mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 15:10:38 +00:00
e5f0dfa78a
SE DMA mode can be used for larger transfers and FIFO mode for smaller transfers. Signed-off-by: Vijaya Krishna Nivarthi <quic_vnivarth@quicinc.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/1670509544-15977-1-git-send-email-quic_vnivarth@quicinc.com Signed-off-by: Mark Brown <broonie@kernel.org>
1222 lines
32 KiB
C
1222 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dma/qcom-gpi-dma.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/qcom-geni-se.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
/* SPI SE specific registers and respective register fields */
|
|
#define SE_SPI_CPHA 0x224
|
|
#define CPHA BIT(0)
|
|
|
|
#define SE_SPI_LOOPBACK 0x22c
|
|
#define LOOPBACK_ENABLE 0x1
|
|
#define NORMAL_MODE 0x0
|
|
#define LOOPBACK_MSK GENMASK(1, 0)
|
|
|
|
#define SE_SPI_CPOL 0x230
|
|
#define CPOL BIT(2)
|
|
|
|
#define SE_SPI_DEMUX_OUTPUT_INV 0x24c
|
|
#define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0)
|
|
|
|
#define SE_SPI_DEMUX_SEL 0x250
|
|
#define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0)
|
|
|
|
#define SE_SPI_TRANS_CFG 0x25c
|
|
#define CS_TOGGLE BIT(0)
|
|
|
|
#define SE_SPI_WORD_LEN 0x268
|
|
#define WORD_LEN_MSK GENMASK(9, 0)
|
|
#define MIN_WORD_LEN 4
|
|
|
|
#define SE_SPI_TX_TRANS_LEN 0x26c
|
|
#define SE_SPI_RX_TRANS_LEN 0x270
|
|
#define TRANS_LEN_MSK GENMASK(23, 0)
|
|
|
|
#define SE_SPI_PRE_POST_CMD_DLY 0x274
|
|
|
|
#define SE_SPI_DELAY_COUNTERS 0x278
|
|
#define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0)
|
|
#define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10)
|
|
#define SPI_CS_CLK_DELAY_SHFT 10
|
|
|
|
/* M_CMD OP codes for SPI */
|
|
#define SPI_TX_ONLY 1
|
|
#define SPI_RX_ONLY 2
|
|
#define SPI_TX_RX 7
|
|
#define SPI_CS_ASSERT 8
|
|
#define SPI_CS_DEASSERT 9
|
|
#define SPI_SCK_ONLY 10
|
|
/* M_CMD params for SPI */
|
|
#define SPI_PRE_CMD_DELAY BIT(0)
|
|
#define TIMESTAMP_BEFORE BIT(1)
|
|
#define FRAGMENTATION BIT(2)
|
|
#define TIMESTAMP_AFTER BIT(3)
|
|
#define POST_CMD_DELAY BIT(4)
|
|
|
|
#define GSI_LOOPBACK_EN BIT(0)
|
|
#define GSI_CS_TOGGLE BIT(3)
|
|
#define GSI_CPHA BIT(4)
|
|
#define GSI_CPOL BIT(5)
|
|
|
|
struct spi_geni_master {
|
|
struct geni_se se;
|
|
struct device *dev;
|
|
u32 tx_fifo_depth;
|
|
u32 fifo_width_bits;
|
|
u32 tx_wm;
|
|
u32 last_mode;
|
|
unsigned long cur_speed_hz;
|
|
unsigned long cur_sclk_hz;
|
|
unsigned int cur_bits_per_word;
|
|
unsigned int tx_rem_bytes;
|
|
unsigned int rx_rem_bytes;
|
|
const struct spi_transfer *cur_xfer;
|
|
struct completion cs_done;
|
|
struct completion cancel_done;
|
|
struct completion abort_done;
|
|
struct completion tx_reset_done;
|
|
struct completion rx_reset_done;
|
|
unsigned int oversampling;
|
|
spinlock_t lock;
|
|
int irq;
|
|
bool cs_flag;
|
|
bool abort_failed;
|
|
struct dma_chan *tx;
|
|
struct dma_chan *rx;
|
|
int cur_xfer_mode;
|
|
dma_addr_t tx_se_dma;
|
|
dma_addr_t rx_se_dma;
|
|
};
|
|
|
|
static int get_spi_clk_cfg(unsigned int speed_hz,
|
|
struct spi_geni_master *mas,
|
|
unsigned int *clk_idx,
|
|
unsigned int *clk_div)
|
|
{
|
|
unsigned long sclk_freq;
|
|
unsigned int actual_hz;
|
|
int ret;
|
|
|
|
ret = geni_se_clk_freq_match(&mas->se,
|
|
speed_hz * mas->oversampling,
|
|
clk_idx, &sclk_freq, false);
|
|
if (ret) {
|
|
dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
|
|
ret, speed_hz);
|
|
return ret;
|
|
}
|
|
|
|
*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
|
|
actual_hz = sclk_freq / (mas->oversampling * *clk_div);
|
|
|
|
dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
|
|
actual_hz, sclk_freq, *clk_idx, *clk_div);
|
|
ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
|
|
if (ret)
|
|
dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
|
|
else
|
|
mas->cur_sclk_hz = sclk_freq;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void handle_se_timeout(struct spi_master *spi,
|
|
struct spi_message *msg)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
unsigned long time_left;
|
|
struct geni_se *se = &mas->se;
|
|
const struct spi_transfer *xfer;
|
|
|
|
spin_lock_irq(&mas->lock);
|
|
reinit_completion(&mas->cancel_done);
|
|
if (mas->cur_xfer_mode == GENI_SE_FIFO)
|
|
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
|
|
|
|
xfer = mas->cur_xfer;
|
|
mas->cur_xfer = NULL;
|
|
geni_se_cancel_m_cmd(se);
|
|
spin_unlock_irq(&mas->lock);
|
|
|
|
time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
|
|
if (time_left)
|
|
goto unmap_if_dma;
|
|
|
|
spin_lock_irq(&mas->lock);
|
|
reinit_completion(&mas->abort_done);
|
|
geni_se_abort_m_cmd(se);
|
|
spin_unlock_irq(&mas->lock);
|
|
|
|
time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
|
|
if (!time_left) {
|
|
dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
|
|
|
|
/*
|
|
* No need for a lock since SPI core has a lock and we never
|
|
* access this from an interrupt.
