mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-18 11:17:07 +00:00
36c4a73bf8
Besides asking vmalloc memory to be executable via the prot argument of __vmalloc_node_range() (see the previous patch), the kernel can skip that bit and instead mark memory as executable via set_memory_x(). Once tag-based KASAN modes start tagging vmalloc allocations, executing code from such allocations will lead to the PC register getting a tag, which is not tolerated by the kernel. Generic kernel code typically allocates memory via module_alloc() if it intends to mark memory as executable. (On arm64 module_alloc() uses __vmalloc_node_range() without setting the executable bit). Thus, reset pointer tags of pointers returned from module_alloc(). However, on arm64 there's an exception: the eBPF subsystem. Instead of using module_alloc(), it uses vmalloc() (via bpf_jit_alloc_exec()) to allocate its JIT region. Thus, reset pointer tags of pointers returned from bpf_jit_alloc_exec(). Resetting tags for these pointers results in untagged pointers being passed to set_memory_x(). This causes conflicts in arithmetic checks in change_memory_common(), as vm_struct->addr pointer returned by find_vm_area() is tagged. Reset pointer tag of find_vm_area(addr)->addr in change_memory_common(). Link: https://lkml.kernel.org/r/b7b2595423340cd7d76b770e5d519acf3b72f0ab.1643047180.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
534 lines
14 KiB
C
534 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* AArch64 loadable module support.
|
|
*
|
|
* Copyright (C) 2012 ARM Limited
|
|
*
|
|
* Author: Will Deacon <will.deacon@arm.com>
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/sections.h>
|
|
|
|
void *module_alloc(unsigned long size)
|
|
{
|
|
u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
|
|
gfp_t gfp_mask = GFP_KERNEL;
|
|
void *p;
|
|
|
|
/* Silence the initial allocation */
|
|
if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
|
|
gfp_mask |= __GFP_NOWARN;
|
|
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
|
|
IS_ENABLED(CONFIG_KASAN_SW_TAGS))
|
|
/* don't exceed the static module region - see below */
|
|
module_alloc_end = MODULES_END;
|
|
|
|
p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
|
|
module_alloc_end, gfp_mask, PAGE_KERNEL, VM_DEFER_KMEMLEAK,
|
|
NUMA_NO_NODE, __builtin_return_address(0));
|
|
|
|
if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
|
|
(IS_ENABLED(CONFIG_KASAN_VMALLOC) ||
|
|
(!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
|
|
!IS_ENABLED(CONFIG_KASAN_SW_TAGS))))
|
|
/*
|
|
* KASAN without KASAN_VMALLOC can only deal with module
|
|
* allocations being served from the reserved module region,
|
|
* since the remainder of the vmalloc region is already
|
|
* backed by zero shadow pages, and punching holes into it
|
|
* is non-trivial. Since the module region is not randomized
|
|
* when KASAN is enabled without KASAN_VMALLOC, it is even
|
|
* less likely that the module region gets exhausted, so we
|
|
* can simply omit this fallback in that case.
|
|
*/
|
|
p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
|
|
module_alloc_base + SZ_2G, GFP_KERNEL,
|
|
PAGE_KERNEL, 0, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
|
|
if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
|
|
vfree(p);
|
|
return NULL;
|
|
}
|
|
|
|
/* Memory is intended to be executable, reset the pointer tag. */
|
|
return kasan_reset_tag(p);
|
|
}
|
|
|
|
enum aarch64_reloc_op {
|
|
RELOC_OP_NONE,
|
|
RELOC_OP_ABS,
|
|
RELOC_OP_PREL,
|
|
RELOC_OP_PAGE,
|
|
};
|
|
|
|
static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
|
|
{
|
|
switch (reloc_op) {
|
|
case RELOC_OP_ABS:
|
|
return val;
|
|
case RELOC_OP_PREL:
|
|
return val - (u64)place;
|
|
case RELOC_OP_PAGE:
|
|
return (val & ~0xfff) - ((u64)place & ~0xfff);
|
|
case RELOC_OP_NONE:
|
|
return 0;
|
|
}
|
|
|
|
pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
|
|
return 0;
|
|
}
|
|
|
|
static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
|
|
{
|
|
s64 sval = do_reloc(op, place, val);
|
|
|
|
/*
|
|
* The ELF psABI for AArch64 documents the 16-bit and 32-bit place
|
|
* relative and absolute relocations as having a range of [-2^15, 2^16)
|
|
* or [-2^31, 2^32), respectively. However, in order to be able to
|
|
* detect overflows reliably, we have to choose whether we interpret
|
|
* such quantities as signed or as unsigned, and stick with it.
