_MLD_PARAMS_LINK_ID);
if (mld_id == mld_params->mld_id &&
link_id == lid) {
*ap_info = info;
*param_ch_count =
le16_get_bits(mld_params->params,
IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
return use_for;
}
pos += length;
}
}
}
return 0;
}
static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
bool same_mld, u8 link_id, u8 bss_change_count,
gfp_t gfp)
{
const struct cfg80211_bss_ies *ies;
struct ieee80211_neighbor_ap_info ap_info;
struct ieee80211_tbtt_info_ge_11 tbtt_info;
u32 short_ssid;
const struct element *elem;
struct element *res;
/*
* We only generate the RNR to permit ML lookups. For that we do not
* need an entry for the corresponding transmitting BSS, lets just skip
* it even though it would be easy to add.
*/
if (!same_mld)
return NULL;
/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
rcu_read_lock();
ies = rcu_dereference(source_bss->ies);
ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
ap_info.tbtt_info_hdr =
u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
/* operating class */
elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
ies->data, ies->len);
if (elem && elem->datalen >= 1) {
ap_info.op_class = elem->data[0];
} else {
struct cfg80211_chan_def chandef;
/* The AP is not providing us with anything to work with. So
* make up a somewhat reasonable operating class, but don't
* bother with it too much as no one will ever use the
* information.
*/
cfg80211_chandef_create(&chandef, source_bss->channel,
NL80211_CHAN_NO_HT);
if (!ieee80211_chandef_to_operating_class(&chandef,
&ap_info.op_class))
goto out_unlock;
}
/* Just set TBTT offset and PSD 20 to invalid/unknown */
tbtt_info.tbtt_offset = 255;
tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
goto out_unlock;
rcu_read_unlock();
tbtt_info.short_ssid = cpu_to_le32(short_ssid);
tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
if (is_mbssid) {
tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
}
tbtt_info.mld_params.mld_id = 0;
tbtt_info.mld_params.params =
le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
le16_encode_bits(bss_change_count,
IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
res = kzalloc(struct_size(res, data,
sizeof(ap_info) + ap_info.tbtt_info_len),
gfp);
if (!res)
return NULL;
/* Copy the data */
res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
memcpy(res->data, &ap_info, sizeof(ap_info));
memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
return res;
out_unlock:
rcu_read_unlock();
return NULL;
}
static void
cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *tx_data,
struct cfg80211_bss *source_bss,
const struct element *elem,
gfp_t gfp)
{
struct cfg80211_inform_single_bss_data data = {
.drv_data = tx_data->drv_data,
.ftype = tx_data->ftype,
.source_bss = source_bss,
.bss_source = BSS_SOURCE_STA_PROFILE,
};
struct element *reporter_rnr = NULL;
struct ieee80211_multi_link_elem *ml_elem;
struct cfg80211_mle *mle;
u16 control;
u8 ml_common_len;
u8 *new_ie = NULL;
struct cfg80211_bss *bss;
u8 mld_id, reporter_link_id, bss_change_count;
u16 seen_links = 0;
const u8 *pos;
u8 i;
if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
return;
ml_elem = (void *)elem->data + 1;
control = le16_to_cpu(ml_elem->control);
if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
IEEE80211_ML_CONTROL_TYPE_BASIC)
return;
/* Must be present when transmitted by an AP (in a probe response) */
if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
return;
ml_common_len = ml_elem->variable[0];
/* length + MLD MAC address */
pos = ml_elem->variable + 1 + 6;
reporter_link_id = pos[0];
pos += 1;
bss_change_count = pos[0];
pos += 1;
if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
pos += 2;
if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
pos += 2;
/* MLD capabilities and operations */
pos += 2;
/*
* The MLD ID of the reporting AP is always zero. It is set if the AP
* is part of an MBSSID set and will be non-zero for ML Elements
* relating to a nontransmitted BSS (matching the Multi-BSSID Index,
* Draft P802.11be_D3.2, 35.3.4.2)
*/
if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
mld_id = *pos;
pos += 1;
} else {
mld_id = 0;
}
/* Extended MLD capabilities and operations */
pos += 2;
/* Fully defrag the ML element for sta information/profile iteration */
mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
if (!mle)
return;
/* No point in doing anything if there is no per-STA profile */
if (!mle->sta_prof[0])
goto out;
