linux-stable/sound/ppc/burgundy.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

733 lines
24 KiB
C

/*
* PMac Burgundy lowlevel functions
*
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
* code based on dmasound.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <asm/io.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <sound/core.h>
#include "pmac.h"
#include "burgundy.h"
/* Waits for busy flag to clear */
static inline void
snd_pmac_burgundy_busy_wait(struct snd_pmac *chip)
{
int timeout = 50;
while ((in_le32(&chip->awacs->codec_ctrl) & MASK_NEWECMD) && timeout--)
udelay(1);
if (timeout < 0)
printk(KERN_DEBUG "burgundy_busy_wait: timeout\n");
}
static inline void
snd_pmac_burgundy_extend_wait(struct snd_pmac *chip)
{
int timeout;
timeout = 50;
while (!(in_le32(&chip->awacs->codec_stat) & MASK_EXTEND) && timeout--)
udelay(1);
if (timeout < 0)
printk(KERN_DEBUG "burgundy_extend_wait: timeout #1\n");
timeout = 50;
while ((in_le32(&chip->awacs->codec_stat) & MASK_EXTEND) && timeout--)
udelay(1);
if (timeout < 0)
printk(KERN_DEBUG "burgundy_extend_wait: timeout #2\n");
}
static void
snd_pmac_burgundy_wcw(struct snd_pmac *chip, unsigned addr, unsigned val)
{
out_le32(&chip->awacs->codec_ctrl, addr + 0x200c00 + (val & 0xff));
snd_pmac_burgundy_busy_wait(chip);
out_le32(&chip->awacs->codec_ctrl, addr + 0x200d00 +((val>>8) & 0xff));
snd_pmac_burgundy_busy_wait(chip);
out_le32(&chip->awacs->codec_ctrl, addr + 0x200e00 +((val>>16) & 0xff));
snd_pmac_burgundy_busy_wait(chip);
out_le32(&chip->awacs->codec_ctrl, addr + 0x200f00 +((val>>24) & 0xff));
snd_pmac_burgundy_busy_wait(chip);
}
static unsigned
snd_pmac_burgundy_rcw(struct snd_pmac *chip, unsigned addr)
{
unsigned val = 0;
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
out_le32(&chip->awacs->codec_ctrl, addr + 0x100000);
snd_pmac_burgundy_busy_wait(chip);
snd_pmac_burgundy_extend_wait(chip);
val += (in_le32(&chip->awacs->codec_stat) >> 4) & 0xff;
out_le32(&chip->awacs->codec_ctrl, addr + 0x100100);
snd_pmac_burgundy_busy_wait(chip);
snd_pmac_burgundy_extend_wait(chip);
val += ((in_le32(&chip->awacs->codec_stat)>>4) & 0xff) <<8;
out_le32(&chip->awacs->codec_ctrl, addr + 0x100200);
snd_pmac_burgundy_busy_wait(chip);
snd_pmac_burgundy_extend_wait(chip);
val += ((in_le32(&chip->awacs->codec_stat)>>4) & 0xff) <<16;
out_le32(&chip->awacs->codec_ctrl, addr + 0x100300);
snd_pmac_burgundy_busy_wait(chip);
snd_pmac_burgundy_extend_wait(chip);
val += ((in_le32(&chip->awacs->codec_stat)>>4) & 0xff) <<24;
spin_unlock_irqrestore(&chip->reg_lock, flags);
return val;
}
static void
snd_pmac_burgundy_wcb(struct snd_pmac *chip, unsigned int addr,
unsigned int val)
{
out_le32(&chip->awacs->codec_ctrl, addr + 0x300000 + (val & 0xff));
snd_pmac_burgundy_busy_wait(chip);
}
static unsigned
snd_pmac_burgundy_rcb(struct snd_pmac *chip, unsigned int addr)
{
unsigned val = 0;
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
out_le32(&chip->awacs->codec_ctrl, addr + 0x100000);
snd_pmac_burgundy_busy_wait(chip);
snd_pmac_burgundy_extend_wait(chip);
val += (in_le32(&chip->awacs->codec_stat) >> 4) & 0xff;
