Yang Yingliang e92a216d16 rapidio: rio: fix possible name leak in rio_register_mport()
If device_register() returns error, the name allocated by dev_set_name()
need be freed.  It should use put_device() to give up the reference in the
error path, so that the name can be freed in kobject_cleanup(), and
list_del() is called to delete the port from rio_mports.

Link: https://lkml.kernel.org/r/20221114152636.2939035-3-yangyingliang@huawei.com
Fixes: 2aaf308b95b2 ("rapidio: rework device hierarchy and introduce mport class of devices")
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 16:13:17 -08:00

2252 lines
60 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RapidIO interconnect services
* (RapidIO Interconnect Specification, http://www.rapidio.org)
*
* Copyright 2005 MontaVista Software, Inc.
* Matt Porter <mporter@kernel.crashing.org>
*
* Copyright 2009 - 2013 Integrated Device Technology, Inc.
* Alex Bounine <alexandre.bounine@idt.com>
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/rio.h>
#include <linux/rio_drv.h>
#include <linux/rio_ids.h>
#include <linux/rio_regs.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include "rio.h"
/*
* struct rio_pwrite - RIO portwrite event
* @node: Node in list of doorbell events
* @pwcback: Doorbell event callback
* @context: Handler specific context to pass on event
*/
struct rio_pwrite {
struct list_head node;
int (*pwcback)(struct rio_mport *mport, void *context,
union rio_pw_msg *msg, int step);
void *context;
};
MODULE_DESCRIPTION("RapidIO Subsystem Core");
MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
MODULE_LICENSE("GPL");
static int hdid[RIO_MAX_MPORTS];
static int ids_num;
module_param_array(hdid, int, &ids_num, 0);
MODULE_PARM_DESC(hdid,
"Destination ID assignment to local RapidIO controllers");
static LIST_HEAD(rio_devices);
static LIST_HEAD(rio_nets);
static DEFINE_SPINLOCK(rio_global_list_lock);
static LIST_HEAD(rio_mports);
static LIST_HEAD(rio_scans);
static DEFINE_MUTEX(rio_mport_list_lock);
static unsigned char next_portid;
static DEFINE_SPINLOCK(rio_mmap_lock);
/**
* rio_local_get_device_id - Get the base/extended device id for a port
* @port: RIO master port from which to get the deviceid
*
* Reads the base/extended device id from the local device
* implementing the master port. Returns the 8/16-bit device
* id.
*/
u16 rio_local_get_device_id(struct rio_mport *port)
{
u32 result;
rio_local_read_config_32(port, RIO_DID_CSR, &result);
return (RIO_GET_DID(port->sys_size, result));
}
EXPORT_SYMBOL_GPL(rio_local_get_device_id);
/**
* rio_query_mport - Query mport device attributes
* @port: mport device to query
* @mport_attr: mport attributes data structure
*
* Returns attributes of specified mport through the
* pointer to attributes data structure.
*/
int rio_query_mport(struct rio_mport *port,
struct rio_mport_attr *mport_attr)
{
if (!port->ops->query_mport)
return -ENODATA;
return port->ops->query_mport(port, mport_attr);
}
EXPORT_SYMBOL(rio_query_mport);
/**
* rio_alloc_net- Allocate and initialize a new RIO network data structure
* @mport: Master port associated with the RIO network
*
* Allocates a RIO network structure, initializes per-network
* list heads, and adds the associated master port to the
* network list of associated master ports. Returns a
* RIO network pointer on success or %NULL on failure.
*/
struct rio_net *rio_alloc_net(struct rio_mport *mport)
{
struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
if (net) {
INIT_LIST_HEAD(&net->node);
INIT_LIST_HEAD(&net->devices);
INIT_LIST_HEAD(&net->switches);
INIT_LIST_HEAD(&net->mports);
mport->net = net;
}
return net;
}
EXPORT_SYMBOL_GPL(rio_alloc_net);
int rio_add_net(struct rio_net *net)
{
int err;
err = device_register(&net->dev);
if (err)
return err;
spin_lock(&rio_global_list_lock);
list_add_tail(&net->node, &rio_nets);
spin_unlock(&rio_global_list_lock);
return 0;
}
EXPORT_SYMBOL_GPL(rio_add_net);
void rio_free_net(struct rio_net *net)
{
spin_lock(&rio_global_list_lock);
if (!list_empty(&net->node))
list_del(&net->node);
spin_unlock(&rio_global_list_lock);
if (net->release)
net->release(net);
device_unregister(&net->dev);
}
EXPORT_SYMBOL_GPL(rio_free_net);
/**
* rio_local_set_device_id - Set the base/extended device id for a port
* @port: RIO master port
* @did: Device ID value to be written
*
* Writes the base/extended device id from a device.
*/
void rio_local_set_device_id(struct rio_mport *port, u16 did)
{
rio_local_write_config_32(port, RIO_DID_CSR,
RIO_SET_DID(port->sys_size, did));
}
EXPORT_SYMBOL_GPL(rio_local_set_device_id);
/**
* rio_add_device- Adds a RIO device to the device model
* @rdev: RIO device
*
* Adds the RIO device to the global device list and adds the RIO
* device to the RIO device list. Creates the generic sysfs nodes
* for an RIO device.
*/
int rio_add_device(struct rio_dev *rdev)
{
int err;
atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
err = device_register(&rdev->dev);
if (err)
return err;
spin_lock(&rio_global_list_lock);
list_add_tail(&rdev->global_list, &rio_devices);
if (rdev->net) {
list_add_tail(&rdev->net_list, &rdev->net->devices);
if (rdev->pef & RIO_PEF_SWITCH)
list_add_tail(&rdev->rswitch->node,
&rdev->net->switches);
}
spin_unlock(&rio_global_list_lock);
return 0;
}
EXPORT_SYMBOL_GPL(rio_add_device);
/*
* rio_del_device - removes a RIO device from the device model
* @rdev: RIO device
* @state: device state to set during removal process
*
* Removes the RIO device to the kernel device list and subsystem's device list.