new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
if (!new_ie)
goto out;
reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
u16_get_bits(control,
IEEE80211_MLC_BASIC_PRES_MLD_ID),
mld_id == 0, reporter_link_id,
bss_change_count,
gfp);
for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
const struct ieee80211_neighbor_ap_info *ap_info;
enum nl80211_band band;
u32 freq;
const u8 *profile;
ssize_t profile_len;
u8 param_ch_count;
u8 link_id, use_for;
if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
mle->sta_prof_len[i]))
continue;
control = le16_to_cpu(mle->sta_prof[i]->control);
if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
continue;
link_id = u16_get_bits(control,
IEEE80211_MLE_STA_CONTROL_LINK_ID);
if (seen_links & BIT(link_id))
break;
seen_links |= BIT(link_id);
if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
!(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
!(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
continue;
memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
data.beacon_interval =
get_unaligned_le16(mle->sta_prof[i]->variable + 6);
data.tsf = tx_data->tsf +
get_unaligned_le64(mle->sta_prof[i]->variable + 8);
/* sta_info_len counts itself */
profile = mle->sta_prof[i]->variable +
mle->sta_prof[i]->sta_info_len - 1;
profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
profile;
if (profile_len < 2)
continue;
data.capability = get_unaligned_le16(profile);
profile += 2;
profile_len -= 2;
/* Find in RNR to look up channel information */
use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
tx_data->ielen,
mld_id, link_id,
&ap_info,
&param_ch_count);
if (!use_for)
continue;
/* We could sanity check the BSSID is included */
if (!ieee80211_operating_class_to_band(ap_info->op_class,
&band))
continue;
freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
data.channel = ieee80211_get_channel_khz(wiphy, freq);
if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
!(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
use_for = 0;
data.cannot_use_reasons =
NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
}
data.use_for = use_for;
/* Generate new elements */
memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
data.ie = new_ie;
data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
profile, profile_len,
new_ie,
IEEE80211_MAX_DATA_LEN);
if (!data.ielen)
continue;
/* The generated elements do not contain:
* - Basic ML element
* - A TBTT entry in the RNR for the transmitting AP
*
* This information is needed both internally and in userspace
* as such, we should append it here.
*/
if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
IEEE80211_MAX_DATA_LEN)
continue;
/* Copy the Basic Multi-Link element including the common
* information, and then fix up the link ID and BSS param
* change count.
* Note that the ML element length has been verified and we
* also checked that it contains the link ID.
*/
new_ie[data.ielen++] = WLAN_EID_EXTENSION;
new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
memcpy(new_ie + data.ielen, ml_elem,
sizeof(*ml_elem) + ml_common_len);
new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
param_ch_count;
data.ielen += sizeof(*ml_elem) + ml_common_len;
if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
if (data.ielen + sizeof(struct element) +
reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
continue;
memcpy(new_ie + data.ielen, reporter_rnr,
sizeof(struct element) + reporter_rnr->datalen);
data.ielen += sizeof(struct element) +
reporter_rnr->datalen;
}
bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
if (!bss)
break;
cfg80211_put_bss(wiphy, bss);
}
out:
kfree(reporter_rnr);
kfree(new_ie);
kfree(mle);
}
static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *tx_data,
struct cfg80211_bss *source_bss,
gfp_t gfp)
{
const struct element *elem;
if (!source_bss)
return;
if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
return;
for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
tx_data->ie, tx_data->ielen)
cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
elem, gfp);
}
struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
enum cfg80211_bss_frame_type ftype,
const u8 *bssid, u64 tsf, u16 capability,
u16 beacon_interval, const u8 *ie, size_t ielen,
gfp_t gfp)
{
struct cfg80211_inform_single_bss_data inform_data = {
.drv_data = data,
.ftype = ftype,
.tsf = tsf,
.capability = capability,
.beacon_interval = beacon_interval,
.ie = ie,
.ielen = ielen,
.use_for = data->restrict_use ?
