Linus Torvalds 2865baf540 x86: support user address masking instead of non-speculative conditional
The Spectre-v1 mitigations made "access_ok()" much more expensive, since
it has to serialize execution with the test for a valid user address.

All the normal user copy routines avoid this by just masking the user
address with a data-dependent mask instead, but the fast
"unsafe_user_read()" kind of patterms that were supposed to be a fast
case got slowed down.

This introduces a notion of using

	src = masked_user_access_begin(src);

to do the user address sanity using a data-dependent mask instead of the
more traditional conditional

	if (user_read_access_begin(src, len)) {

model.

This model only works for dense accesses that start at 'src' and on
architectures that have a guard region that is guaranteed to fault in
between the user space and the kernel space area.

With this, the user access doesn't need to be manually checked, because
a bad address is guaranteed to fault (by some architecture masking
trick: on x86-64 this involves just turning an invalid user address into
all ones, since we don't map the top of address space).

This only converts a couple of examples for now.  Example x86-64 code
generation for loading two words from user space:

        stac
        mov    %rax,%rcx
        sar    $0x3f,%rcx
        or     %rax,%rcx
        mov    (%rcx),%r13
        mov    0x8(%rcx),%r14
        clac

where all the error handling and -EFAULT is now purely handled out of
line by the exception path.

Of course, if the micro-architecture does badly at 'clac' and 'stac',
the above is still pitifully slow.  But at least we did as well as we
could.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-08-19 11:31:18 -07:00
2024-07-13 13:00:25 -07:00
2024-07-05 16:21:54 -07:00
2024-07-11 17:11:50 +02:00
2024-06-21 08:03:55 -04:00
2022-09-28 09:02:20 +02:00
2024-07-05 12:33:00 -07:00
2022-10-10 12:00:45 -07:00
2024-07-14 15:43:32 -07:00
2024-03-18 03:36:32 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the reStructuredText markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
Linux kernel stable tree
Readme 6.1 GiB
Languages
C 97.5%
Assembly 1%
Shell 0.6%
Python 0.3%
Makefile 0.3%