Scott Cheloha 4fb6eabf10 drivers/base/memory.c: cache memory blocks in xarray to accelerate lookup
Searching for a particular memory block by id is an O(n) operation because
each memory block's underlying device is kept in an unsorted linked list
on the subsystem bus.

We can cut the lookup cost to O(log n) if we cache each memory block
in an xarray.  This time complexity improvement is significant on
systems with many memory blocks.  For example:

1. A 128GB POWER9 VM with 256MB memblocks has 512 blocks.  With this
   change  memory_dev_init() completes ~12ms faster and walk_memory_blocks()
   completes ~12ms faster.

Before:
[    0.005042] memory_dev_init: adding memory blocks
[    0.021591] memory_dev_init: added memory blocks
[    0.022699] walk_memory_blocks: walking memory blocks
[    0.038730] walk_memory_blocks: walked memory blocks 0-511

After:
[    0.005057] memory_dev_init: adding memory blocks
[    0.009415] memory_dev_init: added memory blocks
[    0.010519] walk_memory_blocks: walking memory blocks
[    0.014135] walk_memory_blocks: walked memory blocks 0-511

2. A 256GB POWER9 LPAR with 256MB memblocks has 1024 blocks.  With
   this change memory_dev_init() completes ~88ms faster and
   walk_memory_blocks() completes ~87ms faster.

Before:
[    0.252246] memory_dev_init: adding memory blocks
[    0.395469] memory_dev_init: added memory blocks
[    0.409413] walk_memory_blocks: walking memory blocks
[    0.433028] walk_memory_blocks: walked memory blocks 0-511
[    0.433094] walk_memory_blocks: walking memory blocks
[    0.500244] walk_memory_blocks: walked memory blocks 131072-131583

After:
[    0.245063] memory_dev_init: adding memory blocks
[    0.299539] memory_dev_init: added memory blocks
[    0.313609] walk_memory_blocks: walking memory blocks
[    0.315287] walk_memory_blocks: walked memory blocks 0-511
[    0.315349] walk_memory_blocks: walking memory blocks
[    0.316988] walk_memory_blocks: walked memory blocks 131072-131583

3. A 32TB POWER9 LPAR with 256MB memblocks has 131072 blocks.  With
   this change we complete memory_dev_init() ~37 minutes faster and
   walk_memory_blocks() at least ~30 minutes faster.  The exact timing
   for walk_memory_blocks() is  missing, though I observed that the
   soft lockups in walk_memory_blocks() disappeared with the change,
   suggesting that lower bound.

Before:
[   13.703907] memory_dev_init: adding blocks
[ 2287.406099] memory_dev_init: added all blocks
[ 2347.494986] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 2527.625378] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 2707.761977] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 2887.899975] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3068.028318] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3248.158764] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3428.287296] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3608.425357] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3788.554572] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3968.695071] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 4148.823970] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160

After:
[   13.696898] memory_dev_init: adding blocks
[   15.660035] memory_dev_init: added all blocks
(the walk_memory_blocks traces disappear)

There should be no significant negative impact for machines with few
memory blocks.  A sparse xarray has a small footprint and an O(log n)
lookup is negligibly slower than an O(n) lookup for only the smallest
number of memory blocks.

1. A 16GB x86 machine with 128MB memblocks has 132 blocks.  With this
   change memory_dev_init() completes ~300us faster and walk_memory_blocks()
   completes no faster or slower.  The improvement is pretty close to noise.

Before:
[    0.224752] memory_dev_init: adding memory blocks
[    0.227116] memory_dev_init: added memory blocks
[    0.227183] walk_memory_blocks: walking memory blocks
[    0.227183] walk_memory_blocks: walked memory blocks 0-131

After:
[    0.224911] memory_dev_init: adding memory blocks
[    0.226935] memory_dev_init: added memory blocks
[    0.227089] walk_memory_blocks: walking memory blocks
[    0.227089] walk_memory_blocks: walked memory blocks 0-131

[david@redhat.com: document the locking]
  Link: http://lkml.kernel.org/r/bc21eec6-7251-4c91-2f57-9a0671f8d414@redhat.com
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Nathan Lynch <nathanl@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rick Lindsley <ricklind@linux.vnet.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200121231028.13699-1-cheloha@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:49 -07:00