|
|
*/
|
|
mas->abort_failed = true;
|
|
}
|
|
|
|
unmap_if_dma:
|
|
if (mas->cur_xfer_mode == GENI_SE_DMA) {
|
|
if (xfer) {
|
|
if (xfer->tx_buf && mas->tx_se_dma) {
|
|
spin_lock_irq(&mas->lock);
|
|
reinit_completion(&mas->tx_reset_done);
|
|
writel(1, se->base + SE_DMA_TX_FSM_RST);
|
|
spin_unlock_irq(&mas->lock);
|
|
time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
|
|
if (!time_left)
|
|
dev_err(mas->dev, "DMA TX RESET failed\n");
|
|
geni_se_tx_dma_unprep(se, mas->tx_se_dma, xfer->len);
|
|
}
|
|
if (xfer->rx_buf && mas->rx_se_dma) {
|
|
spin_lock_irq(&mas->lock);
|
|
reinit_completion(&mas->rx_reset_done);
|
|
writel(1, se->base + SE_DMA_RX_FSM_RST);
|
|
spin_unlock_irq(&mas->lock);
|
|
time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
|
|
if (!time_left)
|
|
dev_err(mas->dev, "DMA RX RESET failed\n");
|
|
geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
|
|
}
|
|
} else {
|
|
/*
|
|
* This can happen if a timeout happened and we had to wait
|
|
* for lock in this function because isr was holding the lock
|
|
* and handling transfer completion at that time.
|
|
*/
|
|
dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
|
|
dmaengine_terminate_sync(mas->tx);
|
|
dmaengine_terminate_sync(mas->rx);
|
|
}
|
|
|
|
static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
|
|
switch (mas->cur_xfer_mode) {
|
|
case GENI_SE_FIFO:
|
|
case GENI_SE_DMA:
|
|
handle_se_timeout(spi, msg);
|
|
break;
|
|
case GENI_GPI_DMA:
|
|
handle_gpi_timeout(spi, msg);
|
|
break;
|
|
default:
|
|
dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
|
|
}
|
|
}
|
|
|
|
static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
|
|
{
|
|
struct geni_se *se = &mas->se;
|
|
u32 m_irq, m_irq_en;
|
|
|
|
if (!mas->abort_failed)
|
|
return false;
|
|
|
|
/*
|
|
* The only known case where a transfer times out and then a cancel
|
|
* times out then an abort times out is if something is blocking our
|
|
* interrupt handler from running. Avoid starting any new transfers
|
|
* until that sorts itself out.
|
|
*/
|
|
spin_lock_irq(&mas->lock);
|
|
m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
|
|
m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
|
|
spin_unlock_irq(&mas->lock);
|
|
|
|
if (m_irq & m_irq_en) {
|
|
dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
|
|
m_irq & m_irq_en);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If we're here the problem resolved itself so no need to check more
|
|
* on future transfers.
