David Daney b93b2abce4 MIPS: Octeon: Rewrite DMA mapping functions.
All Octeon chips can support more than 4GB of RAM.  Also due to how Octeon
PCI is setup, even some configurations with less than 4GB of RAM will have
portions that are not accessible from 32-bit devices.

Enable the swiotlb code to handle the cases where a device cannot directly
do DMA.  This is a complete rewrite of the Octeon DMA mapping code.

Signed-off-by: David Daney <ddaney@caviumnetworks.com>
Patchwork: http://patchwork.linux-mips.org/patch/1639/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2010-10-29 19:08:32 +01:00

350 lines
9.1 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
* Copyright (C) 2000, 2001 Ralf Baechle <ralf@gnu.org>
* Copyright (C) 2005 Ilya A. Volynets-Evenbakh <ilya@total-knowledge.com>
* swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
* IP32 changes by Ilya.
* Copyright (C) 2010 Cavium Networks, Inc.
*/
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/bootmem.h>
#include <linux/swiotlb.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <asm/bootinfo.h>
#include <asm/octeon/octeon.h>
#ifdef CONFIG_PCI
#include <asm/octeon/pci-octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
static dma_addr_t octeon_hole_phys_to_dma(phys_addr_t paddr)
{
if (paddr >= CVMX_PCIE_BAR1_PHYS_BASE && paddr < (CVMX_PCIE_BAR1_PHYS_BASE + CVMX_PCIE_BAR1_PHYS_SIZE))
return paddr - CVMX_PCIE_BAR1_PHYS_BASE + CVMX_PCIE_BAR1_RC_BASE;
else
return paddr;
}
static phys_addr_t octeon_hole_dma_to_phys(dma_addr_t daddr)
{
if (daddr >= CVMX_PCIE_BAR1_RC_BASE)
return daddr + CVMX_PCIE_BAR1_PHYS_BASE - CVMX_PCIE_BAR1_RC_BASE;
else
return daddr;
}
static dma_addr_t octeon_gen1_phys_to_dma(struct device *dev, phys_addr_t paddr)
{
if (paddr >= 0x410000000ull && paddr < 0x420000000ull)
paddr -= 0x400000000ull;
return octeon_hole_phys_to_dma(paddr);
}
static phys_addr_t octeon_gen1_dma_to_phys(struct device *dev, dma_addr_t daddr)
{
daddr = octeon_hole_dma_to_phys(daddr);
if (daddr >= 0x10000000ull && daddr < 0x20000000ull)
daddr += 0x400000000ull;
return daddr;
}
static dma_addr_t octeon_big_phys_to_dma(struct device *dev, phys_addr_t paddr)
{
if (paddr >= 0x410000000ull && paddr < 0x420000000ull)
paddr -= 0x400000000ull;
/* Anything in the BAR1 hole or above goes via BAR2 */
if (paddr >= 0xf0000000ull)
paddr = OCTEON_BAR2_PCI_ADDRESS + paddr;
return paddr;
}
static phys_addr_t octeon_big_dma_to_phys(struct device *dev, dma_addr_t daddr)
{
if (daddr >= OCTEON_BAR2_PCI_ADDRESS)
daddr -= OCTEON_BAR2_PCI_ADDRESS;
if (daddr >= 0x10000000ull && daddr < 0x20000000ull)
daddr += 0x400000000ull;
return daddr;
}
static dma_addr_t octeon_small_phys_to_dma(struct device *dev,
phys_addr_t paddr)
{
if (paddr >= 0x410000000ull && paddr < 0x420000000ull)
paddr -= 0x400000000ull;
/* Anything not in the BAR1 range goes via BAR2 */
if (paddr >= octeon_bar1_pci_phys && paddr < octeon_bar1_pci_phys + 0x8000000ull)
paddr = paddr - octeon_bar1_pci_phys;
else
paddr = OCTEON_BAR2_PCI_ADDRESS + paddr;
return paddr;
}
static phys_addr_t octeon_small_dma_to_phys(struct device *dev,
dma_addr_t daddr)
{
if (daddr >= OCTEON_BAR2_PCI_ADDRESS)
daddr -= OCTEON_BAR2_PCI_ADDRESS;
else
daddr += octeon_bar1_pci_phys;
if (daddr >= 0x10000000ull && daddr < 0x20000000ull)
daddr += 0x400000000ull;
return daddr;
}
#endif /* CONFIG_PCI */
static dma_addr_t octeon_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
dma_addr_t daddr = swiotlb_map_page(dev, page, offset, size,
direction, attrs);
mb();
return daddr;
}
static int octeon_dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
{
int r = swiotlb_map_sg_attrs(dev, sg, nents, direction, attrs);
mb();
return r;
}
static void octeon_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
{
swiotlb_sync_single_for_device(dev, dma_handle, size, direction);
mb();
}
static void octeon_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems, enum dma_data_direction direction)
{
swiotlb_sync_sg_for_device(dev, sg, nelems, direction);
mb();
}
static void *octeon_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
void *ret;
if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
return ret;
/* ignore region specifiers */
gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
#ifdef CONFIG_ZONE_DMA
if (dev == NULL)
gfp |= __GFP_DMA;
else if (dev->coherent_dma_mask <= DMA_BIT_MASK(24))
gfp |= __GFP_DMA;
else
#endif