834 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Memory subsystem support
*
* Written by Matt Tolentino <matthew.e.tolentino@intel.com>
* Dave Hansen <haveblue@us.ibm.com>
*
* This file provides the necessary infrastructure to represent
* a SPARSEMEM-memory-model system's physical memory in /sysfs.
* All arch-independent code that assumes MEMORY_HOTPLUG requires
* SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
#include <linux/capability.h>
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/slab.h>
#include <linux/xarray.h>
#include <linux/atomic.h>
#include <linux/uaccess.h>
#define MEMORY_CLASS_NAME "memory"
static const char *const online_type_to_str[] = {
[MMOP_OFFLINE] = "offline",
[MMOP_ONLINE] = "online",
[MMOP_ONLINE_KERNEL] = "online_kernel",
[MMOP_ONLINE_MOVABLE] = "online_movable",
};
int memhp_online_type_from_str(const char *str)
{
int i;
for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
if (sysfs_streq(str, online_type_to_str[i]))
return i;
}
return -EINVAL;
}
#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
static int sections_per_block;
static inline unsigned long base_memory_block_id(unsigned long section_nr)
{
return section_nr / sections_per_block;
}
static inline unsigned long pfn_to_block_id(unsigned long pfn)
{
return base_memory_block_id(pfn_to_section_nr(pfn));
}
static inline unsigned long phys_to_block_id(unsigned long phys)
{
return pfn_to_block_id(PFN_DOWN(phys));
}
static int memory_subsys_online(struct device *dev);
static int memory_subsys_offline(struct device *dev);
static struct bus_type memory_subsys = {
.name = MEMORY_CLASS_NAME,
.dev_name = MEMORY_CLASS_NAME,
.online = memory_subsys_online,
.offline = memory_subsys_offline,
};
/*
* Memory blocks are cached in a local radix tree to avoid
* a costly linear search for the corresponding device on
* the subsystem bus.
*/
static DEFINE_XARRAY(memory_blocks);
static BLOCKING_NOTIFIER_HEAD(memory_chain);
int register_memory_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&memory_chain, nb);
}
EXPORT_SYMBOL(register_memory_notifier);
void unregister_memory_notifier(struct notifier_block *nb)
{
blocking_notifier_chain_unregister(&memory_chain, nb);
}
EXPORT_SYMBOL(unregister_memory_notifier);
static void memory_block_release(struct device *dev)
{
struct memory_block *mem = to_memory_block(dev);
kfree(mem);
}
unsigned long __weak memory_block_size_bytes(void)
{
return MIN_MEMORY_BLOCK_SIZE;
}
EXPORT_SYMBOL_GPL(memory_block_size_bytes);
/*
* Show the first physical section index (number) of this memory block.
*/
static ssize_t phys_index_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct memory_block *mem = to_memory_block(dev);
unsigned long phys_index;
phys_index = mem->start_section_nr / sections_per_block;
return sprintf(buf, "%08lx\n", phys_index);
}
/*
* Legacy interface that we cannot remove. Always indicate "removable"
* with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
*/
static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
}
/*
* online, offline, going offline, etc.
*/
static ssize_t state_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct memory_block *mem = to_memory_block(dev);
ssize_t len = 0;
/*
* We can probably put these states in a nice little array
* so that they're not open-coded
*/
switch (mem->state) {
case MEM_ONLINE:
len = sprintf(buf, "online\n");
break;
case MEM_OFFLINE:
len = sprintf(buf, "offline\n");
break;
case MEM_GOING_OFFLINE:
len = sprintf(buf, "going-offline\n");
break;
default:
len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
mem->state);
WARN_ON(1);
break;
}
return len;
}
int memory_notify(unsigned long val, void *v)
{
return blocking_notifier_call_chain(&memory_chain, val, v);
}
/*
* MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
* OK to have direct references to sparsemem variables in here.
*/
static int
memory_block_action(unsigned long start_section_nr, unsigned long action,
int online_type, int nid)
{
unsigned long start_pfn;
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
int ret;
start_pfn = section_nr_to_pfn(start_section_nr);
switch (action) {
case MEM_ONLINE:
ret = online_pages(start_pfn, nr_pages, online_type, nid);
break;
case MEM_OFFLINE:
ret = offline_pages(start_pfn, nr_pages);
break;
default:
WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
"%ld\n", __func__, start_section_nr, action, action);
ret = -EINVAL;
}
return ret;
}
static int memory_block_change_state(struct memory_block *mem,
unsigned long to_state, unsigned long from_state_req)
{
int ret = 0;
if (mem->state != from_state_req)
return -EINVAL;
if (to_state == MEM_OFFLINE)
mem->state = MEM_GOING_OFFLINE;