* Clears sysfs entries for the removed device.
*/
void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
{
pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
atomic_set(&rdev->state, state);
spin_lock(&rio_global_list_lock);
list_del(&rdev->global_list);
if (rdev->net) {
list_del(&rdev->net_list);
if (rdev->pef & RIO_PEF_SWITCH) {
list_del(&rdev->rswitch->node);
kfree(rdev->rswitch->route_table);
}
}
spin_unlock(&rio_global_list_lock);
device_unregister(&rdev->dev);
}
EXPORT_SYMBOL_GPL(rio_del_device);
/**
* rio_request_inb_mbox - request inbound mailbox service
* @mport: RIO master port from which to allocate the mailbox resource
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox number to claim
* @entries: Number of entries in inbound mailbox queue
* @minb: Callback to execute when inbound message is received
*
* Requests ownership of an inbound mailbox resource and binds
* a callback function to the resource. Returns %0 on success.
*/
int rio_request_inb_mbox(struct rio_mport *mport,
void *dev_id,
int mbox,
int entries,
void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
int slot))
{
int rc = -ENOSYS;
struct resource *res;
if (!mport->ops->open_inb_mbox)
goto out;
res = kzalloc(sizeof(*res), GFP_KERNEL);
if (res) {
rio_init_mbox_res(res, mbox, mbox);
/* Make sure this mailbox isn't in use */
rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
res);
if (rc < 0) {
kfree(res);
goto out;
}
mport->inb_msg[mbox].res = res;
/* Hook the inbound message callback */
mport->inb_msg[mbox].mcback = minb;
rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
if (rc) {
mport->inb_msg[mbox].mcback = NULL;
mport->inb_msg[mbox].res = NULL;
release_resource(res);
kfree(res);
}
} else
rc = -ENOMEM;
out:
return rc;
}
EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
/**
* rio_release_inb_mbox - release inbound mailbox message service
* @mport: RIO master port from which to release the mailbox resource
* @mbox: Mailbox number to release
*
* Releases ownership of an inbound mailbox resource. Returns 0
* if the request has been satisfied.
*/
int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
{
int rc;
if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
return -EINVAL;
mport->ops->close_inb_mbox(mport, mbox);
mport->inb_msg[mbox].mcback = NULL;
rc = release_resource(mport->inb_msg[mbox].res);
if (rc)
return rc;
kfree(mport->inb_msg[mbox].res);
mport->inb_msg[mbox].res = NULL;
return 0;
}
EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
/**
* rio_request_outb_mbox - request outbound mailbox service
* @mport: RIO master port from which to allocate the mailbox resource
* @dev_id: Device specific pointer to pass on event
* @mbox: Mailbox number to claim
* @entries: Number of entries in outbound mailbox queue
* @moutb: Callback to execute when outbound message is sent
*
* Requests ownership of an outbound mailbox resource and binds
* a callback function to the resource. Returns 0 on success.
*/
int rio_request_outb_mbox(struct rio_mport *mport,
void *dev_id,
int mbox,
int entries,
void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
{
int rc = -ENOSYS;
struct resource *res;
if (!mport->ops->open_outb_mbox)
goto out;
res = kzalloc(sizeof(*res), GFP_KERNEL);
if (res) {
rio_init_mbox_res(res, mbox, mbox);
/* Make sure this outbound mailbox isn't in use */
rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
res);
if (rc < 0) {
kfree(res);
goto out;
}
mport->outb_msg[mbox].res = res;
/* Hook the inbound message callback */
mport->outb_msg[mbox].mcback = moutb;
rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
if (rc) {
mport->outb_msg[mbox].mcback = NULL;
mport->outb_msg[mbox].res = NULL;
release_resource(res);
kfree(res);
}
} else
rc = -ENOMEM;
out:
return rc;
}
EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
/**
* rio_release_outb_mbox - release outbound mailbox message service
* @mport: RIO master port from which to release the mailbox resource
* @mbox: Mailbox number to release
*
* Releases ownership of an inbound mailbox resource. Returns 0
* if the request has been satisfied.
*/
int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
{
int rc;
if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
return -EINVAL;
mport->ops->close_outb_mbox(mport, mbox);
mport->outb_msg[mbox].mcback = NULL;
rc = release_resource(mport->outb_msg[mbox].res);
if (rc)
return rc;
kfree(mport->outb_msg[mbox].res);
mport->outb_msg[mbox].res = NULL;
return 0;
}
EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
/**
* rio_setup_inb_dbell - bind inbound doorbell callback
* @mport: RIO master port to bind the doorbell callback
* @dev_id: Device specific pointer to pass on event
* @res: Doorbell message resource
* @dinb: Callback to execute when doorbell is received
*
* Adds a doorbell resource/callback pair into a port's
* doorbell event list. Returns 0 if the request has been
* satisfied.
*/
static int
rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
u16 info))
{
struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
if (!dbell)
return -ENOMEM;
dbell->res = res;
dbell->dinb = dinb;
dbell->dev_id = dev_id;
mutex_lock(&mport->lock);
list_add_tail(&dbell->node, &mport->dbells);
mutex_unlock(&mport->lock);
return 0;
}
/**
* rio_request_inb_dbell - request inbound doorbell message service
* @mport: RIO master port from which to allocate the doorbell resource
* @dev_id: Device specific pointer to pass on event
* @start: Doorbell info range start
* @end: Doorbell info range end
* @dinb: Callback to execute when doorbell is received
*
* Requests ownership of an inbound doorbell resource and binds
* a callback function to the resource. Returns 0 if the request
* has been satisfied.
