linux-stable/Documentation/block/ublk.rst
Uday Shankar 69f407ee8d Documentation: ublk: document UBLK_F_USER_RECOVERY_FAIL_IO
Signed-off-by: Uday Shankar <ushankar@purestorage.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20241007182419.3263186-6-ushankar@purestorage.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-22 08:16:40 -06:00

339 lines
14 KiB
ReStructuredText

.. SPDX-License-Identifier: GPL-2.0
===========================================
Userspace block device driver (ublk driver)
===========================================
Overview
========
ublk is a generic framework for implementing block device logic from userspace.
The motivation behind it is that moving virtual block drivers into userspace,
such as loop, nbd and similar can be very helpful. It can help to implement
new virtual block device such as ublk-qcow2 (there are several attempts of
implementing qcow2 driver in kernel).
Userspace block devices are attractive because:
- They can be written many programming languages.
- They can use libraries that are not available in the kernel.
- They can be debugged with tools familiar to application developers.
- Crashes do not kernel panic the machine.
- Bugs are likely to have a lower security impact than bugs in kernel
code.
- They can be installed and updated independently of the kernel.
- They can be used to simulate block device easily with user specified
parameters/setting for test/debug purpose
ublk block device (``/dev/ublkb*``) is added by ublk driver. Any IO request
on the device will be forwarded to ublk userspace program. For convenience,
in this document, ``ublk server`` refers to generic ublk userspace
program. ``ublksrv`` [#userspace]_ is one of such implementation. It
provides ``libublksrv`` [#userspace_lib]_ library for developing specific
user block device conveniently, while also generic type block device is
included, such as loop and null. Richard W.M. Jones wrote userspace nbd device
``nbdublk`` [#userspace_nbdublk]_ based on ``libublksrv`` [#userspace_lib]_.
After the IO is handled by userspace, the result is committed back to the
driver, thus completing the request cycle. This way, any specific IO handling
logic is totally done by userspace, such as loop's IO handling, NBD's IO
communication, or qcow2's IO mapping.
``/dev/ublkb*`` is driven by blk-mq request-based driver. Each request is
assigned by one queue wide unique tag. ublk server assigns unique tag to each
IO too, which is 1:1 mapped with IO of ``/dev/ublkb*``.
Both the IO request forward and IO handling result committing are done via
``io_uring`` passthrough command; that is why ublk is also one io_uring based
block driver. It has been observed that using io_uring passthrough command can
give better IOPS than block IO; which is why ublk is one of high performance
implementation of userspace block device: not only IO request communication is
done by io_uring, but also the preferred IO handling in ublk server is io_uring
based approach too.
ublk provides control interface to set/get ublk block device parameters.
The interface is extendable and kabi compatible: basically any ublk request
queue's parameter or ublk generic feature parameters can be set/get via the
interface. Thus, ublk is generic userspace block device framework.
For example, it is easy to setup a ublk device with specified block
parameters from userspace.
Using ublk
==========
ublk requires userspace ublk server to handle real block device logic.
Below is example of using ``ublksrv`` to provide ublk-based loop device.
- add a device::
ublk add -t loop -f ublk-loop.img
- format with xfs, then use it::
mkfs.xfs /dev/ublkb0
mount /dev/ublkb0 /mnt
# do anything. all IOs are handled by io_uring
...
umount /mnt
- list the devices with their info::
ublk list
- delete the device::
ublk del -a
ublk del -n $ublk_dev_id
See usage details in README of ``ublksrv`` [#userspace_readme]_.
Design
======
Control plane
-------------
ublk driver provides global misc device node (``/dev/ublk-control``) for
managing and controlling ublk devices with help of several control commands:
- ``UBLK_CMD_ADD_DEV``
Add a ublk char device (``/dev/ublkc*``) which is talked with ublk server
WRT IO command communication. Basic device info is sent together with this
command. It sets UAPI structure of ``ublksrv_ctrl_dev_info``,
such as ``nr_hw_queues``, ``queue_depth``, and max IO request buffer size,
for which the info is negotiated with the driver and sent back to the server.
When this command is completed, the basic device info is immutable.
- ``UBLK_CMD_SET_PARAMS`` / ``UBLK_CMD_GET_PARAMS``
Set or get parameters of the device, which can be either generic feature
related, or request queue limit related, but can't be IO logic specific,
because the driver does not handle any IO logic. This command has to be
sent before sending ``UBLK_CMD_START_DEV``.
- ``UBLK_CMD_START_DEV``
After the server prepares userspace resources (such as creating per-queue
pthread & io_uring for handling ublk IO), this command is sent to the
driver for allocating & exposing ``/dev/ublkb*``. Parameters set via
``UBLK_CMD_SET_PARAMS`` are applied for creating the device.
- ``UBLK_CMD_STOP_DEV``
Halt IO on ``/dev/ublkb*`` and remove the device. When this command returns,
ublk server will release resources (such as destroying per-queue pthread &
io_uring).