data->use_for :
NL80211_BSS_USE_FOR_ALL,
.cannot_use_reasons = data->cannot_use_reasons,
};
struct cfg80211_bss *res;
memcpy(inform_data.bssid, bssid, ETH_ALEN);
res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
if (!res)
return NULL;
cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
return res;
}
EXPORT_SYMBOL(cfg80211_inform_bss_data);
static bool cfg80211_uhb_power_type_valid(const u8 *ie,
size_t ielen,
const u32 flags)
{
const struct element *tmp;
struct ieee80211_he_operation *he_oper;
tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
he_oper = (void *)&tmp->data[1];
he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
if (!he_6ghz_oper)
return false;
switch (u8_get_bits(he_6ghz_oper->control,
IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
return true;
case IEEE80211_6GHZ_CTRL_REG_SP_AP:
return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
}
}
return false;
}
/* cfg80211_inform_bss_width_frame helper */
static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
struct ieee80211_mgmt *mgmt, size_t len,
gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss tmp = {}, *res;
struct cfg80211_bss_ies *ies;
struct ieee80211_channel *channel;
bool signal_valid;
struct ieee80211_ext *ext = NULL;
u8 *bssid, *variable;
u16 capability, beacon_int;
size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
u.probe_resp.variable);
int bss_type;
BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
offsetof(struct ieee80211_mgmt, u.beacon.variable));
trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
if (WARN_ON(!mgmt))
return NULL;
if (WARN_ON(!wiphy))
return NULL;
if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(data->signal < 0 || data->signal > 100)))
return NULL;
if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
ext = (void *) mgmt;
min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
min_hdr_len = offsetof(struct ieee80211_ext,
u.s1g_short_beacon.variable);
}
if (WARN_ON(len < min_hdr_len))
return NULL;
ielen = len - min_hdr_len;
variable = mgmt->u.probe_resp.variable;
if (ext) {
if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
variable = ext->u.s1g_short_beacon.variable;
else
variable = ext->u.s1g_beacon.variable;
}
channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
if (!channel)
return NULL;
if (channel->band == NL80211_BAND_6GHZ &&
!cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
data->restrict_use = 1;
data->use_for = 0;
data->cannot_use_reasons =
NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
}
if (ext) {
const struct ieee80211_s1g_bcn_compat_ie *compat;
const struct element *elem;
elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
variable, ielen);
if (!elem)
return NULL;
if (elem->datalen < sizeof(*compat))
return NULL;
compat = (void *)elem->data;
bssid = ext->u.s1g_beacon.sa;
capability = le16_to_cpu(compat->compat_info);
beacon_int = le16_to_cpu(compat->beacon_int);
} else {
bssid = mgmt->bssid;
beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
}
if (channel->band == NL80211_BAND_60GHZ) {
bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
} else {
if (capability & WLAN_CAPABILITY_ESS)
regulatory_hint_found_beacon(wiphy, channel, gfp);
}
ies = kzalloc(sizeof(*ies) + ielen, gfp);
if (!ies)
return NULL;
ies->len = ielen;
ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
ieee80211_is_s1g_beacon(mgmt->frame_control);
memcpy(ies->data, variable, ielen);
if (ieee80211_is_probe_resp(mgmt->frame_control))
rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
else
rcu_assign_pointer(tmp.pub.beacon_ies, ies);
rcu_assign_pointer(tmp.pub.ies, ies);
memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
tmp.pub.beacon_interval = beacon_int;
tmp.pub.capability = capability;
tmp.pub.channel = channel;
tmp.pub.signal = data->signal;
tmp.ts_boottime = data->boottime_ns;
tmp.parent_tsf = data->parent_tsf;
tmp.pub.chains = data->chains;
memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
tmp.pub.use_for = data->restrict_use ?
data->use_for :
NL80211_BSS_USE_FOR_ALL;
tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
signal_valid = data->chan == channel;
spin_lock_bh(&rdev->bss_lock);
res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
if (!res)
goto drop;
rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
spin_unlock_bh(&rdev->bss_lock);
trace_cfg80211_return_bss(&res->pub);
/* __cfg80211_bss_update gives us a referenced result */
return &res->pub;
drop:
spin_unlock_bh(&rdev->bss_lock);
return NULL;
}
struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
struct ieee80211_mgmt *mgmt, size_t len,
gfp_t gfp)
{
struct cfg80211_inform_single_bss_data inform_data = {
.drv_data = data,
.ie = mgmt->u.probe_resp.variable,
.ielen = len - offsetof(struct ieee80211_mgmt,
u.probe_resp.variable),
.use_for = data->restrict_use ?