*/
int rio_request_inb_dbell(struct rio_mport *mport,
void *dev_id,
u16 start,
u16 end,
void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
u16 dst, u16 info))
{
int rc;
struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
if (res) {
rio_init_dbell_res(res, start, end);
/* Make sure these doorbells aren't in use */
rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
res);
if (rc < 0) {
kfree(res);
goto out;
}
/* Hook the doorbell callback */
rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
} else
rc = -ENOMEM;
out:
return rc;
}
EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
/**
* rio_release_inb_dbell - release inbound doorbell message service
* @mport: RIO master port from which to release the doorbell resource
* @start: Doorbell info range start
* @end: Doorbell info range end
*
* Releases ownership of an inbound doorbell resource and removes
* callback from the doorbell event list. Returns 0 if the request
* has been satisfied.
*/
int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
{
int rc = 0, found = 0;
struct rio_dbell *dbell;
mutex_lock(&mport->lock);
list_for_each_entry(dbell, &mport->dbells, node) {
if ((dbell->res->start == start) && (dbell->res->end == end)) {
list_del(&dbell->node);
found = 1;
break;
}
}
mutex_unlock(&mport->lock);
/* If we can't find an exact match, fail */
if (!found) {
rc = -EINVAL;
goto out;
}
/* Release the doorbell resource */
rc = release_resource(dbell->res);
/* Free the doorbell event */
kfree(dbell);
out:
return rc;
}
EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
/**
* rio_request_outb_dbell - request outbound doorbell message range
* @rdev: RIO device from which to allocate the doorbell resource
* @start: Doorbell message range start
* @end: Doorbell message range end
*
* Requests ownership of a doorbell message range. Returns a resource
* if the request has been satisfied or %NULL on failure.
*/
struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
u16 end)
{
struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
if (res) {
rio_init_dbell_res(res, start, end);
/* Make sure these doorbells aren't in use */
if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
< 0) {
kfree(res);
res = NULL;
}
}
return res;
}
EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
/**
* rio_release_outb_dbell - release outbound doorbell message range
* @rdev: RIO device from which to release the doorbell resource
* @res: Doorbell resource to be freed
*
* Releases ownership of a doorbell message range. Returns 0 if the
* request has been satisfied.
*/
int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
{
int rc = release_resource(res);
kfree(res);
return rc;
}
EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
/**
* rio_add_mport_pw_handler - add port-write message handler into the list
* of mport specific pw handlers
* @mport: RIO master port to bind the portwrite callback
* @context: Handler specific context to pass on event
* @pwcback: Callback to execute when portwrite is received
*
* Returns 0 if the request has been satisfied.
*/
int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
int (*pwcback)(struct rio_mport *mport,
void *context, union rio_pw_msg *msg, int step))
{
struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
if (!pwrite)
return -ENOMEM;
pwrite->pwcback = pwcback;
pwrite->context = context;
mutex_lock(&mport->lock);
list_add_tail(&pwrite->node, &mport->pwrites);
mutex_unlock(&mport->lock);
return 0;
}
EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
/**
* rio_del_mport_pw_handler - remove port-write message handler from the list
* of mport specific pw handlers
* @mport: RIO master port to bind the portwrite callback
* @context: Registered handler specific context to pass on event
* @pwcback: Registered callback function
*
* Returns 0 if the request has been satisfied.
*/
int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
int (*pwcback)(struct rio_mport *mport,
void *context, union rio_pw_msg *msg, int step))
{
int rc = -EINVAL;
struct rio_pwrite *pwrite;
mutex_lock(&mport->lock);
list_for_each_entry(pwrite, &mport->pwrites, node) {
if (pwrite->pwcback == pwcback && pwrite->context == context) {
list_del(&pwrite->node);
kfree(pwrite);
rc = 0;
break;
}
}
mutex_unlock(&mport->lock);
return rc;
}
EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
/**
* rio_request_inb_pwrite - request inbound port-write message service for
* specific RapidIO device
* @rdev: RIO device to which register inbound port-write callback routine
* @pwcback: Callback routine to execute when port-write is received
*
* Binds a port-write callback function to the RapidIO device.
* Returns 0 if the request has been satisfied.
*/
int rio_request_inb_pwrite(struct rio_dev *rdev,
int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
{
int rc = 0;
spin_lock(&rio_global_list_lock);
if (rdev->pwcback)
rc = -ENOMEM;
else
rdev->pwcback = pwcback;
spin_unlock(&rio_global_list_lock);
return rc;
}
EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
/**
* rio_release_inb_pwrite - release inbound port-write message service
* associated with specific RapidIO device
* @rdev: RIO device which registered for inbound port-write callback
*
* Removes callback from the rio_dev structure. Returns 0 if the request
* has been satisfied.
*/
int rio_release_inb_pwrite(struct rio_dev *rdev)
{
int rc = -ENOMEM;
spin_lock(&rio_global_list_lock);
if (rdev->pwcback) {
rdev->pwcback = NULL;
rc = 0;
}
spin_unlock(&rio_global_list_lock);
return rc;
}
EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
/**
* rio_pw_enable - Enables/disables port-write handling by a master port
* @mport: Master port associated with port-write handling
* @enable: 1=enable, 0=disable
*/
void rio_pw_enable(struct rio_mport *mport, int enable)
{
if (mport->ops->pwenable) {
mutex_lock(&mport->lock);
if ((enable && ++mport->pwe_refcnt == 1) ||
(!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
mport->ops->pwenable(mport, enable);
mutex_unlock(&mport->lock);
}
}
EXPORT_SYMBOL_GPL(rio_pw_enable);
/**
* rio_map_inb_region -- Map inbound memory region.
