linux-stable/drivers/net/bnx2x_init.h
Eilon Greenstein db434ac6bf bnx2x: Using DMAE to initialize the chip
There was a bug, which occasionally caused failure in PRAM initialization after
the cold boot.
Also incremented version number to 1.45.27.

Signed-off-by: Vladislav Zolotarov <vladz@broadcom.com>
Signed-off-by: Eilon Greenstein <eilong@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-10 04:52:03 -07:00

824 lines
26 KiB
C

/* bnx2x_init.h: Broadcom Everest network driver.
*
* Copyright (c) 2007-2009 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Eliezer Tamir
*/
#ifndef BNX2X_INIT_H
#define BNX2X_INIT_H
#define COMMON 0x1
#define PORT0 0x2
#define PORT1 0x4
#define INIT_EMULATION 0x1
#define INIT_FPGA 0x2
#define INIT_ASIC 0x4
#define INIT_HARDWARE 0x7
#define TSTORM_INTMEM_ADDR TSEM_REG_FAST_MEMORY
#define CSTORM_INTMEM_ADDR CSEM_REG_FAST_MEMORY
#define XSTORM_INTMEM_ADDR XSEM_REG_FAST_MEMORY
#define USTORM_INTMEM_ADDR USEM_REG_FAST_MEMORY
/* RAM0 size in bytes */
#define STORM_INTMEM_SIZE_E1 0x5800
#define STORM_INTMEM_SIZE_E1H 0x10000
#define STORM_INTMEM_SIZE(bp) ((CHIP_IS_E1H(bp) ? STORM_INTMEM_SIZE_E1H : \
STORM_INTMEM_SIZE_E1) / 4)
/* Init operation types and structures */
/* Common for both E1 and E1H */
#define OP_RD 0x1 /* read single register */
#define OP_WR 0x2 /* write single register */
#define OP_IW 0x3 /* write single register using mailbox */
#define OP_SW 0x4 /* copy a string to the device */
#define OP_SI 0x5 /* copy a string using mailbox */
#define OP_ZR 0x6 /* clear memory */
#define OP_ZP 0x7 /* unzip then copy with DMAE */
#define OP_WR_64 0x8 /* write 64 bit pattern */
#define OP_WB 0x9 /* copy a string using DMAE */
/* Operation specific for E1 */
#define OP_RD_E1 0xa /* read single register */
#define OP_WR_E1 0xb /* write single register */
#define OP_IW_E1 0xc /* write single register using mailbox */
#define OP_SW_E1 0xd /* copy a string to the device */
#define OP_SI_E1 0xe /* copy a string using mailbox */
#define OP_ZR_E1 0xf /* clear memory */
#define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
#define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
#define OP_WB_E1 0x12 /* copy a string using DMAE */
/* Operation specific for E1H */
#define OP_RD_E1H 0x13 /* read single register */
#define OP_WR_E1H 0x14 /* write single register */
#define OP_IW_E1H 0x15 /* write single register using mailbox */
#define OP_SW_E1H 0x16 /* copy a string to the device */
#define OP_SI_E1H 0x17 /* copy a string using mailbox */
#define OP_ZR_E1H 0x18 /* clear memory */
#define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
#define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
#define OP_WB_E1H 0x1b /* copy a string using DMAE */
/* FPGA and EMUL specific operations */
#define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
#define OP_WR_EMUL 0x1d /* write single register on Emulation */
#define OP_WR_FPGA 0x1e /* write single register on FPGA */
#define OP_WR_ASIC 0x1f /* write single register on ASIC */
struct raw_op {
u32 op:8;
u32 offset:24;
u32 raw_data;
};
struct op_read {
u32 op:8;
u32 offset:24;
u32 pad;
};
struct op_write {
u32 op:8;
u32 offset:24;
u32 val;
};
struct op_string_write {
u32 op:8;
u32 offset:24;
#ifdef __LITTLE_ENDIAN
u16 data_off;
u16 data_len;
#else /* __BIG_ENDIAN */
u16 data_len;
u16 data_off;
#endif
};
struct op_zero {
u32 op:8;
u32 offset:24;
u32 len;
};
union init_op {
struct op_read read;
struct op_write write;
struct op_string_write str_wr;
struct op_zero zero;
struct raw_op raw;
};
#include "bnx2x_init_values.h"
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u16 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR_IND(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
{
int offset = 0;
if (bp->dmae_ready) {
while (len > DMAE_LEN32_WR_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
}
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
{
u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4));
u32 buf_len32 = buf_len / 4;
int i;
memset(bp->gunzip_buf, fill, buf_len);
for (i = 0; i < len; i += buf_len32) {
u32 cur_len = min(buf_len32, len - i);
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
}
}
static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len64)
{
u32 buf_len32 = FW_BUF_SIZE / 4;
u32 len = len64 * 2;
u64 data64 = 0;
int i;
/* 64 bit value is in a blob: first low DWORD, then high DWORD */
data64 = HILO_U64((*(data + 1)), (*data));
len64 = min((u32)(FW_BUF_SIZE/8), len64);
for (i = 0; i < len64; i++) {
u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
*pdata = data64;
}
for (i = 0; i < len; i += buf_len32) {
u32 cur_len = min(buf_len32, len - i);
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
}
}
/*********************************************************
There are different blobs for each PRAM section.