|
|
*/
|
|
mas->abort_failed = false;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
|
|
struct spi_master *spi = dev_get_drvdata(mas->dev);
|
|
struct geni_se *se = &mas->se;
|
|
unsigned long time_left;
|
|
|
|
if (!(slv->mode & SPI_CS_HIGH))
|
|
set_flag = !set_flag;
|
|
|
|
if (set_flag == mas->cs_flag)
|
|
return;
|
|
|
|
pm_runtime_get_sync(mas->dev);
|
|
|
|
if (spi_geni_is_abort_still_pending(mas)) {
|
|
dev_err(mas->dev, "Can't set chip select\n");
|
|
goto exit;
|
|
}
|
|
|
|
spin_lock_irq(&mas->lock);
|
|
if (mas->cur_xfer) {
|
|
dev_err(mas->dev, "Can't set CS when prev xfer running\n");
|
|
spin_unlock_irq(&mas->lock);
|
|
goto exit;
|
|
}
|
|
|
|
mas->cs_flag = set_flag;
|
|
/* set xfer_mode to FIFO to complete cs_done in isr */
|
|
mas->cur_xfer_mode = GENI_SE_FIFO;
|
|
reinit_completion(&mas->cs_done);
|
|
if (set_flag)
|
|
geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
|
|
else
|
|
geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
|
|
spin_unlock_irq(&mas->lock);
|
|
|
|
time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
|
|
if (!time_left) {
|
|
dev_warn(mas->dev, "Timeout setting chip select\n");
|
|
handle_se_timeout(spi, NULL);
|
|
}
|
|
|
|
exit:
|
|
pm_runtime_put(mas->dev);
|
|
}
|
|
|
|
static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
|
|
unsigned int bits_per_word)
|
|
{
|
|
unsigned int pack_words;
|
|
bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
|
|
struct geni_se *se = &mas->se;
|
|
u32 word_len;
|
|
|
|
/*
|
|
* If bits_per_word isn't a byte aligned value, set the packing to be
|
|
* 1 SPI word per FIFO word.
|
|
*/
|
|
if (!(mas->fifo_width_bits % bits_per_word))
|
|
pack_words = mas->fifo_width_bits / bits_per_word;
|
|
else
|
|
pack_words = 1;
|
|
geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
|
|
true, true);
|
|
word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
|
|
writel(word_len, se->base + SE_SPI_WORD_LEN);
|
|
}
|
|
|
|
static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
|
|
unsigned long clk_hz)
|
|
{
|
|
u32 clk_sel, m_clk_cfg, idx, div;
|
|
struct geni_se *se = &mas->se;
|
|
int ret;
|
|
|
|
if (clk_hz == mas->cur_speed_hz)
|
|
return 0;
|
|
|
|
ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
|
|
if (ret) {
|
|
dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* SPI core clock gets configured with the requested frequency
|
|
* or the frequency closer to the requested frequency.
|
|
* For that reason requested frequency is stored in the
|
|
* cur_speed_hz and referred in the consecutive transfer instead
|
|
* of calling clk_get_rate() API.
|
|
*/
|
|
mas->cur_speed_hz = clk_hz;
|
|
|
|
clk_sel = idx & CLK_SEL_MSK;
|
|
m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
|
|
writel(clk_sel, se->base + SE_GENI_CLK_SEL);
|
|
writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
|
|
|
|
/* Set BW quota for CPU as driver supports FIFO mode only. */
|
|
se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
|
|
ret = geni_icc_set_bw(se);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int setup_fifo_params(struct spi_device *spi_slv,
|
|
struct spi_master *spi)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
struct geni_se *se = &mas->se;
|
|
u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
|
|
u32 demux_sel;
|
|
|
|
if (mas->last_mode != spi_slv->mode) {
|
|
if (spi_slv->mode & SPI_LOOP)
|
|
loopback_cfg = LOOPBACK_ENABLE;
|
|
|
|
if (spi_slv->mode & SPI_CPOL)
|
|
cpol = CPOL;
|
|
|
|
if (spi_slv->mode & SPI_CPHA)
|
|
cpha = CPHA;
|
|
|
|
if (spi_slv->mode & SPI_CS_HIGH)
|
|
demux_output_inv = BIT(spi_slv->chip_select);
|
|
|
|
demux_sel = spi_slv->chip_select;
|
|
mas->cur_bits_per_word = spi_slv->bits_per_word;
|
|
|
|
spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
|
|
writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
|
|
writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
|
|
writel(cpha, se->base + SE_SPI_CPHA);
|
|
writel(cpol, se->base + SE_SPI_CPOL);
|
|
writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
|
|
|
|
mas->last_mode = spi_slv->mode;
|
|
}
|
|
|
|
return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
|
|
}
|
|
|
|
static void
|
|
spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
|
|
{
|
|
struct spi_master *spi = cb;
|
|
|
|
spi->cur_msg->status = -EIO;
|
|
if (result->result != DMA_TRANS_NOERROR) {
|
|
dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
|
|
spi_finalize_current_transfer(spi);
|
|
return;
|
|
}
|
|
|
|
if (!result->residue) {
|
|
spi->cur_msg->status = 0;
|
|
dev_dbg(&spi->dev, "DMA txn completed\n");
|
|
} else {
|
|
dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
|
|
}
|
|
|
|
spi_finalize_current_transfer(spi);
|
|
}
|
|
|
|
static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
|
|
struct spi_device *spi_slv, struct spi_master *spi)
|
|
{
|
|
unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
|
|
struct dma_slave_config config = {};