* @mport: Master port.
* @local: physical address of memory region to be mapped
* @rbase: RIO base address assigned to this window
* @size: Size of the memory region
* @rflags: Flags for mapping.
*
* Return: 0 -- Success.
*
* This function will create the mapping from RIO space to local memory.
*/
int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
u64 rbase, u32 size, u32 rflags)
{
int rc;
unsigned long flags;
if (!mport->ops->map_inb)
return -1;
spin_lock_irqsave(&rio_mmap_lock, flags);
rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
spin_unlock_irqrestore(&rio_mmap_lock, flags);
return rc;
}
EXPORT_SYMBOL_GPL(rio_map_inb_region);
/**
* rio_unmap_inb_region -- Unmap the inbound memory region
* @mport: Master port
* @lstart: physical address of memory region to be unmapped
*/
void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
{
unsigned long flags;
if (!mport->ops->unmap_inb)
return;
spin_lock_irqsave(&rio_mmap_lock, flags);
mport->ops->unmap_inb(mport, lstart);
spin_unlock_irqrestore(&rio_mmap_lock, flags);
}
EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
/**
* rio_map_outb_region -- Map outbound memory region.
* @mport: Master port.
* @destid: destination id window points to
* @rbase: RIO base address window translates to
* @size: Size of the memory region
* @rflags: Flags for mapping.
* @local: physical address of memory region mapped
*
* Return: 0 -- Success.
*
* This function will create the mapping from RIO space to local memory.
*/
int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
u32 size, u32 rflags, dma_addr_t *local)
{
int rc;
unsigned long flags;
if (!mport->ops->map_outb)
return -ENODEV;
spin_lock_irqsave(&rio_mmap_lock, flags);
rc = mport->ops->map_outb(mport, destid, rbase, size,
rflags, local);
spin_unlock_irqrestore(&rio_mmap_lock, flags);
return rc;
}
EXPORT_SYMBOL_GPL(rio_map_outb_region);
/**
* rio_unmap_outb_region -- Unmap the inbound memory region
* @mport: Master port
* @destid: destination id mapping points to
* @rstart: RIO base address window translates to
*/
void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
{
unsigned long flags;
if (!mport->ops->unmap_outb)
return;
spin_lock_irqsave(&rio_mmap_lock, flags);
mport->ops->unmap_outb(mport, destid, rstart);
spin_unlock_irqrestore(&rio_mmap_lock, flags);
}
EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
/**
* rio_mport_get_physefb - Helper function that returns register offset
* for Physical Layer Extended Features Block.
* @port: Master port to issue transaction
* @local: Indicate a local master port or remote device access
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @rmap: pointer to location to store register map type info
*/
u32
rio_mport_get_physefb(struct rio_mport *port, int local,
u16 destid, u8 hopcount, u32 *rmap)
{
u32 ext_ftr_ptr;
u32 ftr_header;
ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
while (ext_ftr_ptr) {
if (local)
rio_local_read_config_32(port, ext_ftr_ptr,
&ftr_header);
else
rio_mport_read_config_32(port, destid, hopcount,
ext_ftr_ptr, &ftr_header);
ftr_header = RIO_GET_BLOCK_ID(ftr_header);
switch (ftr_header) {
case RIO_EFB_SER_EP_ID:
case RIO_EFB_SER_EP_REC_ID:
case RIO_EFB_SER_EP_FREE_ID:
case RIO_EFB_SER_EP_M1_ID:
case RIO_EFB_SER_EP_SW_M1_ID:
case RIO_EFB_SER_EPF_M1_ID:
case RIO_EFB_SER_EPF_SW_M1_ID:
*rmap = 1;
return ext_ftr_ptr;
case RIO_EFB_SER_EP_M2_ID:
case RIO_EFB_SER_EP_SW_M2_ID:
case RIO_EFB_SER_EPF_M2_ID:
case RIO_EFB_SER_EPF_SW_M2_ID:
*rmap = 2;
return ext_ftr_ptr;
default:
break;
}
ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
hopcount, ext_ftr_ptr);
}
return ext_ftr_ptr;
}
EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
/**
* rio_get_comptag - Begin or continue searching for a RIO device by component tag
* @comp_tag: RIO component tag to match
* @from: Previous RIO device found in search, or %NULL for new search
*
* Iterates through the list of known RIO devices. If a RIO device is
* found with a matching @comp_tag, a pointer to its device
* structure is returned. Otherwise, %NULL is returned. A new search
* is initiated by passing %NULL to the @from argument. Otherwise, if
* @from is not %NULL, searches continue from next device on the global
* list.