|
|
* The way we organize our address space requires a signed
|
|
* interpretation of 32-bit relative references, so let's use that
|
|
* for all R_AARCH64_PRELxx relocations. This means our upper
|
|
* bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
|
|
*/
|
|
|
|
switch (len) {
|
|
case 16:
|
|
*(s16 *)place = sval;
|
|
switch (op) {
|
|
case RELOC_OP_ABS:
|
|
if (sval < 0 || sval > U16_MAX)
|
|
return -ERANGE;
|
|
break;
|
|
case RELOC_OP_PREL:
|
|
if (sval < S16_MIN || sval > S16_MAX)
|
|
return -ERANGE;
|
|
break;
|
|
default:
|
|
pr_err("Invalid 16-bit data relocation (%d)\n", op);
|
|
return 0;
|
|
}
|
|
break;
|
|
case 32:
|
|
*(s32 *)place = sval;
|
|
switch (op) {
|
|
case RELOC_OP_ABS:
|
|
if (sval < 0 || sval > U32_MAX)
|
|
return -ERANGE;
|
|
break;
|
|
case RELOC_OP_PREL:
|
|
if (sval < S32_MIN || sval > S32_MAX)
|
|
return -ERANGE;
|
|
break;
|
|
default:
|
|
pr_err("Invalid 32-bit data relocation (%d)\n", op);
|
|
return 0;
|
|
}
|
|
break;
|
|
case 64:
|
|
*(s64 *)place = sval;
|
|
break;
|
|
default:
|
|
pr_err("Invalid length (%d) for data relocation\n", len);
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
enum aarch64_insn_movw_imm_type {
|
|
AARCH64_INSN_IMM_MOVNZ,
|
|
AARCH64_INSN_IMM_MOVKZ,
|
|
};
|
|
|
|
static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
|
|
int lsb, enum aarch64_insn_movw_imm_type imm_type)
|
|
{
|
|
u64 imm;
|
|
s64 sval;
|
|
u32 insn = le32_to_cpu(*place);
|
|
|
|
sval = do_reloc(op, place, val);
|
|
imm = sval >> lsb;
|
|
|
|
if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
|
|
/*
|
|
* For signed MOVW relocations, we have to manipulate the
|
|
* instruction encoding depending on whether or not the
|
|
* immediate is less than zero.
|
|
*/
|
|
insn &= ~(3 << 29);
|
|
if (sval >= 0) {
|
|
/* >=0: Set the instruction to MOVZ (opcode 10b). */
|
|
insn |= 2 << 29;
|
|
} else {
|
|
/*
|
|
* <0: Set the instruction to MOVN (opcode 00b).
|
|
* Since we've masked the opcode already, we
|
|
* don't need to do anything other than
|
|
* inverting the new immediate field.
|
|
*/
|
|
imm = ~imm;
|
|
}
|
|
}
|
|
|
|
/* Update the instruction with the new encoding. */
|
|
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
|
|
*place = cpu_to_le32(insn);
|
|
|
|
if (imm > U16_MAX)
|
|
return -ERANGE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
|
|
int lsb, int len, enum aarch64_insn_imm_type imm_type)
|
|
{
|
|
u64 imm, imm_mask;
|
|
s64 sval;
|
|
u32 insn = le32_to_cpu(*place);
|
|
|
|
/* Calculate the relocation value. */
|
|
sval = do_reloc(op, place, val);
|
|
sval >>= lsb;
|
|
|
|
/* Extract the value bits and shift them to bit 0. */
|
|
imm_mask = (BIT(lsb + len) - 1) >> lsb;
|
|
imm = sval & imm_mask;
|
|
|
|
/* Update the instruction's immediate field. */
|
|
insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
|
|
*place = cpu_to_le32(insn);
|
|
|
|
/*
|
|
* Extract the upper value bits (including the sign bit) and
|
|
* shift them to bit 0.
|
|
*/
|
|
sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
|
|
|
|
/*
|
|
* Overflow has occurred if the upper bits are not all equal to
|
|
* the sign bit of the value.