|
|
struct gpi_spi_config peripheral = {};
|
|
struct dma_async_tx_descriptor *tx_desc, *rx_desc;
|
|
int ret;
|
|
|
|
config.peripheral_config = &peripheral;
|
|
config.peripheral_size = sizeof(peripheral);
|
|
peripheral.set_config = true;
|
|
|
|
if (xfer->bits_per_word != mas->cur_bits_per_word ||
|
|
xfer->speed_hz != mas->cur_speed_hz) {
|
|
mas->cur_bits_per_word = xfer->bits_per_word;
|
|
mas->cur_speed_hz = xfer->speed_hz;
|
|
}
|
|
|
|
if (xfer->tx_buf && xfer->rx_buf) {
|
|
peripheral.cmd = SPI_DUPLEX;
|
|
} else if (xfer->tx_buf) {
|
|
peripheral.cmd = SPI_TX;
|
|
peripheral.rx_len = 0;
|
|
} else if (xfer->rx_buf) {
|
|
peripheral.cmd = SPI_RX;
|
|
if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
|
|
peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
|
|
} else {
|
|
int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
|
|
|
|
peripheral.rx_len = (xfer->len / bytes_per_word);
|
|
}
|
|
}
|
|
|
|
peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
|
|
peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
|
|
peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
|
|
peripheral.cs = spi_slv->chip_select;
|
|
peripheral.pack_en = true;
|
|
peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
|
|
|
|
ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
|
|
&peripheral.clk_src, &peripheral.clk_div);
|
|
if (ret) {
|
|
dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (!xfer->cs_change) {
|
|
if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
|
|
peripheral.fragmentation = FRAGMENTATION;
|
|
}
|
|
|
|
if (peripheral.cmd & SPI_RX) {
|
|
dmaengine_slave_config(mas->rx, &config);
|
|
rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
|
|
DMA_DEV_TO_MEM, flags);
|
|
if (!rx_desc) {
|
|
dev_err(mas->dev, "Err setting up rx desc\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare the TX always, even for RX or tx_buf being null, we would
|
|
* need TX to be prepared per GSI spec
|
|
*/
|
|
dmaengine_slave_config(mas->tx, &config);
|
|
tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
|
|
DMA_MEM_TO_DEV, flags);
|
|
if (!tx_desc) {
|
|
dev_err(mas->dev, "Err setting up tx desc\n");
|
|
return -EIO;
|
|
}
|
|
|
|
tx_desc->callback_result = spi_gsi_callback_result;
|
|
tx_desc->callback_param = spi;
|
|
|
|
if (peripheral.cmd & SPI_RX)
|
|
dmaengine_submit(rx_desc);
|
|
dmaengine_submit(tx_desc);
|
|
|
|
if (peripheral.cmd & SPI_RX)
|
|
dma_async_issue_pending(mas->rx);
|
|
|
|
dma_async_issue_pending(mas->tx);
|
|
return 1;
|
|
}
|
|
|
|
static bool geni_can_dma(struct spi_controller *ctlr,
|
|
struct spi_device *slv, struct spi_transfer *xfer)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
|
|
|
|
/*
|
|
* Return true if transfer needs to be mapped prior to
|
|
* calling transfer_one which is the case only for GPI_DMA.
|
|
* For SE_DMA mode, map/unmap is done in geni_se_*x_dma_prep.
|
|
*/
|
|
return mas->cur_xfer_mode == GENI_GPI_DMA;
|
|
}
|
|
|
|
static int spi_geni_prepare_message(struct spi_master *spi,
|
|
struct spi_message *spi_msg)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
int ret;
|
|
|
|
switch (mas->cur_xfer_mode) {
|
|
case GENI_SE_FIFO:
|
|
case GENI_SE_DMA:
|
|
if (spi_geni_is_abort_still_pending(mas))
|
|
return -EBUSY;
|
|
ret = setup_fifo_params(spi_msg->spi, spi);
|
|
if (ret)
|
|
dev_err(mas->dev, "Couldn't select mode %d\n", ret);
|
|
return ret;
|
|
|
|
case GENI_GPI_DMA:
|
|
/* nothing to do for GPI DMA */
|
|
return 0;
|
|
}
|
|
|
|
dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
|
|
{
|
|
int ret;
|
|
|
|
mas->tx = dma_request_chan(mas->dev, "tx");
|
|
if (IS_ERR(mas->tx)) {
|
|
ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
|
|
"Failed to get tx DMA ch\n");
|
|
goto err_tx;
|
|
}
|
|
|
|
mas->rx = dma_request_chan(mas->dev, "rx");
|
|
if (IS_ERR(mas->rx)) {
|
|
ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
|
|
"Failed to get rx DMA ch\n");
|
|
goto err_rx;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_rx:
|
|
mas->rx = NULL;
|
|
dma_release_channel(mas->tx);
|
|
err_tx:
|
|
mas->tx = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
|
|
{
|
|
if (mas->rx) {
|
|
dma_release_channel(mas->rx);
|
|
mas->rx = NULL;
|
|
}
|
|
|
|
if (mas->tx) {
|
|
dma_release_channel(mas->tx);
|
|
mas->tx = NULL;
|
|
}
|
|
}
|
|
|
|
static int spi_geni_init(struct spi_geni_master *mas)
|
|
{
|
|
struct geni_se *se = &mas->se;
|
|
unsigned int proto, major, minor, ver;
|
|
u32 spi_tx_cfg, fifo_disable;
|
|
int ret = -ENXIO;
|
|
|
|
pm_runtime_get_sync(mas->dev);
|
|
|
|
proto = geni_se_read_proto(se);
|
|
if (proto != GENI_SE_SPI) {
|
|
dev_err(mas->dev, "Invalid proto %d\n", proto);
|
|
goto out_pm;
|
|
}
|
|
mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
|
|
|
|
/* Width of Tx and Rx FIFO is same */
|
|
mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
|
|
|
|
/*
|
|
* Hardware programming guide suggests to configure
|
|
* RX FIFO RFR level to fifo_depth-2.