*/
struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
{
struct list_head *n;
struct rio_dev *rdev;
spin_lock(&rio_global_list_lock);
n = from ? from->global_list.next : rio_devices.next;
while (n && (n != &rio_devices)) {
rdev = rio_dev_g(n);
if (rdev->comp_tag == comp_tag)
goto exit;
n = n->next;
}
rdev = NULL;
exit:
spin_unlock(&rio_global_list_lock);
return rdev;
}
EXPORT_SYMBOL_GPL(rio_get_comptag);
/**
* rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
* @rdev: Pointer to RIO device control structure
* @pnum: Switch port number to set LOCKOUT bit
* @lock: Operation : set (=1) or clear (=0)
*/
int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
{
u32 regval;
rio_read_config_32(rdev,
RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
&regval);
if (lock)
regval |= RIO_PORT_N_CTL_LOCKOUT;
else
regval &= ~RIO_PORT_N_CTL_LOCKOUT;
rio_write_config_32(rdev,
RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
regval);
return 0;
}
EXPORT_SYMBOL_GPL(rio_set_port_lockout);
/**
* rio_enable_rx_tx_port - enable input receiver and output transmitter of
* given port
* @port: Master port associated with the RIO network
* @local: local=1 select local port otherwise a far device is reached
* @destid: Destination ID of the device to check host bit
* @hopcount: Number of hops to reach the target
* @port_num: Port (-number on switch) to enable on a far end device
*
* Returns 0 or 1 from on General Control Command and Status Register
* (EXT_PTR+0x3C)
*/
int rio_enable_rx_tx_port(struct rio_mport *port,
int local, u16 destid,
u8 hopcount, u8 port_num)
{
#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
u32 regval;
u32 ext_ftr_ptr;
u32 rmap;
/*
* enable rx input tx output port
*/
pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
"%d, port_num = %d)\n", local, destid, hopcount, port_num);
ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
hopcount, &rmap);
if (local) {
rio_local_read_config_32(port,
ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
&regval);
} else {
if (rio_mport_read_config_32(port, destid, hopcount,
ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
&regval) < 0)
return -EIO;
}
regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
if (local) {
rio_local_write_config_32(port,
ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
} else {
if (rio_mport_write_config_32(port, destid, hopcount,
ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
regval) < 0)
return -EIO;
}
#endif
return 0;
}
EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
/**
* rio_chk_dev_route - Validate route to the specified device.
* @rdev: RIO device failed to respond
* @nrdev: Last active device on the route to rdev
* @npnum: nrdev's port number on the route to rdev
*
* Follows a route to the specified RIO device to determine the last available
* device (and corresponding RIO port) on the route.
*/
static int
rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
{
u32 result;
int p_port, rc = -EIO;
struct rio_dev *prev = NULL;
/* Find switch with failed RIO link */
while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
prev = rdev->prev;
break;
}
rdev = rdev->prev;
}
if (!prev)
goto err_out;
p_port = prev->rswitch->route_table[rdev->destid];
if (p_port != RIO_INVALID_ROUTE) {
pr_debug("RIO: link failed on [%s]-P%d\n",
rio_name(prev), p_port);
*nrdev = prev;
*npnum = p_port;
rc = 0;
} else
pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
err_out:
return rc;
}
/**
* rio_mport_chk_dev_access - Validate access to the specified device.
* @mport: Master port to send transactions
* @destid: Device destination ID in network
* @hopcount: Number of hops into the network
*/
int
rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
{
int i = 0;
u32 tmp;
while (rio_mport_read_config_32(mport, destid, hopcount,
RIO_DEV_ID_CAR, &tmp)) {
i++;
if (i == RIO_MAX_CHK_RETRY)
return -EIO;
mdelay(1);
}
return 0;
}
EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
/**
* rio_chk_dev_access - Validate access to the specified device.
* @rdev: Pointer to RIO device control structure
*/
static int rio_chk_dev_access(struct rio_dev *rdev)
{
return rio_mport_chk_dev_access(rdev->net->hport,
rdev->destid, rdev->hopcount);
}
/**
* rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
* returns link-response (if requested).
* @rdev: RIO devive to issue Input-status command
* @pnum: Device port number to issue the command
* @lnkresp: Response from a link partner
*/
static int
rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
{
u32 regval;
int checkcount;
if (lnkresp) {
/* Read from link maintenance response register
* to clear valid bit */
rio_read_config_32(rdev,
RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
&regval);
udelay(50);
}
/* Issue Input-status command */
rio_write_config_32(rdev,
RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
RIO_MNT_REQ_CMD_IS);
/* Exit if the response is not expected */
if (!lnkresp)
return 0;
checkcount = 3;
while (checkcount--) {
udelay(50);
rio_read_config_32(rdev,
RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
&regval);
if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
*lnkresp = regval;
return 0;
}
}
return -EIO;
}
/**
* rio_clr_err_stopped - Clears port Error-stopped states.
* @rdev: Pointer to RIO device control structure
* @pnum: Switch port number to clear errors
* @err_status: port error status (if 0 reads register from device)
*
* TODO: Currently this routine is not compatible with recovery process
* specified for idt_gen3 RapidIO switch devices. It has to be reviewed
* to implement universal recovery process that is compatible full range
* off available devices.
* IDT gen3 switch driver now implements HW-specific error handler that
* issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
*/
static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
{
struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
u32 regval;
u32 far_ackid, far_linkstat, near_ackid;
if (err_status == 0)
rio_read_config_32(rdev,
RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
&err_status);
if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
/*
* Send a Link-Request/Input-Status control symbol
*/
if (rio_get_input_status(rdev, pnum, &regval)) {
pr_debug("RIO_EM: Input-status response timeout\n");
goto rd_err;
}
pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
pnum, regval);
far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
rio_read_config_32(rdev,
RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
&regval);
pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
" near_ackID=0x%02x\n",
pnum, far_ackid, far_linkstat, near_ackid);
/*
* If required, synchronize ackIDs of near and
* far sides.
*/
if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
(far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
/* Align near outstanding/outbound ackIDs with
* far inbound.
*/
rio_write_config_32(rdev,
RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
(near_ackid << 24) |
(far_ackid << 8) | far_ackid);
/* Align far outstanding/outbound ackIDs with
* near inbound.
*/
far_ackid++;
if (!nextdev) {
pr_debug("RIO_EM: nextdev pointer == NULL\n");
goto rd_err;
}
rio_write_config_32(nextdev,
RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
RIO_GET_PORT_NUM(nextdev->swpinfo)),
(far_ackid << 24) |
(near_ackid << 8) | near_ackid);
}
rd_err:
rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
&err_status);
pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
}
if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
rio_get_input_status(nextdev,
RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
udelay(50);
rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
&err_status);
pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
}
return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
}
/**
* rio_inb_pwrite_handler - inbound port-write message handler
* @mport: mport device associated with port-write
* @pw_msg: pointer to inbound port-write message
*
* Processes an inbound port-write message. Returns 0 if the request
* has been satisfied.
