linux-stable/fs/bcachefs/disk_accounting.c
Kent Overstreet 19773ec997 bcachefs: Disk accounting device validation fixes
- Fix failure to validate that accounting replicas entries point to
  valid devices: this wasn't a real bug since they'd be cleaned up by
  GC, but is still something we should know about

- Fix failure to validate that dev_data_type entries point to valid
  devices: this does fix a real bug, since bch2_accounting_read() would
  then try to copy the counters to that device and pop an inconsistent
  error when the device didn't exist

- Remove accounting entries that are zeroed or invalid: if we're not
  validating them we need to get rid of them: they might not exist in
  the superblock, so we need the to trigger the superblock mark path
  when they're readded.

  This fixes the replication.ktest rereplicate test, which was failing
  with "superblock not marked for replicas..."

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-10-09 16:42:53 -04:00

975 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bcachefs_ioctl.h"
#include "btree_cache.h"
#include "btree_journal_iter.h"
#include "btree_update.h"
#include "btree_write_buffer.h"
#include "buckets.h"
#include "compress.h"
#include "disk_accounting.h"
#include "error.h"
#include "journal_io.h"
#include "replicas.h"
/*
* Notes on disk accounting:
*
* We have two parallel sets of counters to be concerned with, and both must be
* kept in sync.
*
* - Persistent/on disk accounting, stored in the accounting btree and updated
* via btree write buffer updates that treat new accounting keys as deltas to
* apply to existing values. But reading from a write buffer btree is
* expensive, so we also have
*
* - In memory accounting, where accounting is stored as an array of percpu
* counters, indexed by an eytzinger array of disk acounting keys/bpos (which
* are the same thing, excepting byte swabbing on big endian).
*
* Cheap to read, but non persistent.
*
* Disk accounting updates are generated by transactional triggers; these run as
* keys enter and leave the btree, and can compare old and new versions of keys;
* the output of these triggers are deltas to the various counters.
*
* Disk accounting updates are done as btree write buffer updates, where the
* counters in the disk accounting key are deltas that will be applied to the
* counter in the btree when the key is flushed by the write buffer (or journal
* replay).
*
* To do a disk accounting update:
* - initialize a disk_accounting_pos, to specify which counter is being update
* - initialize counter deltas, as an array of 1-3 s64s
* - call bch2_disk_accounting_mod()
*
* This queues up the accounting update to be done at transaction commit time.
* Underneath, it's a normal btree write buffer update.
*
* The transaction commit path is responsible for propagating updates to the in
* memory counters, with bch2_accounting_mem_mod().
*
* The commit path also assigns every disk accounting update a unique version
* number, based on the journal sequence number and offset within that journal
* buffer; this is used by journal replay to determine which updates have been
* done.
*
* The transaction commit path also ensures that replicas entry accounting
* updates are properly marked in the superblock (so that we know whether we can
* mount without data being unavailable); it will update the superblock if
* bch2_accounting_mem_mod() tells it to.