data->use_for :
NL80211_BSS_USE_FOR_ALL,
.cannot_use_reasons = data->cannot_use_reasons,
};
struct cfg80211_bss *res;
res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
len, gfp);
if (!res)
return NULL;
/* don't do any further MBSSID/ML handling for S1G */
if (ieee80211_is_s1g_beacon(mgmt->frame_control))
return res;
inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
inform_data.beacon_interval =
le16_to_cpu(mgmt->u.probe_resp.beacon_int);
/* process each non-transmitting bss */
cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
return res;
}
EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
if (!pub)
return;
spin_lock_bh(&rdev->bss_lock);
bss_ref_get(rdev, bss_from_pub(pub));
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_ref_bss);
void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
if (!pub)
return;
spin_lock_bh(&rdev->bss_lock);
bss_ref_put(rdev, bss_from_pub(pub));
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_put_bss);
void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss, *tmp1;
struct cfg80211_bss *nontrans_bss, *tmp;
if (WARN_ON(!pub))
return;
bss = bss_from_pub(pub);
spin_lock_bh(&rdev->bss_lock);
if (list_empty(&bss->list))
goto out;
list_for_each_entry_safe(nontrans_bss, tmp,
&pub->nontrans_list,
nontrans_list) {
tmp1 = bss_from_pub(nontrans_bss);
if (__cfg80211_unlink_bss(rdev, tmp1))
rdev->bss_generation++;
}
if (__cfg80211_unlink_bss(rdev, bss))
rdev->bss_generation++;
out:
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_unlink_bss);
void cfg80211_bss_iter(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
void (*iter)(struct wiphy *wiphy,
struct cfg80211_bss *bss,
void *data),
void *iter_data)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss;
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
false))
iter(wiphy, &bss->pub, iter_data);
}
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_bss_iter);
void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
unsigned int link_id,
struct ieee80211_channel *chan)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
struct cfg80211_internal_bss *new = NULL;
struct cfg80211_internal_bss *bss;
struct cfg80211_bss *nontrans_bss;
struct cfg80211_bss *tmp;
spin_lock_bh(&rdev->bss_lock);
/*
* Some APs use CSA also for bandwidth changes, i.e., without actually
* changing the control channel, so no need to update in such a case.
*/
if (cbss->pub.channel == chan)
goto done;
/* use transmitting bss */
if (cbss->pub.transmitted_bss)
cbss = bss_from_pub(cbss->pub.transmitted_bss);
cbss->pub.channel = chan;
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!cfg80211_bss_type_match(bss->pub.capability,
bss->pub.channel->band,
wdev->conn_bss_type))
continue;
if (bss == cbss)
continue;
if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
new = bss;
break;
}
}
if (new) {
/* to save time, update IEs for transmitting bss only */
cfg80211_update_known_bss(rdev, cbss, new, false);
new->pub.proberesp_ies = NULL;
new->pub.beacon_ies = NULL;
list_for_each_entry_safe(nontrans_bss, tmp,
&new->pub.nontrans_list,
nontrans_list) {
bss = bss_from_pub(nontrans_bss);
if (__cfg80211_unlink_bss(rdev, bss))
rdev->bss_generation++;
}
WARN_ON(atomic_read(&new->hold));
if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
rdev->bss_generation++;
}
rb_erase(&cbss->rbn, &rdev->bss_tree);
rb_insert_bss(rdev, cbss);
rdev->bss_generation++;
list_for_each_entry_safe(nontrans_bss, tmp,
&cbss->pub.nontrans_list,
nontrans_list) {
bss = bss_from_pub(nontrans_bss);
bss->pub.channel = chan;
rb_erase(&bss->rbn, &rdev->bss_tree);
rb_insert_bss(rdev, bss);
rdev->bss_generation++;
}
done:
spin_unlock_bh(&rdev->bss_lock);
}
#ifdef CONFIG_CFG80211_WEXT
static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
{
struct cfg80211_registered_device *rdev;
struct net_device *dev;
ASSERT_RTNL();
dev = dev_get_by_index(net, ifindex);
if (!dev)
return ERR_PTR(-ENODEV);
if (dev->ieee80211_ptr)
rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
else
rdev = ERR_PTR(-ENODEV);
dev_put(dev);
return rdev;
}
int cfg80211_wext_siwscan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
struct iw_scan_req *wreq = NULL;
struct cfg80211_scan_request *creq;
int i, err, n_channels = 0;
enum nl80211_band band;
if (!netif_running(dev))