*/
int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
{
struct rio_dev *rdev;
u32 err_status, em_perrdet, em_ltlerrdet;
int rc, portnum;
struct rio_pwrite *pwrite;
#ifdef DEBUG_PW
{
u32 i;
pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
pr_debug("0x%02x: %08x %08x %08x %08x\n",
i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
}
}
#endif
rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
if (rdev) {
pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
} else {
pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
__func__, pw_msg->em.comptag);
}
/* Call a device-specific handler (if it is registered for the device).
* This may be the service for endpoints that send device-specific
* port-write messages. End-point messages expected to be handled
* completely by EP specific device driver.
* For switches rc==0 signals that no standard processing required.
*/
if (rdev && rdev->pwcback) {
rc = rdev->pwcback(rdev, pw_msg, 0);
if (rc == 0)
return 0;
}
mutex_lock(&mport->lock);
list_for_each_entry(pwrite, &mport->pwrites, node)
pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
mutex_unlock(&mport->lock);
if (!rdev)
return 0;
/*
* FIXME: The code below stays as it was before for now until we decide
* how to do default PW handling in combination with per-mport callbacks
*/
portnum = pw_msg->em.is_port & 0xFF;
/* Check if device and route to it are functional:
* Sometimes devices may send PW message(s) just before being
* powered down (or link being lost).
*/
if (rio_chk_dev_access(rdev)) {
pr_debug("RIO: device access failed - get link partner\n");
/* Scan route to the device and identify failed link.
* This will replace device and port reported in PW message.
* PW message should not be used after this point.
*/
if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
pr_err("RIO: Route trace for %s failed\n",
rio_name(rdev));
return -EIO;
}
pw_msg = NULL;
}
/* For End-point devices processing stops here */
if (!(rdev->pef & RIO_PEF_SWITCH))
return 0;
if (rdev->phys_efptr == 0) {
pr_err("RIO_PW: Bad switch initialization for %s\n",
rio_name(rdev));
return 0;
}
/*
* Process the port-write notification from switch
*/
if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
rdev->rswitch->ops->em_handle(rdev, portnum);
rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
&err_status);
pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
if (!(rdev->rswitch->port_ok & (1 << portnum))) {
rdev->rswitch->port_ok |= (1 << portnum);
rio_set_port_lockout(rdev, portnum, 0);
/* Schedule Insertion Service */
pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
rio_name(rdev), portnum);
}
/* Clear error-stopped states (if reported).
* Depending on the link partner state, two attempts
* may be needed for successful recovery.
*/
if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
RIO_PORT_N_ERR_STS_INP_ES)) {
if (rio_clr_err_stopped(rdev, portnum, err_status))
rio_clr_err_stopped(rdev, portnum, 0);
}
} else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
if (rdev->rswitch->port_ok & (1 << portnum)) {
rdev->rswitch->port_ok &= ~(1 << portnum);
rio_set_port_lockout(rdev, portnum, 1);
if (rdev->phys_rmap == 1) {
rio_write_config_32(rdev,
RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
RIO_PORT_N_ACK_CLEAR);
} else {
rio_write_config_32(rdev,
RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
RIO_PORT_N_OB_ACK_CLEAR);
rio_write_config_32(rdev,
RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
0);
}
/* Schedule Extraction Service */
pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
rio_name(rdev), portnum);
}
}
rio_read_config_32(rdev,
rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
if (em_perrdet) {
pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
portnum, em_perrdet);
/* Clear EM Port N Error Detect CSR */
rio_write_config_32(rdev,
rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
}
rio_read_config_32(rdev,
rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
if (em_ltlerrdet) {
pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
em_ltlerrdet);
/* Clear EM L/T Layer Error Detect CSR */
rio_write_config_32(rdev,
rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
}
/* Clear remaining error bits and Port-Write Pending bit */
rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
err_status);
return 0;
}
EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
/**
* rio_mport_get_efb - get pointer to next extended features block
* @port: Master port to issue transaction
* @local: Indicate a local master port or remote device access
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @from: Offset of current Extended Feature block header (if 0 starts
* from ExtFeaturePtr)
*/
u32
rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
u8 hopcount, u32 from)
{
u32 reg_val;
if (from == 0) {
if (local)
rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
&reg_val);
else
rio_mport_read_config_32(port, destid, hopcount,
RIO_ASM_INFO_CAR, &reg_val);
return reg_val & RIO_EXT_FTR_PTR_MASK;
} else {
if (local)
rio_local_read_config_32(port, from, &reg_val);
else
rio_mport_read_config_32(port, destid, hopcount,
from, &reg_val);
return RIO_GET_BLOCK_ID(reg_val);
}
}
EXPORT_SYMBOL_GPL(rio_mport_get_efb);
/**
* rio_mport_get_feature - query for devices' extended features
* @port: Master port to issue transaction
* @local: Indicate a local master port or remote device access
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @ftr: Extended feature code
*
* Tell if a device supports a given RapidIO capability.
* Returns the offset of the requested extended feature
* block within the device's RIO configuration space or
* 0 in case the device does not support it.