|
|
*/
|
|
geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
|
|
/* Transmit an entire FIFO worth of data per IRQ */
|
|
mas->tx_wm = 1;
|
|
ver = geni_se_get_qup_hw_version(se);
|
|
major = GENI_SE_VERSION_MAJOR(ver);
|
|
minor = GENI_SE_VERSION_MINOR(ver);
|
|
|
|
if (major == 1 && minor == 0)
|
|
mas->oversampling = 2;
|
|
else
|
|
mas->oversampling = 1;
|
|
|
|
fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
|
|
switch (fifo_disable) {
|
|
case 1:
|
|
ret = spi_geni_grab_gpi_chan(mas);
|
|
if (!ret) { /* success case */
|
|
mas->cur_xfer_mode = GENI_GPI_DMA;
|
|
geni_se_select_mode(se, GENI_GPI_DMA);
|
|
dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
|
|
break;
|
|
}
|
|
/*
|
|
* in case of failure to get gpi dma channel, we can still do the
|
|
* FIFO mode, so fallthrough
|
|
*/
|
|
dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
|
|
fallthrough;
|
|
|
|
case 0:
|
|
mas->cur_xfer_mode = GENI_SE_FIFO;
|
|
geni_se_select_mode(se, GENI_SE_FIFO);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/* We always control CS manually */
|
|
spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
|
|
spi_tx_cfg &= ~CS_TOGGLE;
|
|
writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
|
|
|
|
out_pm:
|
|
pm_runtime_put(mas->dev);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
|
|
{
|
|
/*
|
|
* Calculate how many bytes we'll put in each FIFO word. If the
|
|
* transfer words don't pack cleanly into a FIFO word we'll just put
|
|
* one transfer word in each FIFO word. If they do pack we'll pack 'em.
|
|
*/
|
|
if (mas->fifo_width_bits % mas->cur_bits_per_word)
|
|
return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
|
|
BITS_PER_BYTE));
|
|
|
|
return mas->fifo_width_bits / BITS_PER_BYTE;
|
|
}
|
|
|
|
static bool geni_spi_handle_tx(struct spi_geni_master *mas)
|
|
{
|
|
struct geni_se *se = &mas->se;
|
|
unsigned int max_bytes;
|
|
const u8 *tx_buf;
|
|
unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
|
|
unsigned int i = 0;
|
|
|
|
/* Stop the watermark IRQ if nothing to send */
|
|
if (!mas->cur_xfer) {
|
|
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
|
|
return false;
|
|
}
|
|
|
|
max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
|
|
if (mas->tx_rem_bytes < max_bytes)
|
|
max_bytes = mas->tx_rem_bytes;
|
|
|
|
tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
|
|
while (i < max_bytes) {
|
|
unsigned int j;
|
|
unsigned int bytes_to_write;
|
|
u32 fifo_word = 0;
|
|
u8 *fifo_byte = (u8 *)&fifo_word;
|
|
|
|
bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
|
|
for (j = 0; j < bytes_to_write; j++)
|
|
fifo_byte[j] = tx_buf[i++];
|
|
iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
|
|
}
|
|
mas->tx_rem_bytes -= max_bytes;
|
|
if (!mas->tx_rem_bytes) {
|
|
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void geni_spi_handle_rx(struct spi_geni_master *mas)
|
|
{
|
|
struct geni_se *se = &mas->se;
|
|
u32 rx_fifo_status;
|
|
unsigned int rx_bytes;
|
|
unsigned int rx_last_byte_valid;
|
|
u8 *rx_buf;
|
|
unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
|
|
unsigned int i = 0;
|
|
|
|
rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
|
|
rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
|
|
if (rx_fifo_status & RX_LAST) {
|
|
rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
|
|
rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
|
|
if (rx_last_byte_valid && rx_last_byte_valid < 4)
|
|
rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
|
|
}
|
|
|
|
/* Clear out the FIFO and bail if nowhere to put it */
|
|
if (!mas->cur_xfer) {
|
|
for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
|
|
readl(se->base + SE_GENI_RX_FIFOn);
|
|
return;
|
|
}
|
|
|
|
if (mas->rx_rem_bytes < rx_bytes)
|
|
rx_bytes = mas->rx_rem_bytes;
|
|
|
|
rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
|
|
while (i < rx_bytes) {
|
|
u32 fifo_word = 0;
|
|
u8 *fifo_byte = (u8 *)&fifo_word;
|
|
unsigned int bytes_to_read;
|
|
unsigned int j;
|
|
|
|
bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
|
|
ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
|
|
for (j = 0; j < bytes_to_read; j++)
|
|
rx_buf[i++] = fifo_byte[j];
|
|
}
|
|
mas->rx_rem_bytes -= rx_bytes;
|
|
}
|
|
|
|
static int setup_se_xfer(struct spi_transfer *xfer,
|
|
struct spi_geni_master *mas,
|
|
u16 mode, struct spi_master *spi)
|
|
{
|
|
u32 m_cmd = 0;
|
|
u32 len, fifo_size;
|
|
struct geni_se *se = &mas->se;
|
|
int ret;
|
|
|
|
/*
|
|
* Ensure that our interrupt handler isn't still running from some
|
|
* prior command before we start messing with the hardware behind
|
|
* its back. We don't need to _keep_ the lock here since we're only
|
|
* worried about racing with out interrupt handler. The SPI core
|
|
* already handles making sure that we're not trying to do two
|
|
* transfers at once or setting a chip select and doing a transfer
|
|
* concurrently.
