linux-stable/fs/xfs/xfs_buf_mem.c
Rik van Riel e1e4cfd01a mm,tmpfs: consider end of file write in shmem_is_huge
Take the end of a file write into consideration when deciding whether or
not to use huge pages for tmpfs files when the tmpfs filesystem is mounted
with huge=within_size

This allows large writes that append to the end of a file to automatically
use large pages.

Doing 4MB sequential writes without fallocate to a 16GB tmpfs file with
fio.  The numbers without THP or with huge=always stay the same, but the
performance with huge=within_size now matches that of huge=always.

huge		before		after
4kB pages	1560 MB/s	1560 MB/s
within_size	1560 MB/s	4720 MB/s
always:		4720 MB/s	4720 MB/s

[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20240903111928.7171e60c@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09 16:39:12 -07:00

271 lines
6.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2023-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_buf.h"
#include "xfs_buf_mem.h"
#include "xfs_trace.h"
#include <linux/shmem_fs.h>
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_error.h"
/*
* Buffer Cache for In-Memory Files
* ================================
*
* Online fsck wants to create ephemeral ordered recordsets. The existing
* btree infrastructure can do this, but we need the buffer cache to target
* memory instead of block devices.
*
* When CONFIG_TMPFS=y, shmemfs is enough of a filesystem to meet those
* requirements. Therefore, the xmbuf mechanism uses an unlinked shmem file to
* store our staging data. This file is not installed in the file descriptor
* table so that user programs cannot access the data, which means that the
* xmbuf must be freed with xmbuf_destroy.
*
* xmbufs assume that the caller will handle all required concurrency
* management; standard vfs locks (freezer and inode) are not taken. Reads
* and writes are satisfied directly from the page cache.
*
* The only supported block size is PAGE_SIZE, and we cannot use highmem.
*/
/*
* shmem files used to back an in-memory buffer cache must not be exposed to
* userspace. Upper layers must coordinate access to the one handle returned
* by the constructor, so establish a separate lock class for xmbufs to avoid
* confusing lockdep.
*/
static struct lock_class_key xmbuf_i_mutex_key;
/*
* Allocate a buffer cache target for a memory-backed file and set up the
* buffer target.
*/
int
xmbuf_alloc(
struct xfs_mount *mp,
const char *descr,
struct xfs_buftarg **btpp)
{
struct file *file;
struct inode *inode;
struct xfs_buftarg *btp;
int error;
btp = kzalloc(struct_size(btp, bt_cache, 1), GFP_KERNEL);
if (!btp)
return -ENOMEM;
file = shmem_kernel_file_setup(descr, 0, 0);
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto out_free_btp;
}
inode = file_inode(file);
/* private file, private locking */
lockdep_set_class(&inode->i_rwsem, &xmbuf_i_mutex_key);
/*
* We don't want to bother with kmapping data during repair, so don't
* allow highmem pages to back this mapping.
*/
mapping_set_gfp_mask(inode->i_mapping, GFP_KERNEL);
/* ensure all writes are below EOF to avoid pagecache zeroing */
i_size_write(inode, inode->i_sb->s_maxbytes);
error = xfs_buf_cache_init(btp->bt_cache);
if (error)
goto out_file;
/* Initialize buffer target */
btp->bt_mount = mp;
btp->bt_dev = (dev_t)-1U;
btp->bt_bdev = NULL; /* in-memory buftargs have no bdev */
btp->bt_file = file;
btp->bt_meta_sectorsize = XMBUF_BLOCKSIZE;