*/
u32
rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
u8 hopcount, int ftr)
{
u32 asm_info, ext_ftr_ptr, ftr_header;
if (local)
rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
else
rio_mport_read_config_32(port, destid, hopcount,
RIO_ASM_INFO_CAR, &asm_info);
ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
while (ext_ftr_ptr) {
if (local)
rio_local_read_config_32(port, ext_ftr_ptr,
&ftr_header);
else
rio_mport_read_config_32(port, destid, hopcount,
ext_ftr_ptr, &ftr_header);
if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
return ext_ftr_ptr;
ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
if (!ext_ftr_ptr)
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(rio_mport_get_feature);
/**
* rio_std_route_add_entry - Add switch route table entry using standard
* registers defined in RIO specification rev.1.3
* @mport: Master port to issue transaction
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @table: routing table ID (global or port-specific)
* @route_destid: destID entry in the RT
* @route_port: destination port for specified destID
*/
static int
rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
u16 table, u16 route_destid, u8 route_port)
{
if (table == RIO_GLOBAL_TABLE) {
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_DESTID_SEL_CSR,
(u32)route_destid);
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_PORT_SEL_CSR,
(u32)route_port);
}
udelay(10);
return 0;
}
/**
* rio_std_route_get_entry - Read switch route table entry (port number)
* associated with specified destID using standard registers defined in RIO
* specification rev.1.3
* @mport: Master port to issue transaction
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @table: routing table ID (global or port-specific)
* @route_destid: destID entry in the RT
* @route_port: returned destination port for specified destID
*/
static int
rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
u16 table, u16 route_destid, u8 *route_port)
{
u32 result;
if (table == RIO_GLOBAL_TABLE) {
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
rio_mport_read_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
*route_port = (u8)result;
}
return 0;
}
/**
* rio_std_route_clr_table - Clear swotch route table using standard registers
* defined in RIO specification rev.1.3.
* @mport: Master port to issue transaction
* @destid: Destination ID of the device
* @hopcount: Number of switch hops to the device
* @table: routing table ID (global or port-specific)
*/
static int
rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
u16 table)
{
u32 max_destid = 0xff;
u32 i, pef, id_inc = 1, ext_cfg = 0;
u32 port_sel = RIO_INVALID_ROUTE;
if (table == RIO_GLOBAL_TABLE) {
rio_mport_read_config_32(mport, destid, hopcount,
RIO_PEF_CAR, &pef);
if (mport->sys_size) {
rio_mport_read_config_32(mport, destid, hopcount,
RIO_SWITCH_RT_LIMIT,
&max_destid);
max_destid &= RIO_RT_MAX_DESTID;
}
if (pef & RIO_PEF_EXT_RT) {
ext_cfg = 0x80000000;
id_inc = 4;
port_sel = (RIO_INVALID_ROUTE << 24) |
(RIO_INVALID_ROUTE << 16) |
(RIO_INVALID_ROUTE << 8) |
RIO_INVALID_ROUTE;
}
for (i = 0; i <= max_destid;) {
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_DESTID_SEL_CSR,
ext_cfg | i);
rio_mport_write_config_32(mport, destid, hopcount,
RIO_STD_RTE_CONF_PORT_SEL_CSR,
port_sel);
i += id_inc;
}
}
udelay(10);
return 0;
}
/**
* rio_lock_device - Acquires host device lock for specified device
* @port: Master port to send transaction
* @destid: Destination ID for device/switch
* @hopcount: Hopcount to reach switch
* @wait_ms: Max wait time in msec (0 = no timeout)
*
* Attepts to acquire host device lock for specified device
* Returns 0 if device lock acquired or EINVAL if timeout expires.
*/
int rio_lock_device(struct rio_mport *port, u16 destid,
u8 hopcount, int wait_ms)
{
u32 result;
int tcnt = 0;
/* Attempt to acquire device lock */
rio_mport_write_config_32(port, destid, hopcount,
RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
rio_mport_read_config_32(port, destid, hopcount,
RIO_HOST_DID_LOCK_CSR, &result);
while (result != port->host_deviceid) {
if (wait_ms != 0 && tcnt == wait_ms) {
pr_debug("RIO: timeout when locking device %x:%x\n",
destid, hopcount);
return -EINVAL;
}
/* Delay a bit */
mdelay(1);
tcnt++;
/* Try to acquire device lock again */
rio_mport_write_config_32(port, destid,
hopcount,
RIO_HOST_DID_LOCK_CSR,
port->host_deviceid);
rio_mport_read_config_32(port, destid,
hopcount,
RIO_HOST_DID_LOCK_CSR, &result);
}
return 0;
}
EXPORT_SYMBOL_GPL(rio_lock_device);
/**
* rio_unlock_device - Releases host device lock for specified device
* @port: Master port to send transaction
* @destid: Destination ID for device/switch
* @hopcount: Hopcount to reach switch
*
* Returns 0 if device lock released or EINVAL if fails.
*/
int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
{
u32 result;
/* Release device lock */
rio_mport_write_config_32(port, destid,
hopcount,
RIO_HOST_DID_LOCK_CSR,
port->host_deviceid);
rio_mport_read_config_32(port, destid, hopcount,
RIO_HOST_DID_LOCK_CSR, &result);
if ((result & 0xffff) != 0xffff) {
pr_debug("RIO: badness when releasing device lock %x:%x\n",
destid, hopcount);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(rio_unlock_device);
/**
* rio_route_add_entry- Add a route entry to a switch routing table
* @rdev: RIO device
* @table: Routing table ID
* @route_destid: Destination ID to be routed
* @route_port: Port number to be routed
* @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
*
* If available calls the switch specific add_entry() method to add a route
* entry into a switch routing table. Otherwise uses standard RT update method
* as defined by RapidIO specification. A specific routing table can be selected
* using the @table argument if a switch has per port routing tables or
* the standard (or global) table may be used by passing
* %RIO_GLOBAL_TABLE in @table.
*
* Returns %0 on success or %-EINVAL on failure.