|
|
*
|
|
* NOTE: we actually _can't_ hold the lock here because possibly we
|
|
* might call clk_set_rate() which needs to be able to sleep.
|
|
*/
|
|
spin_lock_irq(&mas->lock);
|
|
spin_unlock_irq(&mas->lock);
|
|
|
|
if (xfer->bits_per_word != mas->cur_bits_per_word) {
|
|
spi_setup_word_len(mas, mode, xfer->bits_per_word);
|
|
mas->cur_bits_per_word = xfer->bits_per_word;
|
|
}
|
|
|
|
/* Speed and bits per word can be overridden per transfer */
|
|
ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mas->tx_rem_bytes = 0;
|
|
mas->rx_rem_bytes = 0;
|
|
|
|
if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
|
|
len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
|
|
else
|
|
len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
|
|
len &= TRANS_LEN_MSK;
|
|
|
|
mas->cur_xfer = xfer;
|
|
if (xfer->tx_buf) {
|
|
m_cmd |= SPI_TX_ONLY;
|
|
mas->tx_rem_bytes = xfer->len;
|
|
writel(len, se->base + SE_SPI_TX_TRANS_LEN);
|
|
}
|
|
|
|
if (xfer->rx_buf) {
|
|
m_cmd |= SPI_RX_ONLY;
|
|
writel(len, se->base + SE_SPI_RX_TRANS_LEN);
|
|
mas->rx_rem_bytes = xfer->len;
|
|
}
|
|
|
|
/* Select transfer mode based on transfer length */
|
|
fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
|
|
mas->cur_xfer_mode = (len <= fifo_size) ? GENI_SE_FIFO : GENI_SE_DMA;
|
|
geni_se_select_mode(se, mas->cur_xfer_mode);
|
|
|
|
/*
|
|
* Lock around right before we start the transfer since our
|
|
* interrupt could come in at any time now.
|
|
*/
|
|
spin_lock_irq(&mas->lock);
|
|
geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
|
|
|
|
if (mas->cur_xfer_mode == GENI_SE_DMA) {
|
|
if (m_cmd & SPI_RX_ONLY) {
|
|
ret = geni_se_rx_dma_prep(se, xfer->rx_buf,
|
|
xfer->len, &mas->rx_se_dma);
|
|
if (ret) {
|
|
dev_err(mas->dev, "Failed to setup Rx dma %d\n", ret);
|
|
mas->rx_se_dma = 0;
|
|
goto unlock_and_return;
|
|
}
|
|
}
|
|
if (m_cmd & SPI_TX_ONLY) {
|
|
ret = geni_se_tx_dma_prep(se, (void *)xfer->tx_buf,
|
|
xfer->len, &mas->tx_se_dma);
|
|
if (ret) {
|
|
dev_err(mas->dev, "Failed to setup Tx dma %d\n", ret);
|
|
mas->tx_se_dma = 0;
|
|
if (m_cmd & SPI_RX_ONLY) {
|
|
/* Unmap rx buffer if duplex transfer */
|
|
geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
|
|
mas->rx_se_dma = 0;
|
|
}
|
|
goto unlock_and_return;
|
|
}
|
|
}
|
|
} else if (m_cmd & SPI_TX_ONLY) {
|
|
if (geni_spi_handle_tx(mas))
|
|
writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
|
|
}
|
|
|
|
unlock_and_return:
|
|
spin_unlock_irq(&mas->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_geni_transfer_one(struct spi_master *spi,
|
|
struct spi_device *slv,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
int ret;
|
|
|
|
if (spi_geni_is_abort_still_pending(mas))
|
|
return -EBUSY;
|
|
|
|
/* Terminate and return success for 0 byte length transfer */
|
|
if (!xfer->len)
|
|
return 0;
|
|
|
|
if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
|
|
ret = setup_se_xfer(xfer, mas, slv->mode, spi);
|
|
/* SPI framework expects +ve ret code to wait for transfer complete */
|
|
if (!ret)
|
|
ret = 1;
|
|
return ret;
|
|
}
|
|
return setup_gsi_xfer(xfer, mas, slv, spi);
|
|
}
|
|
|
|
static irqreturn_t geni_spi_isr(int irq, void *data)
|
|
{
|
|
struct spi_master *spi = data;
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
struct geni_se *se = &mas->se;
|
|
u32 m_irq;
|
|
|
|
m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
|
|
if (!m_irq)
|
|
return IRQ_NONE;
|
|
|
|
if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
|
|
M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
|
|
M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
|
|
dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
|
|
|
|
spin_lock(&mas->lock);
|
|
|
|
if (mas->cur_xfer_mode == GENI_SE_FIFO) {
|
|
if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
|
|
geni_spi_handle_rx(mas);
|
|
|
|
if (m_irq & M_TX_FIFO_WATERMARK_EN)
|
|
geni_spi_handle_tx(mas);
|
|
|
|
if (m_irq & M_CMD_DONE_EN) {
|
|
if (mas->cur_xfer) {
|
|
spi_finalize_current_transfer(spi);
|
|
mas->cur_xfer = NULL;
|
|
/*
|
|
* If this happens, then a CMD_DONE came before all the
|
|
* Tx buffer bytes were sent out. This is unusual, log
|
|
* this condition and disable the WM interrupt to
|
|
* prevent the system from stalling due an interrupt
|
|
* storm.