*/
static const char * const disk_accounting_type_strs[] = {
#define x(t, n, ...) [n] = #t,
BCH_DISK_ACCOUNTING_TYPES()
#undef x
NULL
};
static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos,
s64 *d, unsigned nr)
{
struct bkey_i_accounting *acc = bkey_accounting_init(k);
acc->k.p = disk_accounting_pos_to_bpos(pos);
set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr);
memcpy_u64s_small(acc->v.d, d, nr);
}
int bch2_disk_accounting_mod(struct btree_trans *trans,
struct disk_accounting_pos *k,
s64 *d, unsigned nr, bool gc)
{
/* Normalize: */
switch (k->type) {
case BCH_DISK_ACCOUNTING_replicas:
bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp);
break;
}
BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS);
struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
accounting_key_init(&k_i.k, k, d, nr);
return likely(!gc)
? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k)
: bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true);
}
int bch2_mod_dev_cached_sectors(struct btree_trans *trans,
unsigned dev, s64 sectors,
bool gc)
{
struct disk_accounting_pos acc = {
.type = BCH_DISK_ACCOUNTING_replicas,
};
bch2_replicas_entry_cached(&acc.replicas, dev);
return bch2_disk_accounting_mod(trans, &acc, &sectors, 1, gc);
}
static inline bool is_zero(char *start, char *end)
{
BUG_ON(start > end);
for (; start < end; start++)
if (*start)
return false;
return true;
}
#define field_end(p, member) (((void *) (&p.member)) + sizeof(p.member))
int bch2_accounting_validate(struct bch_fs *c, struct bkey_s_c k,
enum bch_validate_flags flags)
{
struct disk_accounting_pos acc_k;
bpos_to_disk_accounting_pos(&acc_k, k.k->p);
void *end = &acc_k + 1;
int ret = 0;
bkey_fsck_err_on(bversion_zero(k.k->bversion),
c, accounting_key_version_0,
"accounting key with version=0");
switch (acc_k.type) {
case BCH_DISK_ACCOUNTING_nr_inodes:
end = field_end(acc_k, nr_inodes);
break;
case BCH_DISK_ACCOUNTING_persistent_reserved:
end = field_end(acc_k, persistent_reserved);
break;
case BCH_DISK_ACCOUNTING_replicas:
bkey_fsck_err_on(!acc_k.replicas.nr_devs,
c, accounting_key_replicas_nr_devs_0,
"accounting key replicas entry with nr_devs=0");
bkey_fsck_err_on(acc_k.replicas.nr_required > acc_k.replicas.nr_devs ||
(acc_k.replicas.nr_required > 1 &&
acc_k.replicas.nr_required == acc_k.replicas.nr_devs),
c, accounting_key_replicas_nr_required_bad,
"accounting key replicas entry with bad nr_required");
for (unsigned i = 0; i + 1 < acc_k.replicas.nr_devs; i++)
bkey_fsck_err_on(acc_k.replicas.devs[i] >= acc_k.replicas.devs[i + 1],
c, accounting_key_replicas_devs_unsorted,
"accounting key replicas entry with unsorted devs");
end = (void *) &acc_k.replicas + replicas_entry_bytes(&acc_k.replicas);
break;
case BCH_DISK_ACCOUNTING_dev_data_type:
end = field_end(acc_k, dev_data_type);
break;
case BCH_DISK_ACCOUNTING_compression:
end = field_end(acc_k, compression);
break;
case BCH_DISK_ACCOUNTING_snapshot:
end = field_end(acc_k, snapshot);
break;
case BCH_DISK_ACCOUNTING_btree:
end = field_end(acc_k, btree);
break;
case BCH_DISK_ACCOUNTING_rebalance_work:
end = field_end(acc_k, rebalance_work);
break;
}
bkey_fsck_err_on(!is_zero(end, (void *) (&acc_k + 1)),
c, accounting_key_junk_at_end,
"junk at end of accounting key");
fsck_err:
return ret;
}
void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k)
{
if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) {
prt_printf(out, "unknown type %u", k->type);
return;
}
prt_str(out, disk_accounting_type_strs[k->type]);
prt_str(out, " ");
switch (k->type) {
case BCH_DISK_ACCOUNTING_nr_inodes:
break;
case BCH_DISK_ACCOUNTING_persistent_reserved:
prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas);
break;
case BCH_DISK_ACCOUNTING_replicas:
bch2_replicas_entry_to_text(out, &k->replicas);
break;
case BCH_DISK_ACCOUNTING_dev_data_type:
prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev);
bch2_prt_data_type(out, k->dev_data_type.data_type);
break;
case BCH_DISK_ACCOUNTING_compression:
bch2_prt_compression_type(out, k->compression.type);