- ``UBLK_CMD_DEL_DEV``
Remove ``/dev/ublkc*``. When this command returns, the allocated ublk device
number can be reused.
- ``UBLK_CMD_GET_QUEUE_AFFINITY``
When ``/dev/ublkc`` is added, the driver creates block layer tagset, so
that each queue's affinity info is available. The server sends
``UBLK_CMD_GET_QUEUE_AFFINITY`` to retrieve queue affinity info. It can
set up the per-queue context efficiently, such as bind affine CPUs with IO
pthread and try to allocate buffers in IO thread context.
- ``UBLK_CMD_GET_DEV_INFO``
For retrieving device info via ``ublksrv_ctrl_dev_info``. It is the server's
responsibility to save IO target specific info in userspace.
- ``UBLK_CMD_GET_DEV_INFO2``
Same purpose with ``UBLK_CMD_GET_DEV_INFO``, but ublk server has to
provide path of the char device of ``/dev/ublkc*`` for kernel to run
permission check, and this command is added for supporting unprivileged
ublk device, and introduced with ``UBLK_F_UNPRIVILEGED_DEV`` together.
Only the user owning the requested device can retrieve the device info.
How to deal with userspace/kernel compatibility:
1) if kernel is capable of handling ``UBLK_F_UNPRIVILEGED_DEV``
If ublk server supports ``UBLK_F_UNPRIVILEGED_DEV``:
ublk server should send ``UBLK_CMD_GET_DEV_INFO2``, given anytime
unprivileged application needs to query devices the current user owns,
when the application has no idea if ``UBLK_F_UNPRIVILEGED_DEV`` is set
given the capability info is stateless, and application should always
retrieve it via ``UBLK_CMD_GET_DEV_INFO2``
If ublk server doesn't support ``UBLK_F_UNPRIVILEGED_DEV``:
``UBLK_CMD_GET_DEV_INFO`` is always sent to kernel, and the feature of
UBLK_F_UNPRIVILEGED_DEV isn't available for user
2) if kernel isn't capable of handling ``UBLK_F_UNPRIVILEGED_DEV``
If ublk server supports ``UBLK_F_UNPRIVILEGED_DEV``:
``UBLK_CMD_GET_DEV_INFO2`` is tried first, and will be failed, then
``UBLK_CMD_GET_DEV_INFO`` needs to be retried given
``UBLK_F_UNPRIVILEGED_DEV`` can't be set
If ublk server doesn't support ``UBLK_F_UNPRIVILEGED_DEV``:
``UBLK_CMD_GET_DEV_INFO`` is always sent to kernel, and the feature of
``UBLK_F_UNPRIVILEGED_DEV`` isn't available for user
- ``UBLK_CMD_START_USER_RECOVERY``
This command is valid if ``UBLK_F_USER_RECOVERY`` feature is enabled. This
command is accepted after the old process has exited, ublk device is quiesced
and ``/dev/ublkc*`` is released. User should send this command before he starts
a new process which re-opens ``/dev/ublkc*``. When this command returns, the
ublk device is ready for the new process.
- ``UBLK_CMD_END_USER_RECOVERY``
This command is valid if ``UBLK_F_USER_RECOVERY`` feature is enabled. This
command is accepted after ublk device is quiesced and a new process has
opened ``/dev/ublkc*`` and get all ublk queues be ready. When this command
returns, ublk device is unquiesced and new I/O requests are passed to the
new process.
- user recovery feature description
Three new features are added for user recovery: ``UBLK_F_USER_RECOVERY``,
``UBLK_F_USER_RECOVERY_REISSUE``, and ``UBLK_F_USER_RECOVERY_FAIL_IO``. To
enable recovery of ublk devices after the ublk server exits, the ublk server
should specify the ``UBLK_F_USER_RECOVERY`` flag when creating the device. The
ublk server may additionally specify at most one of
``UBLK_F_USER_RECOVERY_REISSUE`` and ``UBLK_F_USER_RECOVERY_FAIL_IO`` to
modify how I/O is handled while the ublk server is dying/dead (this is called
the ``nosrv`` case in the driver code).
With just ``UBLK_F_USER_RECOVERY`` set, after one ubq_daemon(ublk server's io
handler) is dying, ublk does not delete ``/dev/ublkb*`` during the whole
recovery stage and ublk device ID is kept. It is ublk server's
responsibility to recover the device context by its own knowledge.
Requests which have not been issued to userspace are requeued. Requests
which have been issued to userspace are aborted.
With ``UBLK_F_USER_RECOVERY_REISSUE`` additionally set, after one ubq_daemon
(ublk server's io handler) is dying, contrary to ``UBLK_F_USER_RECOVERY``,
requests which have been issued to userspace are requeued and will be
re-issued to the new process after handling ``UBLK_CMD_END_USER_RECOVERY``.
``UBLK_F_USER_RECOVERY_REISSUE`` is designed for backends who tolerate
double-write since the driver may issue the same I/O request twice. It
might be useful to a read-only FS or a VM backend.