btp->bt_meta_sectormask = XMBUF_BLOCKSIZE - 1;
error = xfs_init_buftarg(btp, XMBUF_BLOCKSIZE, descr);
if (error)
goto out_bcache;
trace_xmbuf_create(btp);
*btpp = btp;
return 0;
out_bcache:
xfs_buf_cache_destroy(btp->bt_cache);
out_file:
fput(file);
out_free_btp:
kfree(btp);
return error;
}
/* Free a buffer cache target for a memory-backed buffer cache. */
void
xmbuf_free(
struct xfs_buftarg *btp)
{
ASSERT(xfs_buftarg_is_mem(btp));
ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
trace_xmbuf_free(btp);
xfs_destroy_buftarg(btp);
xfs_buf_cache_destroy(btp->bt_cache);
fput(btp->bt_file);
kfree(btp);
}
/* Directly map a shmem page into the buffer cache. */
int
xmbuf_map_page(
struct xfs_buf *bp)
{
struct inode *inode = file_inode(bp->b_target->bt_file);
struct folio *folio = NULL;
struct page *page;
loff_t pos = BBTOB(xfs_buf_daddr(bp));
int error;
ASSERT(xfs_buftarg_is_mem(bp->b_target));
if (bp->b_map_count != 1)
return -ENOMEM;
if (BBTOB(bp->b_length) != XMBUF_BLOCKSIZE)
return -ENOMEM;
if (offset_in_page(pos) != 0) {
ASSERT(offset_in_page(pos));
return -ENOMEM;
}
error = shmem_get_folio(inode, pos >> PAGE_SHIFT, 0, &folio, SGP_CACHE);
if (error)
return error;
if (filemap_check_wb_err(inode->i_mapping, 0)) {
folio_unlock(folio);
folio_put(folio);
return -EIO;
}
page = folio_file_page(folio, pos >> PAGE_SHIFT);
/*
* Mark the page dirty so that it won't be reclaimed once we drop the
* (potentially last) reference in xmbuf_unmap_page.
*/
set_page_dirty(page);
unlock_page(page);
bp->b_addr = page_address(page);
bp->b_pages = bp->b_page_array;
bp->b_pages[0] = page;
bp->b_page_count = 1;
return 0;
}
/* Unmap a shmem page that was mapped into the buffer cache. */
void
xmbuf_unmap_page(
struct xfs_buf *bp)
{
struct page *page = bp->b_pages[0];
ASSERT(xfs_buftarg_is_mem(bp->b_target));
put_page(page);
bp->b_addr = NULL;
bp->b_pages[0] = NULL;
bp->b_pages = NULL;
bp->b_page_count = 0;
}
/* Is this a valid daddr within the buftarg? */
bool
xmbuf_verify_daddr(
struct xfs_buftarg *btp,
xfs_daddr_t daddr)
{
struct inode *inode = file_inode(btp->bt_file);
ASSERT(xfs_buftarg_is_mem(btp));
return daddr < (inode->i_sb->s_maxbytes >> BBSHIFT);
}
/* Discard the page backing this buffer. */
static void
xmbuf_stale(
struct xfs_buf *bp)
{
struct inode *inode = file_inode(bp->b_target->bt_file);
loff_t pos;
ASSERT(xfs_buftarg_is_mem(bp->b_target));
pos = BBTOB(xfs_buf_daddr(bp));
shmem_truncate_range(inode, pos, pos + BBTOB(bp->b_length) - 1);
}
/*
* Finalize a buffer -- discard the backing page if it's stale, or run the
* write verifier to detect problems.
*/
int
xmbuf_finalize(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
int error = 0;
if (bp->b_flags & XBF_STALE) {
xmbuf_stale(bp);
return 0;
}
/*
* Although this btree is ephemeral, validate the buffer structure so
* that we can detect memory corruption errors and software bugs.
*/
fa = bp->b_ops->verify_struct(bp);
if (fa) {
error = -EFSCORRUPTED;
xfs_verifier_error(bp, error, fa);
}
return error;
}
/*
* Detach this xmbuf buffer from the transaction by any means necessary.
* All buffers are direct-mapped, so they do not need bwrite.
*/
void
xmbuf_trans_bdetach(
struct xfs_trans *tp,
struct xfs_buf *bp)
{
struct xfs_buf_log_item *bli = bp->b_log_item;
ASSERT(bli != NULL);
bli->bli_flags &= ~(XFS_BLI_DIRTY | XFS_BLI_ORDERED |
XFS_BLI_LOGGED | XFS_BLI_STALE);
clear_bit(XFS_LI_DIRTY, &bli->bli_item.li_flags);
while (bp->b_log_item != NULL)
xfs_trans_bdetach(tp, bp);
}