return -ENETDOWN;
if (wrqu->data.length == sizeof(struct iw_scan_req))
wreq = (struct iw_scan_req *)extra;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req || rdev->scan_msg)
return -EBUSY;
wiphy = &rdev->wiphy;
/* Determine number of channels, needed to allocate creq */
if (wreq && wreq->num_channels)
n_channels = wreq->num_channels;
else
n_channels = ieee80211_get_num_supported_channels(wiphy);
creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
n_channels * sizeof(void *),
GFP_ATOMIC);
if (!creq)
return -ENOMEM;
creq->wiphy = wiphy;
creq->wdev = dev->ieee80211_ptr;
/* SSIDs come after channels */
creq->ssids = (void *)&creq->channels[n_channels];
creq->n_channels = n_channels;
creq->n_ssids = 1;
creq->scan_start = jiffies;
/* translate "Scan on frequencies" request */
i = 0;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
int j;
if (!wiphy->bands[band])
continue;
for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
/* ignore disabled channels */
if (wiphy->bands[band]->channels[j].flags &
IEEE80211_CHAN_DISABLED)
continue;
/* If we have a wireless request structure and the
* wireless request specifies frequencies, then search
* for the matching hardware channel.
*/
if (wreq && wreq->num_channels) {
int k;
int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
for (k = 0; k < wreq->num_channels; k++) {
struct iw_freq *freq =
&wreq->channel_list[k];
int wext_freq =
cfg80211_wext_freq(freq);
if (wext_freq == wiphy_freq)
goto wext_freq_found;
}
goto wext_freq_not_found;
}
wext_freq_found:
creq->channels[i] = &wiphy->bands[band]->channels[j];
i++;
wext_freq_not_found: ;
}
}
/* No channels found? */
if (!i) {
err = -EINVAL;
goto out;
}
/* Set real number of channels specified in creq->channels[] */
creq->n_channels = i;
/* translate "Scan for SSID" request */
if (wreq) {
if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
err = -EINVAL;
goto out;
}
memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
creq->ssids[0].ssid_len = wreq->essid_len;
}
if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
creq->n_ssids = 0;
}
for (i = 0; i < NUM_NL80211_BANDS; i++)
if (wiphy->bands[i])
creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
eth_broadcast_addr(creq->bssid);
wiphy_lock(&rdev->wiphy);
rdev->scan_req = creq;
err = rdev_scan(rdev, creq);
if (err) {
rdev->scan_req = NULL;
/* creq will be freed below */
} else {
nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
/* creq now owned by driver */
creq = NULL;
dev_hold(dev);
}
wiphy_unlock(&rdev->wiphy);
out:
kfree(creq);
return err;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
static char *ieee80211_scan_add_ies(struct iw_request_info *info,
const struct cfg80211_bss_ies *ies,
char *current_ev, char *end_buf)
{
const u8 *pos, *end, *next;
struct iw_event iwe;
if (!ies)
return current_ev;
/*
* If needed, fragment the IEs buffer (at IE boundaries) into short
* enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
*/
pos = ies->data;
end = pos + ies->len;
while (end - pos > IW_GENERIC_IE_MAX) {
next = pos + 2 + pos[1];
while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
next = next + 2 + next[1];
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = next - pos;
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe,
(void *)pos);
if (IS_ERR(current_ev))
return current_ev;
pos = next;
}
if (end > pos) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = end - pos;
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe,
(void *)pos);
if (IS_ERR(current_ev))
return current_ev;
}
return current_ev;
}
static char *
ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
struct cfg80211_internal_bss *bss, char *current_ev,
char *end_buf)
{
const struct cfg80211_bss_ies *ies;
struct iw_event iwe;
const u8 *ie;
u8 buf[50];
u8 *cfg, *p, *tmp;
int rem, i, sig;
bool ismesh = false;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
if (IS_ERR(current_ev))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
iwe.u.freq.e = 0;
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
if (IS_ERR(current_ev))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = bss->pub.channel->center_freq;
iwe.u.freq.e = 6;
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
if (IS_ERR(current_ev))
return current_ev;