spin_unlock_irqrestore(&chip->reg_lock, flags);
return val;
}
#define BASE2ADDR(base) ((base) << 12)
#define ADDR2BASE(addr) ((addr) >> 12)
/*
* Burgundy volume: 0 - 100, stereo, word reg
*/
static void
snd_pmac_burgundy_write_volume(struct snd_pmac *chip, unsigned int address,
long *volume, int shift)
{
int hardvolume, lvolume, rvolume;
if (volume[0] < 0 || volume[0] > 100 ||
volume[1] < 0 || volume[1] > 100)
return; /* -EINVAL */
lvolume = volume[0] ? volume[0] + BURGUNDY_VOLUME_OFFSET : 0;
rvolume = volume[1] ? volume[1] + BURGUNDY_VOLUME_OFFSET : 0;
hardvolume = lvolume + (rvolume << shift);
if (shift == 8)
hardvolume |= hardvolume << 16;
snd_pmac_burgundy_wcw(chip, address, hardvolume);
}
static void
snd_pmac_burgundy_read_volume(struct snd_pmac *chip, unsigned int address,
long *volume, int shift)
{
int wvolume;
wvolume = snd_pmac_burgundy_rcw(chip, address);
volume[0] = wvolume & 0xff;
if (volume[0] >= BURGUNDY_VOLUME_OFFSET)
volume[0] -= BURGUNDY_VOLUME_OFFSET;
else
volume[0] = 0;
volume[1] = (wvolume >> shift) & 0xff;
if (volume[1] >= BURGUNDY_VOLUME_OFFSET)
volume[1] -= BURGUNDY_VOLUME_OFFSET;
else
volume[1] = 0;
}
static int snd_pmac_burgundy_info_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 100;
return 0;
}
static int snd_pmac_burgundy_get_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff);
int shift = (kcontrol->private_value >> 8) & 0xff;
snd_pmac_burgundy_read_volume(chip, addr,
ucontrol->value.integer.value, shift);
return 0;
}
static int snd_pmac_burgundy_put_volume(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff);
int shift = (kcontrol->private_value >> 8) & 0xff;
long nvoices[2];
snd_pmac_burgundy_write_volume(chip, addr,
ucontrol->value.integer.value, shift);
snd_pmac_burgundy_read_volume(chip, addr, nvoices, shift);
return (nvoices[0] != ucontrol->value.integer.value[0] ||
nvoices[1] != ucontrol->value.integer.value[1]);
}
#define BURGUNDY_VOLUME_W(xname, xindex, addr, shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\
.info = snd_pmac_burgundy_info_volume,\
.get = snd_pmac_burgundy_get_volume,\
.put = snd_pmac_burgundy_put_volume,\
.private_value = ((ADDR2BASE(addr) & 0xff) | ((shift) << 8)) }
/*
* Burgundy volume: 0 - 100, stereo, 2-byte reg
*/
static void
snd_pmac_burgundy_write_volume_2b(struct snd_pmac *chip, unsigned int address,
long *volume, int off)
{
int lvolume, rvolume;
off |= off << 2;
lvolume = volume[0] ? volume[0] + BURGUNDY_VOLUME_OFFSET : 0;
rvolume = volume[1] ? volume[1] + BURGUNDY_VOLUME_OFFSET : 0;
snd_pmac_burgundy_wcb(chip, address + off, lvolume);
snd_pmac_burgundy_wcb(chip, address + off + 0x500, rvolume);
}
static void
snd_pmac_burgundy_read_volume_2b(struct snd_pmac *chip, unsigned int address,
long *volume, int off)
{
volume[0] = snd_pmac_burgundy_rcb(chip, address + off);
if (volume[0] >= BURGUNDY_VOLUME_OFFSET)
volume[0] -= BURGUNDY_VOLUME_OFFSET;
else
volume[0] = 0;
volume[1] = snd_pmac_burgundy_rcb(chip, address + off + 0x100);
if (volume[1] >= BURGUNDY_VOLUME_OFFSET)
volume[1] -= BURGUNDY_VOLUME_OFFSET;
else
volume[1] = 0;
}
static int snd_pmac_burgundy_info_volume_2b(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 100;