|
|
*
|
|
* If this happens when all Rx bytes haven't been
|
|
* received, log the condition. The only known time
|
|
* this can happen is if bits_per_word != 8 and some
|
|
* registers that expect xfer lengths in num spi_words
|
|
* weren't written correctly.
|
|
*/
|
|
if (mas->tx_rem_bytes) {
|
|
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
|
|
dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
|
|
mas->tx_rem_bytes, mas->cur_bits_per_word);
|
|
}
|
|
if (mas->rx_rem_bytes)
|
|
dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
|
|
mas->rx_rem_bytes, mas->cur_bits_per_word);
|
|
} else {
|
|
complete(&mas->cs_done);
|
|
}
|
|
}
|
|
} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
|
|
const struct spi_transfer *xfer = mas->cur_xfer;
|
|
u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
|
|
u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
|
|
|
|
if (dma_tx_status)
|
|
writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
|
|
if (dma_rx_status)
|
|
writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
|
|
if (dma_tx_status & TX_DMA_DONE)
|
|
mas->tx_rem_bytes = 0;
|
|
if (dma_rx_status & RX_DMA_DONE)
|
|
mas->rx_rem_bytes = 0;
|
|
if (dma_tx_status & TX_RESET_DONE)
|
|
complete(&mas->tx_reset_done);
|
|
if (dma_rx_status & RX_RESET_DONE)
|
|
complete(&mas->rx_reset_done);
|
|
if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
|
|
if (xfer->tx_buf && mas->tx_se_dma) {
|
|
geni_se_tx_dma_unprep(se, mas->tx_se_dma, xfer->len);
|
|
mas->tx_se_dma = 0;
|
|
}
|
|
if (xfer->rx_buf && mas->rx_se_dma) {
|
|
geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
|
|
mas->rx_se_dma = 0;
|
|
}
|
|
spi_finalize_current_transfer(spi);
|
|
mas->cur_xfer = NULL;
|
|
}
|
|
}
|
|
|
|
if (m_irq & M_CMD_CANCEL_EN)
|
|
complete(&mas->cancel_done);
|
|
if (m_irq & M_CMD_ABORT_EN)
|
|
complete(&mas->abort_done);
|
|
|
|
/*
|
|
* It's safe or a good idea to Ack all of our interrupts at the end
|
|
* of the function. Specifically:
|
|
* - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
|
|
* clearing Acks. Clearing at the end relies on nobody else having
|
|
* started a new transfer yet or else we could be clearing _their_
|
|
* done bit, but everyone grabs the spinlock before starting a new
|
|
* transfer.
|
|
* - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
|
|
* to be "latched level" interrupts so it's important to clear them
|
|
* _after_ you've handled the condition and always safe to do so
|
|
* since they'll re-assert if they're still happening.