break;
case BCH_DISK_ACCOUNTING_snapshot:
prt_printf(out, "id=%u", k->snapshot.id);
break;
case BCH_DISK_ACCOUNTING_btree:
prt_printf(out, "btree=%s", bch2_btree_id_str(k->btree.id));
break;
}
}
void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k);
struct disk_accounting_pos acc_k;
bpos_to_disk_accounting_pos(&acc_k, k.k->p);
bch2_accounting_key_to_text(out, &acc_k);
for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++)
prt_printf(out, " %lli", acc.v->d[i]);
}
void bch2_accounting_swab(struct bkey_s k)
{
for (u64 *p = (u64 *) k.v;
p < (u64 *) bkey_val_end(k);
p++)
*p = swab64(*p);
}
static inline void __accounting_to_replicas(struct bch_replicas_entry_v1 *r,
struct disk_accounting_pos acc)
{
unsafe_memcpy(r, &acc.replicas,
replicas_entry_bytes(&acc.replicas),
"variable length struct");
}
static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p)
{
struct disk_accounting_pos acc_k;
bpos_to_disk_accounting_pos(&acc_k, p);
switch (acc_k.type) {
case BCH_DISK_ACCOUNTING_replicas:
__accounting_to_replicas(r, acc_k);
return true;
default:
return false;
}
}
static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p)
{
struct bch_replicas_padded r;
return accounting_to_replicas(&r.e, p)
? bch2_mark_replicas(c, &r.e)
: 0;
}
/*
* Ensure accounting keys being updated are present in the superblock, when
* applicable (i.e. replicas updates)
*/
int bch2_accounting_update_sb(struct btree_trans *trans)
{
for (struct jset_entry *i = trans->journal_entries;
i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s);
i = vstruct_next(i))
if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) {
int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p);
if (ret)
return ret;
}
return 0;
}
static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a)
{
struct bch_accounting_mem *acc = &c->accounting;
/* raced with another insert, already present: */
if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
accounting_pos_cmp, &a.k->p) < acc->k.nr)
return 0;
struct accounting_mem_entry n = {
.pos = a.k->p,
.bversion = a.k->bversion,
.nr_counters = bch2_accounting_counters(a.k),
.v[0] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64),
sizeof(u64), GFP_KERNEL),
};
if (!n.v[0])
goto err;
if (acc->gc_running) {
n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64),
sizeof(u64), GFP_KERNEL);
if (!n.v[1])
goto err;
}
if (darray_push(&acc->k, n))
goto err;
eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
accounting_pos_cmp, NULL);
return 0;
err:
free_percpu(n.v[1]);
free_percpu(n.v[0]);
return -BCH_ERR_ENOMEM_disk_accounting;
}
int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a,
enum bch_accounting_mode mode)
{
struct bch_replicas_padded r;
if (mode != BCH_ACCOUNTING_read &&
accounting_to_replicas(&r.e, a.k->p) &&
!bch2_replicas_marked_locked(c, &r.e))
return -BCH_ERR_btree_insert_need_mark_replicas;
percpu_up_read(&c->mark_lock);
percpu_down_write(&c->mark_lock);
int ret = __bch2_accounting_mem_insert(c, a);
percpu_up_write(&c->mark_lock);
percpu_down_read(&c->mark_lock);
return ret;
}
static bool accounting_mem_entry_is_zero(struct accounting_mem_entry *e)
{
for (unsigned i = 0; i < e->nr_counters; i++)
if (percpu_u64_get(e->v[0] + i) ||
(e->v[1] &&
percpu_u64_get(e->v[1] + i)))
return false;
return true;
}
void bch2_accounting_mem_gc(struct bch_fs *c)
{
struct bch_accounting_mem *acc = &c->accounting;
percpu_down_write(&c->mark_lock);
struct accounting_mem_entry *dst = acc->k.data;
darray_for_each(acc->k, src) {
if (accounting_mem_entry_is_zero(src)) {
free_percpu(src->v[0]);
free_percpu(src->v[1]);
} else {
*dst++ = *src;
}
}
acc->k.nr = dst - acc->k.data;
eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
accounting_pos_cmp, NULL);
percpu_up_write(&c->mark_lock);
}
/*
* Read out accounting keys for replicas entries, as an array of
* bch_replicas_usage entries.
*
* Note: this may be deprecated/removed at smoe point in the future and replaced
* with something more general, it exists to support the ioctl used by the
* 'bcachefs fs usage' command.