In addition, each blob write operation is divided into a few operations
in order to decrease the amount of phys. contiguous buffer needed.
Thus, when we select a blob the address may be with some offset
from the beginning of PRAM section.
The same holds for the INT_TABLE sections.
**********************************************************/
#define IF_IS_INT_TABLE_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
#define IF_IS_PRAM_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
{
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
data = is_e1 ? tsem_int_table_data_e1 :
tsem_int_table_data_e1h;
else
IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
data = is_e1 ? csem_int_table_data_e1 :
csem_int_table_data_e1h;
else
IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
data = is_e1 ? usem_int_table_data_e1 :
usem_int_table_data_e1h;
else
IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
data = is_e1 ? xsem_int_table_data_e1 :
xsem_int_table_data_e1h;
else
IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
else
IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
else
IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
else
IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
return data;
}
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len, int gunzip, int is_e1, u32 blob_off)
{
int offset = 0;
data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
if (gunzip) {
int rc;
#ifdef __BIG_ENDIAN
int i, size;
u32 *temp;
temp = kmalloc(len, GFP_KERNEL);
size = (len / 4) + ((len % 4) ? 1 : 0);
for (i = 0; i < size; i++)
temp[i] = swab32(data[i]);
data = temp;
#endif
rc = bnx2x_gunzip(bp, (u8 *)data, len);
if (rc) {
BNX2X_ERR("gunzip failed ! rc %d\n", rc);
#ifdef __BIG_ENDIAN
kfree(temp);
#endif
return;
}
len = bp->gunzip_outlen;
#ifdef __BIG_ENDIAN
kfree(temp);
for (i = 0; i < len; i++)
((u32 *)bp->gunzip_buf)[i] =
swab32(((u32 *)bp->gunzip_buf)[i]);
#endif
} else {
if ((len * 4) > FW_BUF_SIZE) {
BNX2X_ERR("LARGE DMAE OPERATION ! "
"addr 0x%x len 0x%x\n", addr, len*4);
return;
}
memcpy(bp->gunzip_buf, data, len * 4);
}
if (bp->dmae_ready) {
while (len > DMAE_LEN32_WR_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
}
static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
{
int is_e1 = CHIP_IS_E1(bp);
int is_e1h = CHIP_IS_E1H(bp);
int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
int hw_wr, i;
union init_op *op;
u32 op_type, addr, len;
const u32 *data, *data_base;
if (CHIP_REV_IS_FPGA(bp))
hw_wr = OP_WR_FPGA;
else if (CHIP_REV_IS_EMUL(bp))
hw_wr = OP_WR_EMUL;
else
hw_wr = OP_WR_ASIC;
if (is_e1)
data_base = init_data_e1;
else /* CHIP_IS_E1H(bp) */
data_base = init_data_e1h;
for (i = op_start; i < op_end; i++) {
op = (union init_op *)&(init_ops[i]);
op_type = op->str_wr.op;
addr = op->str_wr.offset;
len = op->str_wr.data_len;
data = data_base + op->str_wr.data_off;
/* careful! it must be in order */
if (unlikely(op_type > OP_WB)) {
/* If E1 only */
if (op_type <= OP_WB_E1) {
if (is_e1)
op_type -= (OP_RD_E1 - OP_RD);
/* If E1H only */
} else if (op_type <= OP_WB_E1H) {
if (is_e1h)
op_type -= (OP_RD_E1H - OP_RD);
}
/* HW/EMUL specific */
if (op_type == hw_wr)
op_type = OP_WR;
/* EMUL on E1H is special */
if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
op_type = OP_WR;
}
switch (op_type) {
case OP_RD:
REG_RD(bp, addr);
break;
case OP_WR:
REG_WR(bp, addr, op->write.val);
break;
case OP_SW:
bnx2x_init_str_wr(bp, addr, data, len);
break;
case OP_WB:
bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
break;
case OP_SI:
bnx2x_init_ind_wr(bp, addr, data, len);
break;
case OP_ZR:
bnx2x_init_fill(bp, addr, 0, op->zero.len);
break;
case OP_ZP:
bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
op->str_wr.data_off);
break;
case OP_WR_64:
bnx2x_init_wr_64(bp, addr, data, len);
break;
default:
/* happens whenever an op is of a diff HW */
#if 0
DP(NETIF_MSG_HW, "skipping init operation "
"index %d[%d:%d]: type %d addr 0x%x "
"len %d(0x%x)\n",
i, op_start, op_end, op_type, addr, len, len);
#endif
break;
}
}
}
/****************************************************************************
* PXP
****************************************************************************/
/*