return 0;
}
static int snd_pmac_burgundy_get_volume_2b(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff);
int off = kcontrol->private_value & 0x300;
snd_pmac_burgundy_read_volume_2b(chip, addr,
ucontrol->value.integer.value, off);
return 0;
}
static int snd_pmac_burgundy_put_volume_2b(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff);
int off = kcontrol->private_value & 0x300;
long nvoices[2];
snd_pmac_burgundy_write_volume_2b(chip, addr,
ucontrol->value.integer.value, off);
snd_pmac_burgundy_read_volume_2b(chip, addr, nvoices, off);
return (nvoices[0] != ucontrol->value.integer.value[0] ||
nvoices[1] != ucontrol->value.integer.value[1]);
}
#define BURGUNDY_VOLUME_2B(xname, xindex, addr, off) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\
.info = snd_pmac_burgundy_info_volume_2b,\
.get = snd_pmac_burgundy_get_volume_2b,\
.put = snd_pmac_burgundy_put_volume_2b,\
.private_value = ((ADDR2BASE(addr) & 0xff) | ((off) << 8)) }
/*
* Burgundy gain/attenuation: 0 - 15, mono/stereo, byte reg
*/
static int snd_pmac_burgundy_info_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int stereo = (kcontrol->private_value >> 24) & 1;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = stereo + 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 15;
return 0;
}
static int snd_pmac_burgundy_get_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff);
int stereo = (kcontrol->private_value >> 24) & 1;
int atten = (kcontrol->private_value >> 25) & 1;
int oval;
oval = snd_pmac_burgundy_rcb(chip, addr);
if (atten)
oval = ~oval & 0xff;
ucontrol->value.integer.value[0] = oval & 0xf;
if (stereo)
ucontrol->value.integer.value[1] = (oval >> 4) & 0xf;
return 0;
}
static int snd_pmac_burgundy_put_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR(kcontrol->private_value & 0xff);
int stereo = (kcontrol->private_value >> 24) & 1;
int atten = (kcontrol->private_value >> 25) & 1;
int oval, val;
oval = snd_pmac_burgundy_rcb(chip, addr);
if (atten)
oval = ~oval & 0xff;
val = ucontrol->value.integer.value[0];
if (stereo)
val |= ucontrol->value.integer.value[1] << 4;
else
val |= ucontrol->value.integer.value[0] << 4;
if (atten)
val = ~val & 0xff;
snd_pmac_burgundy_wcb(chip, addr, val);
return val != oval;
}
#define BURGUNDY_VOLUME_B(xname, xindex, addr, stereo, atten) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\
.info = snd_pmac_burgundy_info_gain,\
.get = snd_pmac_burgundy_get_gain,\
.put = snd_pmac_burgundy_put_gain,\
.private_value = (ADDR2BASE(addr) | ((stereo) << 24) | ((atten) << 25)) }
/*
* Burgundy switch: 0/1, mono/stereo, word reg
*/
static int snd_pmac_burgundy_info_switch_w(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int stereo = (kcontrol->private_value >> 24) & 1;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = stereo + 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_pmac_burgundy_get_switch_w(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff);
int lmask = 1 << (kcontrol->private_value & 0xff);
int rmask = 1 << ((kcontrol->private_value >> 8) & 0xff);
int stereo = (kcontrol->private_value >> 24) & 1;