*/
int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage)
{
struct bch_accounting_mem *acc = &c->accounting;
int ret = 0;
darray_init(usage);
percpu_down_read(&c->mark_lock);
darray_for_each(acc->k, i) {
struct {
struct bch_replicas_usage r;
u8 pad[BCH_BKEY_PTRS_MAX];
} u;
if (!accounting_to_replicas(&u.r.r, i->pos))
continue;
u64 sectors;
bch2_accounting_mem_read_counters(acc, i - acc->k.data, &sectors, 1, false);
u.r.sectors = sectors;
ret = darray_make_room(usage, replicas_usage_bytes(&u.r));
if (ret)
break;
memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r));
usage->nr += replicas_usage_bytes(&u.r);
}
percpu_up_read(&c->mark_lock);
if (ret)
darray_exit(usage);
return ret;
}
int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask)
{
struct bch_accounting_mem *acc = &c->accounting;
int ret = 0;
darray_init(out_buf);
percpu_down_read(&c->mark_lock);
darray_for_each(acc->k, i) {
struct disk_accounting_pos a_p;
bpos_to_disk_accounting_pos(&a_p, i->pos);
if (!(accounting_types_mask & BIT(a_p.type)))
continue;
ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) +
sizeof(u64) * i->nr_counters);
if (ret)
break;
struct bkey_i_accounting *a_out =
bkey_accounting_init((void *) &darray_top(*out_buf));
set_bkey_val_u64s(&a_out->k, i->nr_counters);
a_out->k.p = i->pos;
bch2_accounting_mem_read_counters(acc, i - acc->k.data,
a_out->v.d, i->nr_counters, false);
if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out)))
out_buf->nr += bkey_bytes(&a_out->k);
}
percpu_up_read(&c->mark_lock);
if (ret)
darray_exit(out_buf);
return ret;
}
void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c)
{
struct bch_accounting_mem *acc = &c->accounting;
percpu_down_read(&c->mark_lock);
out->atomic++;
eytzinger0_for_each(i, acc->k.nr) {
struct disk_accounting_pos acc_k;
bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos);
bch2_accounting_key_to_text(out, &acc_k);
u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false);
prt_str(out, ":");
for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++)
prt_printf(out, " %llu", v[j]);
prt_newline(out);
}
--out->atomic;
percpu_up_read(&c->mark_lock);
}
static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc)
{
darray_for_each(acc->k, e) {
free_percpu(e->v[gc]);
e->v[gc] = NULL;
}
}
int bch2_gc_accounting_start(struct bch_fs *c)
{
struct bch_accounting_mem *acc = &c->accounting;
int ret = 0;
percpu_down_write(&c->mark_lock);
darray_for_each(acc->k, e) {
e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64),
sizeof(u64), GFP_KERNEL);
if (!e->v[1]) {
bch2_accounting_free_counters(acc, true);
ret = -BCH_ERR_ENOMEM_disk_accounting;
break;
}
}
acc->gc_running = !ret;
percpu_up_write(&c->mark_lock);
return ret;
}
int bch2_gc_accounting_done(struct bch_fs *c)
{
struct bch_accounting_mem *acc = &c->accounting;
struct btree_trans *trans = bch2_trans_get(c);
struct printbuf buf = PRINTBUF;
struct bpos pos = POS_MIN;
int ret = 0;
percpu_down_write(&c->mark_lock);
while (1) {
unsigned idx = eytzinger0_find_ge(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
accounting_pos_cmp, &pos);
if (idx >= acc->k.nr)
break;
struct accounting_mem_entry *e = acc->k.data + idx;
pos = bpos_successor(e->pos);
struct disk_accounting_pos acc_k;
bpos_to_disk_accounting_pos(&acc_k, e->pos);
if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR)
continue;
u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS];
u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS];
unsigned nr = e->nr_counters;
bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false);
bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true);
if (memcmp(dst_v, src_v, nr * sizeof(u64))) {
printbuf_reset(&buf);
prt_str(&buf, "accounting mismatch for ");
bch2_accounting_key_to_text(&buf, &acc_k);
prt_str(&buf, ": got");
for (unsigned j = 0; j < nr; j++)
prt_printf(&buf, " %llu", dst_v[j]);
prt_str(&buf, " should be");
for (unsigned j = 0; j < nr; j++)
prt_printf(&buf, " %llu", src_v[j]);
for (unsigned j = 0; j < nr; j++)
src_v[j] -= dst_v[j];
if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) {
percpu_up_write(&c->mark_lock);
ret = commit_do(trans, NULL, NULL, 0,
bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false));
percpu_down_write(&c->mark_lock);
if (ret)
goto err;
if (!test_bit(BCH_FS_may_go_rw, &c->flags)) {
memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta));
struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i;
accounting_key_init(&k_i.k, &acc_k, src_v, nr);
bch2_accounting_mem_mod_locked(trans,
bkey_i_to_s_c_accounting(&k_i.k),
BCH_ACCOUNTING_normal);
preempt_disable();
struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage);
struct bch_fs_usage_base *src = &trans->fs_usage_delta;
acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64));
preempt_enable();
}
}
}
}
err:
fsck_err:
percpu_up_write(&c->mark_lock);
printbuf_exit(&buf);
bch2_trans_put(trans);
bch_err_fn(c, ret);
return ret;
}
static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k)
{
struct bch_fs *c = trans->c;
if (k.k->type != KEY_TYPE_accounting)
return 0;
percpu_down_read(&c->mark_lock);
int ret = bch2_accounting_mem_mod_locked(trans, bkey_s_c_to_accounting(k),
BCH_ACCOUNTING_read);
percpu_up_read(&c->mark_lock);
return ret;
}
static int bch2_disk_accounting_validate_late(struct btree_trans *trans,
struct disk_accounting_pos acc,
u64 *v, unsigned nr)
{
struct bch_fs *c = trans->c;
struct printbuf buf = PRINTBUF;
int ret = 0, invalid_dev = -1;
switch (acc.type) {
case BCH_DISK_ACCOUNTING_replicas: {
struct bch_replicas_padded r;
__accounting_to_replicas(&r.e, acc);
for (unsigned i = 0; i < r.e.nr_devs; i++)
if (r.e.devs[i] != BCH_SB_MEMBER_INVALID &&
!bch2_dev_exists(c, r.e.devs[i])) {
invalid_dev = r.e.devs[i];
goto invalid_device;
}
/*
* All replicas entry checks except for invalid device are done
* in bch2_accounting_validate
*/
BUG_ON(bch2_replicas_entry_validate(&r.e, c, &buf));
if (fsck_err_on(!bch2_replicas_marked_locked(c, &r.e),
trans, accounting_replicas_not_marked,
"accounting not marked in superblock replicas\n %s",
(printbuf_reset(&buf),
bch2_accounting_key_to_text(&buf, &acc),
buf.buf))) {
/*
* We're not RW yet and still single threaded, dropping
* and retaking lock is ok:
*/
percpu_up_write(&c->mark_lock);
ret = bch2_mark_replicas(c, &r.e);
if (ret)
goto fsck_err;
percpu_down_write(&c->mark_lock);
}
break;
}
case BCH_DISK_ACCOUNTING_dev_data_type:
if (!bch2_dev_exists(c, acc.dev_data_type.dev)) {
invalid_dev = acc.dev_data_type.dev;
goto invalid_device;
}
break;
}
fsck_err:
printbuf_exit(&buf);
return ret;
invalid_device:
if (fsck_err(trans, accounting_to_invalid_device,
"accounting entry points to invalid device %i\n %s",
invalid_dev,
(printbuf_reset(&buf),
bch2_accounting_key_to_text(&buf, &acc),
buf.buf))) {
for (unsigned i = 0; i < nr; i++)
v[i] = -v[i];
ret = commit_do(trans, NULL, NULL, 0,
bch2_disk_accounting_mod(trans, &acc, v, nr, false)) ?:
-BCH_ERR_remove_disk_accounting_entry;
} else {