ret = memory_block_action(mem->start_section_nr, to_state,
mem->online_type, mem->nid);
mem->state = ret ? from_state_req : to_state;
return ret;
}
/* The device lock serializes operations on memory_subsys_[online|offline] */
static int memory_subsys_online(struct device *dev)
{
struct memory_block *mem = to_memory_block(dev);
int ret;
if (mem->state == MEM_ONLINE)
return 0;
/*
* When called via device_online() without configuring the online_type,
* we want to default to MMOP_ONLINE.
*/
if (mem->online_type == MMOP_OFFLINE)
mem->online_type = MMOP_ONLINE;
ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
mem->online_type = MMOP_OFFLINE;
return ret;
}
static int memory_subsys_offline(struct device *dev)
{
struct memory_block *mem = to_memory_block(dev);
if (mem->state == MEM_OFFLINE)
return 0;
return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
}
static ssize_t state_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
const int online_type = memhp_online_type_from_str(buf);
struct memory_block *mem = to_memory_block(dev);
int ret;
if (online_type < 0)
return -EINVAL;
ret = lock_device_hotplug_sysfs();
if (ret)
return ret;
switch (online_type) {
case MMOP_ONLINE_KERNEL:
case MMOP_ONLINE_MOVABLE:
case MMOP_ONLINE:
/* mem->online_type is protected by device_hotplug_lock */
mem->online_type = online_type;
ret = device_online(&mem->dev);
break;
case MMOP_OFFLINE:
ret = device_offline(&mem->dev);
break;
default:
ret = -EINVAL; /* should never happen */
}
unlock_device_hotplug();
if (ret < 0)
return ret;
if (ret)
return -EINVAL;
return count;
}
/*
* phys_device is a bad name for this. What I really want
* is a way to differentiate between memory ranges that
* are part of physical devices that constitute
* a complete removable unit or fru.
* i.e. do these ranges belong to the same physical device,
* s.t. if I offline all of these sections I can then
* remove the physical device?
*/
static ssize_t phys_device_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct memory_block *mem = to_memory_block(dev);
return sprintf(buf, "%d\n", mem->phys_device);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static void print_allowed_zone(char *buf, int nid, unsigned long start_pfn,
unsigned long nr_pages, int online_type,
struct zone *default_zone)
{
struct zone *zone;
zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
if (zone != default_zone) {
strcat(buf, " ");
strcat(buf, zone->name);
}
}
static ssize_t valid_zones_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct memory_block *mem = to_memory_block(dev);
unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
struct zone *default_zone;
int nid;
/*
* Check the existing zone. Make sure that we do that only on the
* online nodes otherwise the page_zone is not reliable
*/
if (mem->state == MEM_ONLINE) {
/*
* The block contains more than one zone can not be offlined.
* This can happen e.g. for ZONE_DMA and ZONE_DMA32
*/
default_zone = test_pages_in_a_zone(start_pfn,
start_pfn + nr_pages);
if (!default_zone)
return sprintf(buf, "none\n");
strcat(buf, default_zone->name);
goto out;
}
nid = mem->nid;
default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, start_pfn,
nr_pages);
strcat(buf, default_zone->name);
print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_KERNEL,
default_zone);
print_allowed_zone(buf, nid, start_pfn, nr_pages, MMOP_ONLINE_MOVABLE,
default_zone);
out:
strcat(buf, "\n");
return strlen(buf);
}
static DEVICE_ATTR_RO(valid_zones);
#endif
static DEVICE_ATTR_RO(phys_index);
static DEVICE_ATTR_RW(state);
static DEVICE_ATTR_RO(phys_device);
static DEVICE_ATTR_RO(removable);
/*
* Show the memory block size (shared by all memory blocks).
*/
static ssize_t block_size_bytes_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%lx\n", memory_block_size_bytes());
}
static DEVICE_ATTR_RO(block_size_bytes);
/*
* Memory auto online policy.
*/
static ssize_t auto_online_blocks_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n",
online_type_to_str[memhp_default_online_type]);
}
static ssize_t auto_online_blocks_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
const int online_type = memhp_online_type_from_str(buf);
if (online_type < 0)
return -EINVAL;
memhp_default_online_type = online_type;
return count;
}
static DEVICE_ATTR_RW(auto_online_blocks);
/*
* Some architectures will have custom drivers to do this, and
* will not need to do it from userspace. The fake hot-add code
* as well as ppc64 will do all of their discovery in userspace
* and will require this interface.
*/
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
u64 phys_addr;
int nid, ret;
unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