With ``UBLK_F_USER_RECOVERY_FAIL_IO`` additionally set, after the ublk server
exits, requests which have issued to userspace are failed, as are any
subsequently issued requests. Applications continuously issuing I/O against
devices with this flag set will see a stream of I/O errors until a new ublk
server recovers the device.
Unprivileged ublk device is supported by passing ``UBLK_F_UNPRIVILEGED_DEV``.
Once the flag is set, all control commands can be sent by unprivileged
user. Except for command of ``UBLK_CMD_ADD_DEV``, permission check on
the specified char device(``/dev/ublkc*``) is done for all other control
commands by ublk driver, for doing that, path of the char device has to
be provided in these commands' payload from ublk server. With this way,
ublk device becomes container-ware, and device created in one container
can be controlled/accessed just inside this container.
Data plane
----------
ublk server needs to create per-queue IO pthread & io_uring for handling IO
commands via io_uring passthrough. The per-queue IO pthread
focuses on IO handling and shouldn't handle any control & management
tasks.
The's IO is assigned by a unique tag, which is 1:1 mapping with IO
request of ``/dev/ublkb*``.
UAPI structure of ``ublksrv_io_desc`` is defined for describing each IO from
the driver. A fixed mmapped area (array) on ``/dev/ublkc*`` is provided for
exporting IO info to the server; such as IO offset, length, OP/flags and
buffer address. Each ``ublksrv_io_desc`` instance can be indexed via queue id
and IO tag directly.
The following IO commands are communicated via io_uring passthrough command,
and each command is only for forwarding the IO and committing the result
with specified IO tag in the command data:
- ``UBLK_IO_FETCH_REQ``
Sent from the server IO pthread for fetching future incoming IO requests
destined to ``/dev/ublkb*``. This command is sent only once from the server
IO pthread for ublk driver to setup IO forward environment.
- ``UBLK_IO_COMMIT_AND_FETCH_REQ``
When an IO request is destined to ``/dev/ublkb*``, the driver stores
the IO's ``ublksrv_io_desc`` to the specified mapped area; then the
previous received IO command of this IO tag (either ``UBLK_IO_FETCH_REQ``
or ``UBLK_IO_COMMIT_AND_FETCH_REQ)`` is completed, so the server gets
the IO notification via io_uring.
After the server handles the IO, its result is committed back to the
driver by sending ``UBLK_IO_COMMIT_AND_FETCH_REQ`` back. Once ublkdrv
received this command, it parses the result and complete the request to
``/dev/ublkb*``. In the meantime setup environment for fetching future
requests with the same IO tag. That is, ``UBLK_IO_COMMIT_AND_FETCH_REQ``
is reused for both fetching request and committing back IO result.
- ``UBLK_IO_NEED_GET_DATA``
With ``UBLK_F_NEED_GET_DATA`` enabled, the WRITE request will be firstly
issued to ublk server without data copy. Then, IO backend of ublk server
receives the request and it can allocate data buffer and embed its addr
inside this new io command. After the kernel driver gets the command,
data copy is done from request pages to this backend's buffer. Finally,
backend receives the request again with data to be written and it can
truly handle the request.
``UBLK_IO_NEED_GET_DATA`` adds one additional round-trip and one
io_uring_enter() syscall. Any user thinks that it may lower performance
should not enable UBLK_F_NEED_GET_DATA. ublk server pre-allocates IO
buffer for each IO by default. Any new project should try to use this
buffer to communicate with ublk driver. However, existing project may
break or not able to consume the new buffer interface; that's why this
command is added for backwards compatibility so that existing projects
can still consume existing buffers.
- data copy between ublk server IO buffer and ublk block IO request
The driver needs to copy the block IO request pages into the server buffer
(pages) first for WRITE before notifying the server of the coming IO, so
that the server can handle WRITE request.
When the server handles READ request and sends
``UBLK_IO_COMMIT_AND_FETCH_REQ`` to the server, ublkdrv needs to copy
the server buffer (pages) read to the IO request pages.
Future development
==================
Zero copy
---------
Zero copy is a generic requirement for nbd, fuse or similar drivers. A
problem [#xiaoguang]_ Xiaoguang mentioned is that pages mapped to userspace
can't be remapped any more in kernel with existing mm interfaces. This can
occurs when destining direct IO to ``/dev/ublkb*``. Also, he reported that
big requests (IO size >= 256 KB) may benefit a lot from zero copy.
References
==========
.. [#userspace] https://github.com/ming1/ubdsrv
.. [#userspace_lib] https://github.com/ming1/ubdsrv/tree/master/lib
.. [#userspace_nbdublk] https://gitlab.com/rwmjones/libnbd/-/tree/nbdublk
.. [#userspace_readme] https://github.com/ming1/ubdsrv/blob/master/README
.. [#stefan] https://lore.kernel.org/linux-block/YoOr6jBfgVm8GvWg@stefanha-x1.localdomain/
.. [#xiaoguang] https://lore.kernel.org/linux-block/YoOr6jBfgVm8GvWg@stefanha-x1.localdomain/