|
|
*/
|
|
if ((u64)(sval + 1) >= 2)
|
|
return -ERANGE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
|
|
__le32 *place, u64 val)
|
|
{
|
|
u32 insn;
|
|
|
|
if (!is_forbidden_offset_for_adrp(place))
|
|
return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
|
|
AARCH64_INSN_IMM_ADR);
|
|
|
|
/* patch ADRP to ADR if it is in range */
|
|
if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
|
|
AARCH64_INSN_IMM_ADR)) {
|
|
insn = le32_to_cpu(*place);
|
|
insn &= ~BIT(31);
|
|
} else {
|
|
/* out of range for ADR -> emit a veneer */
|
|
val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
|
|
if (!val)
|
|
return -ENOEXEC;
|
|
insn = aarch64_insn_gen_branch_imm((u64)place, val,
|
|
AARCH64_INSN_BRANCH_NOLINK);
|
|
}
|
|
|
|
*place = cpu_to_le32(insn);
|
|
return 0;
|
|
}
|
|
|
|
int apply_relocate_add(Elf64_Shdr *sechdrs,
|
|
const char *strtab,
|
|
unsigned int symindex,
|
|
unsigned int relsec,
|
|
struct module *me)
|
|
{
|
|
unsigned int i;
|
|
int ovf;
|
|
bool overflow_check;
|
|
Elf64_Sym *sym;
|
|
void *loc;
|
|
u64 val;
|
|
Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
|
|
|
|
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
|
|
/* loc corresponds to P in the AArch64 ELF document. */
|
|
loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
|
|
+ rel[i].r_offset;
|
|
|
|
/* sym is the ELF symbol we're referring to. */
|
|
sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
|
|
+ ELF64_R_SYM(rel[i].r_info);
|
|
|
|
/* val corresponds to (S + A) in the AArch64 ELF document. */
|
|
val = sym->st_value + rel[i].r_addend;
|
|
|
|
/* Check for overflow by default. */
|
|
overflow_check = true;
|
|
|
|
/* Perform the static relocation. */
|
|
switch (ELF64_R_TYPE(rel[i].r_info)) {
|
|
/* Null relocations. */
|
|
case R_ARM_NONE:
|
|
case R_AARCH64_NONE:
|
|
ovf = 0;
|
|
break;
|
|
|
|
/* Data relocations. */
|
|
case R_AARCH64_ABS64:
|
|
overflow_check = false;
|
|
ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
|
|
break;
|
|
case R_AARCH64_ABS32:
|
|
ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
|
|
break;
|
|
case R_AARCH64_ABS16:
|
|
ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
|
|
break;
|
|
case R_AARCH64_PREL64:
|
|
overflow_check = false;
|
|
ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
|
|
break;
|
|
case R_AARCH64_PREL32:
|
|
ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
|
|
break;
|
|
case R_AARCH64_PREL16:
|
|
ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
|
|
break;
|
|
|
|
/* MOVW instruction relocations. */
|
|
case R_AARCH64_MOVW_UABS_G0_NC:
|
|
overflow_check = false;
|
|
fallthrough;
|
|
case R_AARCH64_MOVW_UABS_G0:
|
|
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
|
|
AARCH64_INSN_IMM_MOVKZ);
|
|
break;
|
|
case R_AARCH64_MOVW_UABS_G1_NC:
|
|
overflow_check = false;
|
|
fallthrough;
|
|
case R_AARCH64_MOVW_UABS_G1:
|
|
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
|
|
AARCH64_INSN_IMM_MOVKZ);
|
|
break;
|
|
case R_AARCH64_MOVW_UABS_G2_NC:
|
|
overflow_check = false;
|
|
fallthrough;
|
|
case R_AARCH64_MOVW_UABS_G2:
|
|
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
|
|
AARCH64_INSN_IMM_MOVKZ);
|
|
break;
|
|
case R_AARCH64_MOVW_UABS_G3:
|
|
/* We're using the top bits so we can't overflow. */
|
|
overflow_check = false;
|
|
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
|
|
AARCH64_INSN_IMM_MOVKZ);
|
|
break;
|
|
case R_AARCH64_MOVW_SABS_G0:
|
|
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
|
|
AARCH64_INSN_IMM_MOVNZ);
|
|
break;
|
|
case R_AARCH64_MOVW_SABS_G1:
|
|
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
|
|
AARCH64_INSN_IMM_MOVNZ);
|
|
break;
|
|
case R_AARCH64_MOVW_SABS_G2:
|
|
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
|
|
AARCH64_INSN_IMM_MOVNZ);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G0_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
|
|
AARCH64_INSN_IMM_MOVKZ);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G0:
|
|
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
|
|
AARCH64_INSN_IMM_MOVNZ);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G1_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
|
|