ret = kstrtoull(buf, 0, &phys_addr);
if (ret)
return ret;
if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
return -EINVAL;
ret = lock_device_hotplug_sysfs();
if (ret)
return ret;
nid = memory_add_physaddr_to_nid(phys_addr);
ret = __add_memory(nid, phys_addr,
MIN_MEMORY_BLOCK_SIZE * sections_per_block);
if (ret)
goto out;
ret = count;
out:
unlock_device_hotplug();
return ret;
}
static DEVICE_ATTR_WO(probe);
#endif
#ifdef CONFIG_MEMORY_FAILURE
/*
* Support for offlining pages of memory
*/
/* Soft offline a page */
static ssize_t soft_offline_page_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
u64 pfn;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (kstrtoull(buf, 0, &pfn) < 0)
return -EINVAL;
pfn >>= PAGE_SHIFT;
ret = soft_offline_page(pfn, 0);
return ret == 0 ? count : ret;
}
/* Forcibly offline a page, including killing processes. */
static ssize_t hard_offline_page_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
u64 pfn;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (kstrtoull(buf, 0, &pfn) < 0)
return -EINVAL;
pfn >>= PAGE_SHIFT;
ret = memory_failure(pfn, 0);
return ret ? ret : count;
}
static DEVICE_ATTR_WO(soft_offline_page);
static DEVICE_ATTR_WO(hard_offline_page);
#endif
/*
* Note that phys_device is optional. It is here to allow for
* differentiation between which *physical* devices each
* section belongs to...
*/
int __weak arch_get_memory_phys_device(unsigned long start_pfn)
{
return 0;
}
/*
* A reference for the returned memory block device is acquired.
*
* Called under device_hotplug_lock.
*/
static struct memory_block *find_memory_block_by_id(unsigned long block_id)
{
struct memory_block *mem;
mem = xa_load(&memory_blocks, block_id);
if (mem)
get_device(&mem->dev);
return mem;
}
/*
* Called under device_hotplug_lock.
*/
struct memory_block *find_memory_block(struct mem_section *section)
{
unsigned long block_id = base_memory_block_id(__section_nr(section));
return find_memory_block_by_id(block_id);
}
static struct attribute *memory_memblk_attrs[] = {
&dev_attr_phys_index.attr,
&dev_attr_state.attr,
&dev_attr_phys_device.attr,
&dev_attr_removable.attr,
#ifdef CONFIG_MEMORY_HOTREMOVE
&dev_attr_valid_zones.attr,
#endif
NULL
};
static struct attribute_group memory_memblk_attr_group = {
.attrs = memory_memblk_attrs,
};
static const struct attribute_group *memory_memblk_attr_groups[] = {
&memory_memblk_attr_group,
NULL,
};
/*
* register_memory - Setup a sysfs device for a memory block
*/
static
int register_memory(struct memory_block *memory)
{
int ret;
memory->dev.bus = &memory_subsys;
memory->dev.id = memory->start_section_nr / sections_per_block;
memory->dev.release = memory_block_release;
memory->dev.groups = memory_memblk_attr_groups;
memory->dev.offline = memory->state == MEM_OFFLINE;
ret = device_register(&memory->dev);
if (ret) {
put_device(&memory->dev);
return ret;
}
ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
GFP_KERNEL));
if (ret) {
put_device(&memory->dev);
device_unregister(&memory->dev);
}
return ret;
}
static int init_memory_block(struct memory_block **memory,
unsigned long block_id, unsigned long state)
{
struct memory_block *mem;
unsigned long start_pfn;
int ret = 0;
mem = find_memory_block_by_id(block_id);
if (mem) {
put_device(&mem->dev);
return -EEXIST;
}
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
if (!mem)
return -ENOMEM;
mem->start_section_nr = block_id * sections_per_block;
mem->state = state;
start_pfn = section_nr_to_pfn(mem->start_section_nr);
mem->phys_device = arch_get_memory_phys_device(start_pfn);
mem->nid = NUMA_NO_NODE;
ret = register_memory(mem);
*memory = mem;
return ret;
}
static int add_memory_block(unsigned long base_section_nr)
{
int section_count = 0;
struct memory_block *mem;
unsigned long nr;
for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
nr++)
if (present_section_nr(nr))
section_count++;
if (section_count == 0)
return 0;
return init_memory_block(&mem, base_memory_block_id(base_section_nr),
MEM_ONLINE);
}
static void unregister_memory(struct memory_block *memory)
{
if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
return;
WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
/* drop the ref. we got via find_memory_block() */
put_device(&memory->dev);
device_unregister(&memory->dev);
}
/*
* Create memory block devices for the given memory area. Start and size
* have to be aligned to memory block granularity. Memory block devices
* will be initialized as offline.
*
* Called under device_hotplug_lock.
*/
int create_memory_block_devices(unsigned long start, unsigned long size)
{
const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
struct memory_block *mem;
unsigned long block_id;