#ifdef CONFIG_ZONE_DMA32
if (dev->coherent_dma_mask <= DMA_BIT_MASK(32))
gfp |= __GFP_DMA32;
else
#endif
;
/* Don't invoke OOM killer */
gfp |= __GFP_NORETRY;
ret = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
mb();
return ret;
}
static void octeon_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
int order = get_order(size);
if (dma_release_from_coherent(dev, order, vaddr))
return;
swiotlb_free_coherent(dev, size, vaddr, dma_handle);
}
static dma_addr_t octeon_unity_phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr;
}
static phys_addr_t octeon_unity_dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr;
}
struct octeon_dma_map_ops {
struct dma_map_ops dma_map_ops;
dma_addr_t (*phys_to_dma)(struct device *dev, phys_addr_t paddr);
phys_addr_t (*dma_to_phys)(struct device *dev, dma_addr_t daddr);
};
dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
struct octeon_dma_map_ops *ops = container_of(get_dma_ops(dev),
struct octeon_dma_map_ops,
dma_map_ops);
return ops->phys_to_dma(dev, paddr);
}
EXPORT_SYMBOL(phys_to_dma);
phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{
struct octeon_dma_map_ops *ops = container_of(get_dma_ops(dev),
struct octeon_dma_map_ops,
dma_map_ops);
return ops->dma_to_phys(dev, daddr);
}
EXPORT_SYMBOL(dma_to_phys);
static struct octeon_dma_map_ops octeon_linear_dma_map_ops = {
.dma_map_ops = {
.alloc_coherent = octeon_dma_alloc_coherent,
.free_coherent = octeon_dma_free_coherent,
.map_page = octeon_dma_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = octeon_dma_map_sg,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = octeon_dma_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = octeon_dma_sync_sg_for_device,
.mapping_error = swiotlb_dma_mapping_error,
.dma_supported = swiotlb_dma_supported
},
.phys_to_dma = octeon_unity_phys_to_dma,
.dma_to_phys = octeon_unity_dma_to_phys
};
char *octeon_swiotlb;
void __init plat_swiotlb_setup(void)
{
int i;
phys_t max_addr;
phys_t addr_size;
size_t swiotlbsize;
unsigned long swiotlb_nslabs;
max_addr = 0;
addr_size = 0;
for (i = 0 ; i < boot_mem_map.nr_map; i++) {
struct boot_mem_map_entry *e = &boot_mem_map.map[i];
if (e->type != BOOT_MEM_RAM)
continue;
/* These addresses map low for PCI. */
if (e->addr > 0x410000000ull)
continue;
addr_size += e->size;
if (max_addr < e->addr + e->size)
max_addr = e->addr + e->size;
}
swiotlbsize = PAGE_SIZE;
#ifdef CONFIG_PCI
/*
* For OCTEON_DMA_BAR_TYPE_SMALL, size the iotlb at 1/4 memory
* size to a maximum of 64MB
*/
if (OCTEON_IS_MODEL(OCTEON_CN31XX)
|| OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) {
swiotlbsize = addr_size / 4;
if (swiotlbsize > 64 * (1<<20))
swiotlbsize = 64 * (1<<20);
} else if (max_addr > 0xf0000000ul) {
/*
* Otherwise only allocate a big iotlb if there is
* memory past the BAR1 hole.
*/
swiotlbsize = 64 * (1<<20);
}
#endif
swiotlb_nslabs = swiotlbsize >> IO_TLB_SHIFT;
swiotlb_nslabs = ALIGN(swiotlb_nslabs, IO_TLB_SEGSIZE);
swiotlbsize = swiotlb_nslabs << IO_TLB_SHIFT;
octeon_swiotlb = alloc_bootmem_low_pages(swiotlbsize);
swiotlb_init_with_tbl(octeon_swiotlb, swiotlb_nslabs, 1);
mips_dma_map_ops = &octeon_linear_dma_map_ops.dma_map_ops;
}
#ifdef CONFIG_PCI
static struct octeon_dma_map_ops _octeon_pci_dma_map_ops = {
.dma_map_ops = {
.alloc_coherent = octeon_dma_alloc_coherent,
.free_coherent = octeon_dma_free_coherent,
.map_page = octeon_dma_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = octeon_dma_map_sg,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = octeon_dma_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = octeon_dma_sync_sg_for_device,
.mapping_error = swiotlb_dma_mapping_error,
.dma_supported = swiotlb_dma_supported
},
};
struct dma_map_ops *octeon_pci_dma_map_ops;
void __init octeon_pci_dma_init(void)
{
switch (octeon_dma_bar_type) {
case OCTEON_DMA_BAR_TYPE_PCIE:
_octeon_pci_dma_map_ops.phys_to_dma = octeon_gen1_phys_to_dma;
_octeon_pci_dma_map_ops.dma_to_phys = octeon_gen1_dma_to_phys;
break;
case OCTEON_DMA_BAR_TYPE_BIG:
_octeon_pci_dma_map_ops.phys_to_dma = octeon_big_phys_to_dma;
_octeon_pci_dma_map_ops.dma_to_phys = octeon_big_dma_to_phys;
break;
case OCTEON_DMA_BAR_TYPE_SMALL:
_octeon_pci_dma_map_ops.phys_to_dma = octeon_small_phys_to_dma;
_octeon_pci_dma_map_ops.dma_to_phys = octeon_small_dma_to_phys;
break;
default:
BUG();
}
octeon_pci_dma_map_ops = &_octeon_pci_dma_map_ops.dma_map_ops;
}
#endif /* CONFIG_PCI */