int val = snd_pmac_burgundy_rcw(chip, addr);
ucontrol->value.integer.value[0] = (val & lmask) ? 1 : 0;
if (stereo)
ucontrol->value.integer.value[1] = (val & rmask) ? 1 : 0;
return 0;
}
static int snd_pmac_burgundy_put_switch_w(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff);
int lmask = 1 << (kcontrol->private_value & 0xff);
int rmask = 1 << ((kcontrol->private_value >> 8) & 0xff);
int stereo = (kcontrol->private_value >> 24) & 1;
int val, oval;
oval = snd_pmac_burgundy_rcw(chip, addr);
val = oval & ~(lmask | (stereo ? rmask : 0));
if (ucontrol->value.integer.value[0])
val |= lmask;
if (stereo && ucontrol->value.integer.value[1])
val |= rmask;
snd_pmac_burgundy_wcw(chip, addr, val);
return val != oval;
}
#define BURGUNDY_SWITCH_W(xname, xindex, addr, lbit, rbit, stereo) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\
.info = snd_pmac_burgundy_info_switch_w,\
.get = snd_pmac_burgundy_get_switch_w,\
.put = snd_pmac_burgundy_put_switch_w,\
.private_value = ((lbit) | ((rbit) << 8)\
| (ADDR2BASE(addr) << 16) | ((stereo) << 24)) }
/*
* Burgundy switch: 0/1, mono/stereo, byte reg, bit mask
*/
static int snd_pmac_burgundy_info_switch_b(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int stereo = (kcontrol->private_value >> 24) & 1;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = stereo + 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int snd_pmac_burgundy_get_switch_b(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff);
int lmask = kcontrol->private_value & 0xff;
int rmask = (kcontrol->private_value >> 8) & 0xff;
int stereo = (kcontrol->private_value >> 24) & 1;
int val = snd_pmac_burgundy_rcb(chip, addr);
ucontrol->value.integer.value[0] = (val & lmask) ? 1 : 0;
if (stereo)
ucontrol->value.integer.value[1] = (val & rmask) ? 1 : 0;
return 0;
}
static int snd_pmac_burgundy_put_switch_b(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
unsigned int addr = BASE2ADDR((kcontrol->private_value >> 16) & 0xff);
int lmask = kcontrol->private_value & 0xff;
int rmask = (kcontrol->private_value >> 8) & 0xff;
int stereo = (kcontrol->private_value >> 24) & 1;
int val, oval;
oval = snd_pmac_burgundy_rcb(chip, addr);
val = oval & ~(lmask | rmask);
if (ucontrol->value.integer.value[0])
val |= lmask;
if (stereo && ucontrol->value.integer.value[1])
val |= rmask;
snd_pmac_burgundy_wcb(chip, addr, val);
return val != oval;
}
#define BURGUNDY_SWITCH_B(xname, xindex, addr, lmask, rmask, stereo) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex,\
.info = snd_pmac_burgundy_info_switch_b,\
.get = snd_pmac_burgundy_get_switch_b,\
.put = snd_pmac_burgundy_put_switch_b,\
.private_value = ((lmask) | ((rmask) << 8)\
| (ADDR2BASE(addr) << 16) | ((stereo) << 24)) }
/*
* Burgundy mixers
*/
static struct snd_kcontrol_new snd_pmac_burgundy_mixers[] __devinitdata = {
BURGUNDY_VOLUME_W("Master Playback Volume", 0,
MASK_ADDR_BURGUNDY_MASTER_VOLUME, 8),
BURGUNDY_VOLUME_W("CD Capture Volume", 0,
MASK_ADDR_BURGUNDY_VOLCD, 16),
BURGUNDY_VOLUME_2B("Input Capture Volume", 0,
MASK_ADDR_BURGUNDY_VOLMIX01, 2),
BURGUNDY_VOLUME_2B("Mixer Playback Volume", 0,
MASK_ADDR_BURGUNDY_VOLMIX23, 0),