AARCH64_INSN_IMM_MOVKZ);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G1:
|
|
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
|
|
AARCH64_INSN_IMM_MOVNZ);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G2_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
|
|
AARCH64_INSN_IMM_MOVKZ);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G2:
|
|
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
|
|
AARCH64_INSN_IMM_MOVNZ);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G3:
|
|
/* We're using the top bits so we can't overflow. */
|
|
overflow_check = false;
|
|
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
|
|
AARCH64_INSN_IMM_MOVNZ);
|
|
break;
|
|
|
|
/* Immediate instruction relocations. */
|
|
case R_AARCH64_LD_PREL_LO19:
|
|
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
|
|
AARCH64_INSN_IMM_19);
|
|
break;
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
|
|
AARCH64_INSN_IMM_ADR);
|
|
break;
|
|
case R_AARCH64_ADR_PREL_PG_HI21_NC:
|
|
overflow_check = false;
|
|
fallthrough;
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
ovf = reloc_insn_adrp(me, sechdrs, loc, val);
|
|
if (ovf && ovf != -ERANGE)
|
|
return ovf;
|
|
break;
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
|
|
AARCH64_INSN_IMM_12);
|
|
break;
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
|
|
AARCH64_INSN_IMM_12);
|
|
break;
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
|
|
AARCH64_INSN_IMM_12);
|
|
break;
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
|
|
AARCH64_INSN_IMM_12);
|
|
break;
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
overflow_check = false;
|
|
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
|
|
AARCH64_INSN_IMM_12);
|
|
break;
|
|
case R_AARCH64_TSTBR14:
|
|
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
|
|
AARCH64_INSN_IMM_14);
|
|
break;
|
|
case R_AARCH64_CONDBR19:
|
|
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
|
|
AARCH64_INSN_IMM_19);
|
|
break;
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_CALL26:
|
|
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
|
|
AARCH64_INSN_IMM_26);
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
|
|
ovf == -ERANGE) {
|
|
val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
|
|
if (!val)
|
|
return -ENOEXEC;
|
|
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
|
|
26, AARCH64_INSN_IMM_26);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
pr_err("module %s: unsupported RELA relocation: %llu\n",
|
|
me->name, ELF64_R_TYPE(rel[i].r_info));
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (overflow_check && ovf == -ERANGE)
|
|
goto overflow;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
overflow:
|
|
pr_err("module %s: overflow in relocation type %d val %Lx\n",
|
|
me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
|
|
const Elf_Shdr *sechdrs,
|
|
const char *name)
|
|
{
|
|
const Elf_Shdr *s, *se;
|
|
const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
|
|
|
|
for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
|
|
if (strcmp(name, secstrs + s->sh_name) == 0)
|
|
return s;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
|
|
{
|
|
*plt = get_plt_entry(addr, plt);
|
|
}
|
|
|
|
static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
|
|
const Elf_Shdr *sechdrs,
|
|
struct module *mod)
|
|
{
|
|
#if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
|
|
const Elf_Shdr *s;
|
|
struct plt_entry *plts;
|
|
|
|
s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
|
|
if (!s)
|
|
return -ENOEXEC;
|
|
|
|
plts = (void *)s->sh_addr;
|
|
|
|
__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
|
|
|
|
if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
|
|
__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
|
|
|
|
mod->arch.ftrace_trampolines = plts;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
int module_finalize(const Elf_Ehdr *hdr,
|
|
const Elf_Shdr *sechdrs,
|
|
struct module *me)
|
|
{
|
|
const Elf_Shdr *s;
|
|
s = find_section(hdr, sechdrs, ".altinstructions");
|
|
if (s)
|
|
apply_alternatives_module((void *)s->sh_addr, s->sh_size);
|
|
|
|
return module_init_ftrace_plt(hdr, sechdrs, me);
|
|
}
|