int ret = 0;
if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
!IS_ALIGNED(size, memory_block_size_bytes())))
return -EINVAL;
for (block_id = start_block_id; block_id != end_block_id; block_id++) {
ret = init_memory_block(&mem, block_id, MEM_OFFLINE);
if (ret)
break;
}
if (ret) {
end_block_id = block_id;
for (block_id = start_block_id; block_id != end_block_id;
block_id++) {
mem = find_memory_block_by_id(block_id);
if (WARN_ON_ONCE(!mem))
continue;
unregister_memory(mem);
}
}
return ret;
}
/*
* Remove memory block devices for the given memory area. Start and size
* have to be aligned to memory block granularity. Memory block devices
* have to be offline.
*
* Called under device_hotplug_lock.
*/
void remove_memory_block_devices(unsigned long start, unsigned long size)
{
const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
struct memory_block *mem;
unsigned long block_id;
if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
!IS_ALIGNED(size, memory_block_size_bytes())))
return;
for (block_id = start_block_id; block_id != end_block_id; block_id++) {
mem = find_memory_block_by_id(block_id);
if (WARN_ON_ONCE(!mem))
continue;
unregister_memory_block_under_nodes(mem);
unregister_memory(mem);
}
}
/* return true if the memory block is offlined, otherwise, return false */
bool is_memblock_offlined(struct memory_block *mem)
{
return mem->state == MEM_OFFLINE;
}
static struct attribute *memory_root_attrs[] = {
#ifdef CONFIG_ARCH_MEMORY_PROBE
&dev_attr_probe.attr,
#endif
#ifdef CONFIG_MEMORY_FAILURE
&dev_attr_soft_offline_page.attr,
&dev_attr_hard_offline_page.attr,
#endif
&dev_attr_block_size_bytes.attr,
&dev_attr_auto_online_blocks.attr,
NULL
};
static struct attribute_group memory_root_attr_group = {
.attrs = memory_root_attrs,
};
static const struct attribute_group *memory_root_attr_groups[] = {
&memory_root_attr_group,
NULL,
};
/*
* Initialize the sysfs support for memory devices. At the time this function
* is called, we cannot have concurrent creation/deletion of memory block
* devices, the device_hotplug_lock is not needed.
*/
void __init memory_dev_init(void)
{
int ret;
unsigned long block_sz, nr;
/* Validate the configured memory block size */
block_sz = memory_block_size_bytes();
if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
panic("Memory block size not suitable: 0x%lx\n", block_sz);
sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
if (ret)
panic("%s() failed to register subsystem: %d\n", __func__, ret);
/*
* Create entries for memory sections that were found
* during boot and have been initialized
*/
for (nr = 0; nr <= __highest_present_section_nr;
nr += sections_per_block) {
ret = add_memory_block(nr);
if (ret)
panic("%s() failed to add memory block: %d\n", __func__,
ret);
}
}
/**
* walk_memory_blocks - walk through all present memory blocks overlapped
* by the range [start, start + size)
*
* @start: start address of the memory range
* @size: size of the memory range
* @arg: argument passed to func
* @func: callback for each memory section walked
*
* This function walks through all present memory blocks overlapped by the
* range [start, start + size), calling func on each memory block.
*
* In case func() returns an error, walking is aborted and the error is
* returned.
*
* Called under device_hotplug_lock.
*/
int walk_memory_blocks(unsigned long start, unsigned long size,
void *arg, walk_memory_blocks_func_t func)
{
const unsigned long start_block_id = phys_to_block_id(start);
const unsigned long end_block_id = phys_to_block_id(start + size - 1);
struct memory_block *mem;
unsigned long block_id;
int ret = 0;
if (!size)
return 0;
for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
mem = find_memory_block_by_id(block_id);
if (!mem)
continue;
ret = func(mem, arg);
put_device(&mem->dev);
if (ret)
break;
}
return ret;
}
struct for_each_memory_block_cb_data {
walk_memory_blocks_func_t func;
void *arg;
};
static int for_each_memory_block_cb(struct device *dev, void *data)
{
struct memory_block *mem = to_memory_block(dev);
struct for_each_memory_block_cb_data *cb_data = data;
return cb_data->func(mem, cb_data->arg);
}
/**
* for_each_memory_block - walk through all present memory blocks
*
* @arg: argument passed to func
* @func: callback for each memory block walked
*
* This function walks through all present memory blocks, calling func on
* each memory block.
*
* In case func() returns an error, walking is aborted and the error is
* returned.
*/
int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
{
struct for_each_memory_block_cb_data cb_data = {
.func = func,
.arg = arg,
};
return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
for_each_memory_block_cb);
}