|
|
*/
|
|
writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
|
|
|
|
spin_unlock(&mas->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int spi_geni_probe(struct platform_device *pdev)
|
|
{
|
|
int ret, irq;
|
|
struct spi_master *spi;
|
|
struct spi_geni_master *mas;
|
|
void __iomem *base;
|
|
struct clk *clk;
|
|
struct device *dev = &pdev->dev;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
|
|
if (ret)
|
|
return dev_err_probe(dev, ret, "could not set DMA mask\n");
|
|
|
|
base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
|
|
clk = devm_clk_get(dev, "se");
|
|
if (IS_ERR(clk))
|
|
return PTR_ERR(clk);
|
|
|
|
spi = devm_spi_alloc_master(dev, sizeof(*mas));
|
|
if (!spi)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, spi);
|
|
mas = spi_master_get_devdata(spi);
|
|
mas->irq = irq;
|
|
mas->dev = dev;
|
|
mas->se.dev = dev;
|
|
mas->se.wrapper = dev_get_drvdata(dev->parent);
|
|
mas->se.base = base;
|
|
mas->se.clk = clk;
|
|
|
|
ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
|
|
if (ret)
|
|
return ret;
|
|
/* OPP table is optional */
|
|
ret = devm_pm_opp_of_add_table(&pdev->dev);
|
|
if (ret && ret != -ENODEV) {
|
|
dev_err(&pdev->dev, "invalid OPP table in device tree\n");
|
|
return ret;
|
|
}
|
|
|
|
spi->bus_num = -1;
|
|
spi->dev.of_node = dev->of_node;
|
|
spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
|
|
spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
|
|
spi->num_chipselect = 4;
|
|
spi->max_speed_hz = 50000000;
|
|
spi->prepare_message = spi_geni_prepare_message;
|
|
spi->transfer_one = spi_geni_transfer_one;
|
|
spi->can_dma = geni_can_dma;
|
|
spi->dma_map_dev = dev->parent;
|
|
spi->auto_runtime_pm = true;
|
|
spi->handle_err = spi_geni_handle_err;
|
|
spi->use_gpio_descriptors = true;
|
|
|
|
init_completion(&mas->cs_done);
|
|
init_completion(&mas->cancel_done);
|
|
init_completion(&mas->abort_done);
|
|
init_completion(&mas->tx_reset_done);
|
|
init_completion(&mas->rx_reset_done);
|
|
spin_lock_init(&mas->lock);
|
|
pm_runtime_use_autosuspend(&pdev->dev);
|
|
pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
|
|
pm_runtime_enable(dev);
|
|
|
|
ret = geni_icc_get(&mas->se, NULL);
|
|
if (ret)
|
|
goto spi_geni_probe_runtime_disable;
|
|
/* Set the bus quota to a reasonable value for register access */
|
|
mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
|
|
mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
|
|
|
|
ret = geni_icc_set_bw(&mas->se);
|
|
if (ret)
|
|
goto spi_geni_probe_runtime_disable;
|
|
|
|
ret = spi_geni_init(mas);
|
|
if (ret)
|
|
goto spi_geni_probe_runtime_disable;
|
|
|
|
/*
|
|
* check the mode supported and set_cs for fifo mode only
|
|
* for dma (gsi) mode, the gsi will set cs based on params passed in
|
|
* TRE
|
|
*/
|
|
if (mas->cur_xfer_mode == GENI_SE_FIFO)
|
|
spi->set_cs = spi_geni_set_cs;
|
|
|
|
ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
|
|
if (ret)
|
|
goto spi_geni_release_dma;
|
|
|
|
ret = spi_register_master(spi);
|
|
if (ret)
|
|
goto spi_geni_probe_free_irq;
|
|
|
|
return 0;
|
|
spi_geni_probe_free_irq:
|
|
free_irq(mas->irq, spi);
|
|
spi_geni_release_dma:
|
|
spi_geni_release_dma_chan(mas);
|
|
spi_geni_probe_runtime_disable:
|
|
pm_runtime_disable(dev);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_geni_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_master *spi = platform_get_drvdata(pdev);
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
|
|
/* Unregister _before_ disabling pm_runtime() so we stop transfers */
|
|
spi_unregister_master(spi);
|
|
|
|
spi_geni_release_dma_chan(mas);
|
|
|
|
free_irq(mas->irq, spi);
|
|
pm_runtime_disable(&pdev->dev);
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
|
|
{
|
|
struct spi_master *spi = dev_get_drvdata(dev);
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
int ret;
|
|
|
|
/* Drop the performance state vote */
|
|
dev_pm_opp_set_rate(dev, 0);
|
|
|
|
ret = geni_se_resources_off(&mas->se);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return geni_icc_disable(&mas->se);
|
|
}
|
|
|
|
static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
|
|
{
|
|
struct spi_master *spi = dev_get_drvdata(dev);
|
|
struct spi_geni_master *mas = spi_master_get_devdata(spi);
|
|
int ret;
|
|
|
|
ret = geni_icc_enable(&mas->se);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = geni_se_resources_on(&mas->se);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
|
|
}
|
|
|
|
static int __maybe_unused spi_geni_suspend(struct device *dev)
|
|
{
|
|
struct spi_master *spi = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = spi_master_suspend(spi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = pm_runtime_force_suspend(dev);
|
|
if (ret)
|
|
spi_master_resume(spi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused spi_geni_resume(struct device *dev)
|
|
{
|
|
struct spi_master *spi = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = pm_runtime_force_resume(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_master_resume(spi);
|
|
if (ret)
|
|
pm_runtime_force_suspend(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct dev_pm_ops spi_geni_pm_ops = {
|
|
SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
|
|
spi_geni_runtime_resume, NULL)
|
|
SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
|
|
};
|
|
|
|
static const struct of_device_id spi_geni_dt_match[] = {
|
|
{ .compatible = "qcom,geni-spi" },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
|
|
|
|
static struct platform_driver spi_geni_driver = {
|
|
.probe = spi_geni_probe,
|
|
.remove = spi_geni_remove,
|
|
.driver = {
|
|
.name = "geni_spi",
|
|
.pm = &spi_geni_pm_ops,
|
|
.of_match_table = spi_geni_dt_match,
|
|
},
|
|
};
|
|
module_platform_driver(spi_geni_driver);
|
|
|
|
MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
|
|
MODULE_LICENSE("GPL v2");
|