BURGUNDY_VOLUME_B("CD Gain Capture Volume", 0,
MASK_ADDR_BURGUNDY_GAINCD, 1, 0),
BURGUNDY_SWITCH_W("Master Capture Switch", 0,
MASK_ADDR_BURGUNDY_OUTPUTENABLES, 24, 0, 0),
BURGUNDY_SWITCH_W("CD Capture Switch", 0,
MASK_ADDR_BURGUNDY_CAPTURESELECTS, 0, 16, 1),
BURGUNDY_SWITCH_W("CD Playback Switch", 0,
MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 0, 16, 1),
/* BURGUNDY_SWITCH_W("Loop Capture Switch", 0,
* MASK_ADDR_BURGUNDY_CAPTURESELECTS, 8, 24, 1),
* BURGUNDY_SWITCH_B("Mixer out Capture Switch", 0,
* MASK_ADDR_BURGUNDY_HOSTIFAD, 0x02, 0, 0),
* BURGUNDY_SWITCH_B("Mixer Capture Switch", 0,
* MASK_ADDR_BURGUNDY_HOSTIFAD, 0x01, 0, 0),
* BURGUNDY_SWITCH_B("PCM out Capture Switch", 0,
* MASK_ADDR_BURGUNDY_HOSTIFEH, 0x02, 0, 0),
*/ BURGUNDY_SWITCH_B("PCM Capture Switch", 0,
MASK_ADDR_BURGUNDY_HOSTIFEH, 0x01, 0, 0)
};
static struct snd_kcontrol_new snd_pmac_burgundy_mixers_imac[] __devinitdata = {
BURGUNDY_VOLUME_W("Line in Capture Volume", 0,
MASK_ADDR_BURGUNDY_VOLLINE, 16),
BURGUNDY_VOLUME_W("Mic Capture Volume", 0,
MASK_ADDR_BURGUNDY_VOLMIC, 16),
BURGUNDY_VOLUME_B("Line in Gain Capture Volume", 0,
MASK_ADDR_BURGUNDY_GAINLINE, 1, 0),
BURGUNDY_VOLUME_B("Mic Gain Capture Volume", 0,
MASK_ADDR_BURGUNDY_GAINMIC, 1, 0),
BURGUNDY_VOLUME_B("Speaker Playback Volume", 0,
MASK_ADDR_BURGUNDY_ATTENSPEAKER, 1, 1),
BURGUNDY_VOLUME_B("Line out Playback Volume", 0,
MASK_ADDR_BURGUNDY_ATTENLINEOUT, 1, 1),
BURGUNDY_VOLUME_B("Headphone Playback Volume", 0,
MASK_ADDR_BURGUNDY_ATTENHP, 1, 1),
BURGUNDY_SWITCH_W("Line in Capture Switch", 0,
MASK_ADDR_BURGUNDY_CAPTURESELECTS, 1, 17, 1),
BURGUNDY_SWITCH_W("Mic Capture Switch", 0,
MASK_ADDR_BURGUNDY_CAPTURESELECTS, 2, 18, 1),
BURGUNDY_SWITCH_W("Line in Playback Switch", 0,
MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 1, 17, 1),
BURGUNDY_SWITCH_W("Mic Playback Switch", 0,
MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 2, 18, 1),
BURGUNDY_SWITCH_B("Mic Boost Capture Switch", 0,
MASK_ADDR_BURGUNDY_INPBOOST, 0x40, 0x80, 1)
};
static struct snd_kcontrol_new snd_pmac_burgundy_mixers_pmac[] __devinitdata = {
BURGUNDY_VOLUME_W("Line in Capture Volume", 0,
MASK_ADDR_BURGUNDY_VOLMIC, 16),
BURGUNDY_VOLUME_B("Line in Gain Capture Volume", 0,
MASK_ADDR_BURGUNDY_GAINMIC, 1, 0),
BURGUNDY_VOLUME_B("Speaker Playback Volume", 0,
MASK_ADDR_BURGUNDY_ATTENMONO, 0, 1),
BURGUNDY_VOLUME_B("Line out Playback Volume", 0,
MASK_ADDR_BURGUNDY_ATTENSPEAKER, 1, 1),
BURGUNDY_SWITCH_W("Line in Capture Switch", 0,
MASK_ADDR_BURGUNDY_CAPTURESELECTS, 2, 18, 1),
BURGUNDY_SWITCH_W("Line in Playback Switch", 0,
MASK_ADDR_BURGUNDY_OUTPUTSELECTS, 2, 18, 1),
/* BURGUNDY_SWITCH_B("Line in Boost Capture Switch", 0,
* MASK_ADDR_BURGUNDY_INPBOOST, 0x40, 0x80, 1) */
};
static struct snd_kcontrol_new snd_pmac_burgundy_master_sw_imac __devinitdata =
BURGUNDY_SWITCH_B("Master Playback Switch", 0,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
BURGUNDY_OUTPUT_LEFT | BURGUNDY_LINEOUT_LEFT | BURGUNDY_HP_LEFT,
BURGUNDY_OUTPUT_RIGHT | BURGUNDY_LINEOUT_RIGHT | BURGUNDY_HP_RIGHT, 1);
static struct snd_kcontrol_new snd_pmac_burgundy_master_sw_pmac __devinitdata =