* This code configures the PCI read/write arbiter
* which implements a weighted round robin
* between the virtual queues in the chip.
*
* The values were derived for each PCI max payload and max request size.
* since max payload and max request size are only known at run time,
* this is done as a separate init stage.
*/
#define NUM_WR_Q 13
#define NUM_RD_Q 29
#define MAX_RD_ORD 3
#define MAX_WR_ORD 2
/* configuration for one arbiter queue */
struct arb_line {
int l;
int add;
int ubound;
};
/* derived configuration for each read queue for each max request size */
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
{ {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
{ {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
};
/* derived configuration for each write queue for each max request size */
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
{ {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
{ {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
};
/* register addresses for read queues */
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
PXP2_REG_RQ_BW_RD_UBOUND0},
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
PXP2_REG_RQ_BW_RD_UBOUND4},
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
PXP2_REG_RQ_BW_RD_UBOUND5},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
PXP2_REG_RQ_BW_RD_UBOUND12},
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
PXP2_REG_RQ_BW_RD_UBOUND13},
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
PXP2_REG_RQ_BW_RD_UBOUND14},
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
PXP2_REG_RQ_BW_RD_UBOUND15},
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
PXP2_REG_RQ_BW_RD_UBOUND16},
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
PXP2_REG_RQ_BW_RD_UBOUND17},
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
PXP2_REG_RQ_BW_RD_UBOUND18},
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
PXP2_REG_RQ_BW_RD_UBOUND19},
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
PXP2_REG_RQ_BW_RD_UBOUND20},
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
PXP2_REG_RQ_BW_RD_UBOUND22},
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
PXP2_REG_RQ_BW_RD_UBOUND23},
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
PXP2_REG_RQ_BW_RD_UBOUND24},
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
PXP2_REG_RQ_BW_RD_UBOUND25},
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
PXP2_REG_RQ_BW_RD_UBOUND26},
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
PXP2_REG_RQ_BW_RD_UBOUND27},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28}
};
/* register addresses for write queues */
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28},
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
PXP2_REG_RQ_BW_WR_UBOUND29},
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
PXP2_REG_RQ_BW_WR_UBOUND30}
};
static void bnx2x_init_pxp(struct bnx2x *bp)
{
u16 devctl;
int r_order, w_order;
u32 val, i;
pci_read_config_word(bp->pdev,
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
if (bp->mrrs == -1)
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
else {
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
r_order = bp->mrrs;
}
if (r_order > MAX_RD_ORD) {
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
r_order, MAX_RD_ORD);
r_order = MAX_RD_ORD;
}
if (w_order > MAX_WR_ORD) {
DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
w_order, MAX_WR_ORD);
w_order = MAX_WR_ORD;
}
if (CHIP_REV_IS_FPGA(bp)) {
DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
w_order = 0;
}
DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
for (i = 0; i < NUM_RD_Q-1; i++) {
REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
REG_WR(bp, read_arb_addr[i].add,
read_arb_data[i][r_order].add);
REG_WR(bp, read_arb_addr[i].ubound,
read_arb_data[i][r_order].ubound);
}
for (i = 0; i < NUM_WR_Q-1; i++) {
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
REG_WR(bp, write_arb_addr[i].l,
write_arb_data[i][w_order].l);
REG_WR(bp, write_arb_addr[i].add,
write_arb_data[i][w_order].add);
REG_WR(bp, write_arb_addr[i].ubound,
write_arb_data[i][w_order].ubound);
} else {
val = REG_RD(bp, write_arb_addr[i].l);
REG_WR(bp, write_arb_addr[i].l,