ret = -BCH_ERR_remove_disk_accounting_entry;
}
goto fsck_err;
}
/*
* At startup time, initialize the in memory accounting from the btree (and
* journal)
*/
int bch2_accounting_read(struct bch_fs *c)
{
struct bch_accounting_mem *acc = &c->accounting;
struct btree_trans *trans = bch2_trans_get(c);
struct printbuf buf = PRINTBUF;
int ret = for_each_btree_key(trans, iter,
BTREE_ID_accounting, POS_MIN,
BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({
struct bkey u;
struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u);
accounting_read_key(trans, k);
}));
if (ret)
goto err;
struct journal_keys *keys = &c->journal_keys;
struct journal_key *dst = keys->data;
move_gap(keys, keys->nr);
darray_for_each(*keys, i) {
if (i->k->k.type == KEY_TYPE_accounting) {
struct bkey_s_c k = bkey_i_to_s_c(i->k);
unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr,
sizeof(acc->k.data[0]),
accounting_pos_cmp, &k.k->p);
bool applied = idx < acc->k.nr &&
bversion_cmp(acc->k.data[idx].bversion, k.k->bversion) >= 0;
if (applied)
continue;
if (i + 1 < &darray_top(*keys) &&
i[1].k->k.type == KEY_TYPE_accounting &&
!journal_key_cmp(i, i + 1)) {
WARN_ON(bversion_cmp(i[0].k->k.bversion, i[1].k->k.bversion) >= 0);
i[1].journal_seq = i[0].journal_seq;
bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k),
bkey_s_c_to_accounting(k));
continue;
}
ret = accounting_read_key(trans, k);
if (ret)
goto err;
}
*dst++ = *i;
}
keys->gap = keys->nr = dst - keys->data;
percpu_down_write(&c->mark_lock);
unsigned i = 0;
while (i < acc->k.nr) {
unsigned idx = inorder_to_eytzinger0(i, acc->k.nr);
struct disk_accounting_pos acc_k;
bpos_to_disk_accounting_pos(&acc_k, acc->k.data[idx].pos);
u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
bch2_accounting_mem_read_counters(acc, idx, v, ARRAY_SIZE(v), false);
/*
* If the entry counters are zeroed, it should be treated as
* nonexistent - it might point to an invalid device.
*
* Remove it, so that if it's re-added it gets re-marked in the
* superblock:
*/
ret = bch2_is_zero(v, sizeof(v[0]) * acc->k.data[idx].nr_counters)
? -BCH_ERR_remove_disk_accounting_entry
: bch2_disk_accounting_validate_late(trans, acc_k,
v, acc->k.data[idx].nr_counters);
if (ret == -BCH_ERR_remove_disk_accounting_entry) {
free_percpu(acc->k.data[idx].v[0]);
free_percpu(acc->k.data[idx].v[1]);
darray_remove_item(&acc->k, &acc->k.data[idx]);
eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
accounting_pos_cmp, NULL);
ret = 0;
continue;
}
if (ret)
goto fsck_err;
i++;
}
preempt_disable();
struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage);
for (unsigned i = 0; i < acc->k.nr; i++) {
struct disk_accounting_pos k;
bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos);
u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false);
switch (k.type) {
case BCH_DISK_ACCOUNTING_persistent_reserved:
usage->reserved += v[0] * k.persistent_reserved.nr_replicas;
break;
case BCH_DISK_ACCOUNTING_replicas:
fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]);
break;
case BCH_DISK_ACCOUNTING_dev_data_type:
rcu_read_lock();
struct bch_dev *ca = bch2_dev_rcu(c, k.dev_data_type.dev);
if (ca) {
struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type];
percpu_u64_set(&d->buckets, v[0]);
percpu_u64_set(&d->sectors, v[1]);
percpu_u64_set(&d->fragmented, v[2]);
if (k.dev_data_type.data_type == BCH_DATA_sb ||
k.dev_data_type.data_type == BCH_DATA_journal)
usage->hidden += v[0] * ca->mi.bucket_size;
}
rcu_read_unlock();
break;
}
}
preempt_enable();
fsck_err:
percpu_up_write(&c->mark_lock);
err:
printbuf_exit(&buf);
bch2_trans_put(trans);
bch_err_fn(c, ret);
return ret;
}
int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev)
{
return bch2_trans_run(c,
bch2_btree_write_buffer_flush_sync(trans) ?:
for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN,
BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({
struct disk_accounting_pos acc;
bpos_to_disk_accounting_pos(&acc, k.k->p);
acc.type == BCH_DISK_ACCOUNTING_dev_data_type &&
acc.dev_data_type.dev == dev
? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0)
: 0;
})) ?:
bch2_btree_write_buffer_flush_sync(trans));
}
int bch2_dev_usage_init(struct bch_dev *ca, bool gc)
{
struct bch_fs *c = ca->fs;
struct disk_accounting_pos acc = {
.type = BCH_DISK_ACCOUNTING_dev_data_type,
.dev_data_type.dev = ca->dev_idx,
.dev_data_type.data_type = BCH_DATA_free,
};
u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 };
int ret = bch2_trans_do(c, NULL, NULL, 0,
bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc));
bch_err_fn(c, ret);
return ret;
}
void bch2_verify_accounting_clean(struct bch_fs *c)
{
bool mismatch = false;
struct bch_fs_usage_base base = {}, base_inmem = {};
bch2_trans_run(c,
for_each_btree_key(trans, iter,
BTREE_ID_accounting, POS_MIN,
BTREE_ITER_all_snapshots, k, ({
u64 v[BCH_ACCOUNTING_MAX_COUNTERS];
struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k);
unsigned nr = bch2_accounting_counters(k.k);
struct disk_accounting_pos acc_k;
bpos_to_disk_accounting_pos(&acc_k, k.k->p);
if (acc_k.type >= BCH_DISK_ACCOUNTING_TYPE_NR)
continue;
if (acc_k.type == BCH_DISK_ACCOUNTING_inum)
continue;
bch2_accounting_mem_read(c, k.k->p, v, nr);
if (memcmp(a.v->d, v, nr * sizeof(u64))) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
prt_str(&buf, " !=");
for (unsigned j = 0; j < nr; j++)
prt_printf(&buf, " %llu", v[j]);
pr_err("%s", buf.buf);
printbuf_exit(&buf);
mismatch = true;
}
switch (acc_k.type) {
case BCH_DISK_ACCOUNTING_persistent_reserved:
base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0];
break;
case BCH_DISK_ACCOUNTING_replicas:
fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]);
break;
case BCH_DISK_ACCOUNTING_dev_data_type: {
rcu_read_lock();
struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev);
if (!ca) {
rcu_read_unlock();
continue;
}
v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets);
v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors);
v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented);
rcu_read_unlock();
if (memcmp(a.v->d, v, 3 * sizeof(u64))) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
prt_str(&buf, " in mem");
for (unsigned j = 0; j < nr; j++)
prt_printf(&buf, " %llu", v[j]);
pr_err("dev accounting mismatch: %s", buf.buf);
printbuf_exit(&buf);
mismatch = true;
}
}
}
0;
})));
acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64));
#define check(x) \
if (base.x != base_inmem.x) { \
pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \
mismatch = true; \
}
//check(hidden);
check(btree);
check(data);
check(cached);
check(reserved);
check(nr_inodes);
WARN_ON(mismatch);
}
void bch2_accounting_gc_free(struct bch_fs *c)
{
lockdep_assert_held(&c->mark_lock);
struct bch_accounting_mem *acc = &c->accounting;
bch2_accounting_free_counters(acc, true);
acc->gc_running = false;
}
void bch2_fs_accounting_exit(struct bch_fs *c)
{
struct bch_accounting_mem *acc = &c->accounting;
bch2_accounting_free_counters(acc, false);
darray_exit(&acc->k);
}