BURGUNDY_SWITCH_B("Master Playback Switch", 0,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
BURGUNDY_OUTPUT_INTERN
| BURGUNDY_OUTPUT_LEFT, BURGUNDY_OUTPUT_RIGHT, 1);
static struct snd_kcontrol_new snd_pmac_burgundy_speaker_sw_imac __devinitdata =
BURGUNDY_SWITCH_B("Speaker Playback Switch", 0,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
BURGUNDY_OUTPUT_LEFT, BURGUNDY_OUTPUT_RIGHT, 1);
static struct snd_kcontrol_new snd_pmac_burgundy_speaker_sw_pmac __devinitdata =
BURGUNDY_SWITCH_B("Speaker Playback Switch", 0,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
BURGUNDY_OUTPUT_INTERN, 0, 0);
static struct snd_kcontrol_new snd_pmac_burgundy_line_sw_imac __devinitdata =
BURGUNDY_SWITCH_B("Line out Playback Switch", 0,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
BURGUNDY_LINEOUT_LEFT, BURGUNDY_LINEOUT_RIGHT, 1);
static struct snd_kcontrol_new snd_pmac_burgundy_line_sw_pmac __devinitdata =
BURGUNDY_SWITCH_B("Line out Playback Switch", 0,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
BURGUNDY_OUTPUT_LEFT, BURGUNDY_OUTPUT_RIGHT, 1);
static struct snd_kcontrol_new snd_pmac_burgundy_hp_sw_imac __devinitdata =
BURGUNDY_SWITCH_B("Headphone Playback Switch", 0,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
BURGUNDY_HP_LEFT, BURGUNDY_HP_RIGHT, 1);
#ifdef PMAC_SUPPORT_AUTOMUTE
/*
* auto-mute stuffs
*/
static int snd_pmac_burgundy_detect_headphone(struct snd_pmac *chip)
{
return (in_le32(&chip->awacs->codec_stat) & chip->hp_stat_mask) ? 1 : 0;
}
static void snd_pmac_burgundy_update_automute(struct snd_pmac *chip, int do_notify)
{
if (chip->auto_mute) {
int imac = of_machine_is_compatible("iMac");
int reg, oreg;
reg = oreg = snd_pmac_burgundy_rcb(chip,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES);
reg &= imac ? ~(BURGUNDY_OUTPUT_LEFT | BURGUNDY_OUTPUT_RIGHT
| BURGUNDY_HP_LEFT | BURGUNDY_HP_RIGHT)
: ~(BURGUNDY_OUTPUT_LEFT | BURGUNDY_OUTPUT_RIGHT
| BURGUNDY_OUTPUT_INTERN);
if (snd_pmac_burgundy_detect_headphone(chip))
reg |= imac ? (BURGUNDY_HP_LEFT | BURGUNDY_HP_RIGHT)
: (BURGUNDY_OUTPUT_LEFT
| BURGUNDY_OUTPUT_RIGHT);
else
reg |= imac ? (BURGUNDY_OUTPUT_LEFT
| BURGUNDY_OUTPUT_RIGHT)
: (BURGUNDY_OUTPUT_INTERN);
if (do_notify && reg == oreg)
return;
snd_pmac_burgundy_wcb(chip,
MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES, reg);
if (do_notify) {
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->master_sw_ctl->id);
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->speaker_sw_ctl->id);
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->hp_detect_ctl->id);
}
}
}
#endif /* PMAC_SUPPORT_AUTOMUTE */
/*
* initialize burgundy
*/
int __devinit snd_pmac_burgundy_init(struct snd_pmac *chip)
{
int imac = of_machine_is_compatible("iMac");
int i, err;
/* Checks to see the chip is alive and kicking */
if ((in_le32(&chip->awacs->codec_ctrl) & MASK_ERRCODE) == 0xf0000) {
printk(KERN_WARNING "pmac burgundy: disabled by MacOS :-(\n");
return 1;
}
snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_OUTPUTENABLES,
DEF_BURGUNDY_OUTPUTENABLES);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_MORE_OUTPUTENABLES,
DEF_BURGUNDY_MORE_OUTPUTENABLES);
snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_OUTPUTSELECTS,
DEF_BURGUNDY_OUTPUTSELECTS);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_INPSEL21,
DEF_BURGUNDY_INPSEL21);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_INPSEL3,
imac ? DEF_BURGUNDY_INPSEL3_IMAC
: DEF_BURGUNDY_INPSEL3_PMAC);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINCD,
DEF_BURGUNDY_GAINCD);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINLINE,
DEF_BURGUNDY_GAINLINE);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINMIC,
DEF_BURGUNDY_GAINMIC);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_GAINMODEM,
DEF_BURGUNDY_GAINMODEM);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_ATTENSPEAKER,
DEF_BURGUNDY_ATTENSPEAKER);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_ATTENLINEOUT,
DEF_BURGUNDY_ATTENLINEOUT);
snd_pmac_burgundy_wcb(chip, MASK_ADDR_BURGUNDY_ATTENHP,
DEF_BURGUNDY_ATTENHP);
snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_MASTER_VOLUME,
DEF_BURGUNDY_MASTER_VOLUME);
snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_VOLCD,
DEF_BURGUNDY_VOLCD);
snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_VOLLINE,
DEF_BURGUNDY_VOLLINE);
snd_pmac_burgundy_wcw(chip, MASK_ADDR_BURGUNDY_VOLMIC,
DEF_BURGUNDY_VOLMIC);
if (chip->hp_stat_mask == 0) {
/* set headphone-jack detection bit */
if (imac)
chip->hp_stat_mask = BURGUNDY_HPDETECT_IMAC_UPPER
| BURGUNDY_HPDETECT_IMAC_LOWER
| BURGUNDY_HPDETECT_IMAC_SIDE;
else
chip->hp_stat_mask = BURGUNDY_HPDETECT_PMAC_BACK;
}
/*
* build burgundy mixers
*/
strcpy(chip->card->mixername, "PowerMac Burgundy");
for (i = 0; i < ARRAY_SIZE(snd_pmac_burgundy_mixers); i++) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&snd_pmac_burgundy_mixers[i], chip));
if (err < 0)
return err;
}
for (i = 0; i < (imac ? ARRAY_SIZE(snd_pmac_burgundy_mixers_imac)
: ARRAY_SIZE(snd_pmac_burgundy_mixers_pmac)); i++) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(imac ? &snd_pmac_burgundy_mixers_imac[i]
: &snd_pmac_burgundy_mixers_pmac[i], chip));
if (err < 0)
return err;
}
chip->master_sw_ctl = snd_ctl_new1(imac
? &snd_pmac_burgundy_master_sw_imac
: &snd_pmac_burgundy_master_sw_pmac, chip);
err = snd_ctl_add(chip->card, chip->master_sw_ctl);
if (err < 0)
return err;
chip->master_sw_ctl = snd_ctl_new1(imac
? &snd_pmac_burgundy_line_sw_imac
: &snd_pmac_burgundy_line_sw_pmac, chip);
err = snd_ctl_add(chip->card, chip->master_sw_ctl);
if (err < 0)
return err;
if (imac) {
chip->master_sw_ctl = snd_ctl_new1(
&snd_pmac_burgundy_hp_sw_imac, chip);
err = snd_ctl_add(chip->card, chip->master_sw_ctl);
if (err < 0)
return err;
}
chip->speaker_sw_ctl = snd_ctl_new1(imac
? &snd_pmac_burgundy_speaker_sw_imac
: &snd_pmac_burgundy_speaker_sw_pmac, chip);
err = snd_ctl_add(chip->card, chip->speaker_sw_ctl);
if (err < 0)
return err;
#ifdef PMAC_SUPPORT_AUTOMUTE
err = snd_pmac_add_automute(chip);
if (err < 0)
return err;
chip->detect_headphone = snd_pmac_burgundy_detect_headphone;
chip->update_automute = snd_pmac_burgundy_update_automute;
snd_pmac_burgundy_update_automute(chip, 0); /* update the status only */
#endif
return 0;
}