val | (write_arb_data[i][w_order].l << 10));
val = REG_RD(bp, write_arb_addr[i].add);
REG_WR(bp, write_arb_addr[i].add,
val | (write_arb_data[i][w_order].add << 10));
val = REG_RD(bp, write_arb_addr[i].ubound);
REG_WR(bp, write_arb_addr[i].ubound,
val | (write_arb_data[i][w_order].ubound << 7));
}
}
val = write_arb_data[NUM_WR_Q-1][w_order].add;
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
val = read_arb_data[NUM_RD_Q-1][r_order].add;
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
if (r_order == MAX_RD_ORD)
REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
if (CHIP_IS_E1H(bp)) {
val = ((w_order == 0) ? 2 : 3);
REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
}
}
/****************************************************************************
* CDU
****************************************************************************/
#define CDU_REGION_NUMBER_XCM_AG 2
#define CDU_REGION_NUMBER_UCM_AG 4
/**
* String-to-compress [31:8] = CID (all 24 bits)
* String-to-compress [7:4] = Region
* String-to-compress [3:0] = Type
*/
#define CDU_VALID_DATA(_cid, _region, _type) \
(((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
#define CDU_CRC8(_cid, _region, _type) \
calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
(0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
#define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
(0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
/*****************************************************************************
* Description:
* Calculates crc 8 on a word value: polynomial 0-1-2-8
* Code was translated from Verilog.
****************************************************************************/
static u8 calc_crc8(u32 data, u8 crc)
{
u8 D[32];
u8 NewCRC[8];
u8 C[8];
u8 crc_res;
u8 i;
/* split the data into 31 bits */
for (i = 0; i < 32; i++) {
D[i] = data & 1;
data = data >> 1;
}
/* split the crc into 8 bits */
for (i = 0; i < 8; i++) {
C[i] = crc & 1;
crc = crc >> 1;
}
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
C[6] ^ C[7];
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
C[0] ^ C[1] ^ C[4] ^ C[5];
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
C[1] ^ C[2] ^ C[5] ^ C[6];
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
C[3] ^ C[4] ^ C[7];
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
C[5];
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
C[6];
crc_res = 0;
for (i = 0; i < 8; i++)
crc_res |= (NewCRC[i] << i);
return crc_res;
}
/* registers addresses are not in order
so these arrays help simplify the code */
static const int cm_start[E1H_FUNC_MAX][9] = {
{MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
XSEM_FUNC0_START},
{MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
XSEM_FUNC1_START},
{MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
XSEM_FUNC2_START},
{MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
XSEM_FUNC3_START},
{MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
XSEM_FUNC4_START},
{MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
XSEM_FUNC5_START},
{MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
XSEM_FUNC6_START},
{MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
XSEM_FUNC7_START}
};
static const int cm_end[E1H_FUNC_MAX][9] = {
{MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
XSEM_FUNC0_END},
{MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
XSEM_FUNC1_END},
{MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
XSEM_FUNC2_END},
{MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
XSEM_FUNC3_END},
{MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
XSEM_FUNC4_END},
{MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
XSEM_FUNC5_END},
{MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
XSEM_FUNC6_END},
{MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
XSEM_FUNC7_END},
};
static const int hc_limits[E1H_FUNC_MAX][2] = {
{HC_FUNC0_START, HC_FUNC0_END},
{HC_FUNC1_START, HC_FUNC1_END},
{HC_FUNC2_START, HC_FUNC2_END},
{HC_FUNC3_START, HC_FUNC3_END},
{HC_FUNC4_START, HC_FUNC4_END},
{HC_FUNC5_START, HC_FUNC5_END},
{HC_FUNC6_START, HC_FUNC6_END},
{HC_FUNC7_START, HC_FUNC7_END}
};
#endif /* BNX2X_INIT_H */