if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
IW_QUAL_NOISE_INVALID |
IW_QUAL_QUAL_UPDATED;
switch (wiphy->signal_type) {
case CFG80211_SIGNAL_TYPE_MBM:
sig = bss->pub.signal / 100;
iwe.u.qual.level = sig;
iwe.u.qual.updated |= IW_QUAL_DBM;
if (sig < -110) /* rather bad */
sig = -110;
else if (sig > -40) /* perfect */
sig = -40;
/* will give a range of 0 .. 70 */
iwe.u.qual.qual = sig + 110;
break;
case CFG80211_SIGNAL_TYPE_UNSPEC:
iwe.u.qual.level = bss->pub.signal;
/* will give range 0 .. 100 */
iwe.u.qual.qual = bss->pub.signal;
break;
default:
/* not reached */
break;
}
current_ev = iwe_stream_add_event_check(info, current_ev,
end_buf, &iwe,
IW_EV_QUAL_LEN);
if (IS_ERR(current_ev))
return current_ev;
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
&iwe, "");
if (IS_ERR(current_ev))
return current_ev;
rcu_read_lock();
ies = rcu_dereference(bss->pub.ies);
rem = ies->len;
ie = ies->data;
while (rem >= 2) {
/* invalid data */
if (ie[1] > rem - 2)
break;
switch (ie[0]) {
case WLAN_EID_SSID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf, &iwe,
(u8 *)ie + 2);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_MESH_ID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf, &iwe,
(u8 *)ie + 2);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_MESH_CONFIG:
ismesh = true;
if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
break;
cfg = (u8 *)ie + 2;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = sprintf(buf,
"Mesh Network Path Selection Protocol ID: 0x%02X",
cfg[0]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Path Selection Metric ID: 0x%02X",
cfg[1]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Congestion Control Mode ID: 0x%02X",
cfg[2]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Synchronization ID: 0x%02X",
cfg[3]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Authentication ID: 0x%02X",
cfg[4]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Formation Info: 0x%02X",
cfg[5]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Capabilities: 0x%02X",
cfg[6]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_SUPP_RATES:
case WLAN_EID_EXT_SUPP_RATES:
/* display all supported rates in readable format */
p = current_ev + iwe_stream_lcp_len(info);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0; i < ie[1]; i++) {
iwe.u.bitrate.value =
((ie[i + 2] & 0x7f) * 500000);
tmp = p;
p = iwe_stream_add_value(info, current_ev, p,
end_buf, &iwe,
IW_EV_PARAM_LEN);
if (p == tmp) {
current_ev = ERR_PTR(-E2BIG);
goto unlock;
}
}
current_ev = p;
break;
}
rem -= ie[1] + 2;
ie += ie[1] + 2;
}
if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
ismesh) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (ismesh)
iwe.u.mode = IW_MODE_MESH;
else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event_check(info, current_ev,
end_buf, &iwe,
IW_EV_UINT_LEN);
if (IS_ERR(current_ev))
goto unlock;
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = sprintf(buf, "tsf=%016llx",
(unsigned long long)(ies->tsf));
current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
elapsed_jiffies_msecs(bss->ts));
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
unlock:
rcu_read_unlock();
return current_ev;
}
static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
struct iw_request_info *info,
char *buf, size_t len)
{
char *current_ev = buf;
char *end_buf = buf + len;
struct cfg80211_internal_bss *bss;
int err = 0;
spin_lock_bh(&rdev->bss_lock);
cfg80211_bss_expire(rdev);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
err = -E2BIG;
break;
}
current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
current_ev, end_buf);
if (IS_ERR(current_ev)) {
err = PTR_ERR(current_ev);
break;
}
}
spin_unlock_bh(&rdev->bss_lock);
if (err)
return err;
return current_ev - buf;
}
int cfg80211_wext_giwscan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct iw_point *data = &wrqu->data;
struct cfg80211_registered_device *rdev;
int res;
if (!netif_running(dev))
return -ENETDOWN;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req || rdev->scan_msg)
return -EAGAIN;
res = ieee80211_scan_results(rdev, info, extra, data->length);
data->length = 0;
if (res >= 0) {
data->length = res;
res = 0;
}
return res;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
#endif