*/
int rio_route_add_entry(struct rio_dev *rdev,
u16 table, u16 route_destid, u8 route_port, int lock)
{
int rc = -EINVAL;
struct rio_switch_ops *ops = rdev->rswitch->ops;
if (lock) {
rc = rio_lock_device(rdev->net->hport, rdev->destid,
rdev->hopcount, 1000);
if (rc)
return rc;
}
spin_lock(&rdev->rswitch->lock);
if (!ops || !ops->add_entry) {
rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table,
route_destid, route_port);
} else if (try_module_get(ops->owner)) {
rc = ops->add_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table, route_destid,
route_port);
module_put(ops->owner);
}
spin_unlock(&rdev->rswitch->lock);
if (lock)
rio_unlock_device(rdev->net->hport, rdev->destid,
rdev->hopcount);
return rc;
}
EXPORT_SYMBOL_GPL(rio_route_add_entry);
/**
* rio_route_get_entry- Read an entry from a switch routing table
* @rdev: RIO device
* @table: Routing table ID
* @route_destid: Destination ID to be routed
* @route_port: Pointer to read port number into
* @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
*
* If available calls the switch specific get_entry() method to fetch a route
* entry from a switch routing table. Otherwise uses standard RT read method
* as defined by RapidIO specification. A specific routing table can be selected
* using the @table argument if a switch has per port routing tables or
* the standard (or global) table may be used by passing
* %RIO_GLOBAL_TABLE in @table.
*
* Returns %0 on success or %-EINVAL on failure.
*/
int rio_route_get_entry(struct rio_dev *rdev, u16 table,
u16 route_destid, u8 *route_port, int lock)
{
int rc = -EINVAL;
struct rio_switch_ops *ops = rdev->rswitch->ops;
if (lock) {
rc = rio_lock_device(rdev->net->hport, rdev->destid,
rdev->hopcount, 1000);
if (rc)
return rc;
}
spin_lock(&rdev->rswitch->lock);
if (!ops || !ops->get_entry) {
rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table,
route_destid, route_port);
} else if (try_module_get(ops->owner)) {
rc = ops->get_entry(rdev->net->hport, rdev->destid,
rdev->hopcount, table, route_destid,
route_port);
module_put(ops->owner);
}
spin_unlock(&rdev->rswitch->lock);
if (lock)
rio_unlock_device(rdev->net->hport, rdev->destid,
rdev->hopcount);
return rc;
}
EXPORT_SYMBOL_GPL(rio_route_get_entry);
/**
* rio_route_clr_table - Clear a switch routing table
* @rdev: RIO device
* @table: Routing table ID
* @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
*
* If available calls the switch specific clr_table() method to clear a switch
* routing table. Otherwise uses standard RT write method as defined by RapidIO
* specification. A specific routing table can be selected using the @table
* argument if a switch has per port routing tables or the standard (or global)
* table may be used by passing %RIO_GLOBAL_TABLE in @table.
*
* Returns %0 on success or %-EINVAL on failure.
*/
int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
{
int rc = -EINVAL;
struct rio_switch_ops *ops = rdev->rswitch->ops;
if (lock) {
rc = rio_lock_device(rdev->net->hport, rdev->destid,
rdev->hopcount, 1000);
if (rc)
return rc;
}
spin_lock(&rdev->rswitch->lock);
if (!ops || !ops->clr_table) {
rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
rdev->hopcount, table);
} else if (try_module_get(ops->owner)) {
rc = ops->clr_table(rdev->net->hport, rdev->destid,
rdev->hopcount, table);
module_put(ops->owner);
}
spin_unlock(&rdev->rswitch->lock);
if (lock)
rio_unlock_device(rdev->net->hport, rdev->destid,
rdev->hopcount);
return rc;
}
EXPORT_SYMBOL_GPL(rio_route_clr_table);
#ifdef CONFIG_RAPIDIO_DMA_ENGINE
static bool rio_chan_filter(struct dma_chan *chan, void *arg)
{
struct rio_mport *mport = arg;
/* Check that DMA device belongs to the right MPORT */
return mport == container_of(chan->device, struct rio_mport, dma);
}
/**
* rio_request_mport_dma - request RapidIO capable DMA channel associated
* with specified local RapidIO mport device.
* @mport: RIO mport to perform DMA data transfers
*
* Returns pointer to allocated DMA channel or NULL if failed.
*/
struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
return dma_request_channel(mask, rio_chan_filter, mport);
}
EXPORT_SYMBOL_GPL(rio_request_mport_dma);
/**
* rio_request_dma - request RapidIO capable DMA channel that supports
* specified target RapidIO device.
* @rdev: RIO device associated with DMA transfer
*
* Returns pointer to allocated DMA channel or NULL if failed.
*/
struct dma_chan *rio_request_dma(struct rio_dev *rdev)
{
return rio_request_mport_dma(rdev->net->hport);
}
EXPORT_SYMBOL_GPL(rio_request_dma);
/**
* rio_release_dma - release specified DMA channel
* @dchan: DMA channel to release
*/
void rio_release_dma(struct dma_chan *dchan)
{
dma_release_channel(dchan);
}
EXPORT_SYMBOL_GPL(rio_release_dma);
/**
* rio_dma_prep_xfer - RapidIO specific wrapper
* for device_prep_slave_sg callback defined by DMAENGINE.
* @dchan: DMA channel to configure
* @destid: target RapidIO device destination ID
* @data: RIO specific data descriptor
* @direction: DMA data transfer direction (TO or FROM the device)
* @flags: dmaengine defined flags
*
* Initializes RapidIO capable DMA channel for the specified data transfer.
* Uses DMA channel private extension to pass information related to remote
* target RIO device.
*
* Returns: pointer to DMA transaction descriptor if successful,
* error-valued pointer or NULL if failed.
*/
struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
u16 destid, struct rio_dma_data *data,
enum dma_transfer_direction direction, unsigned long flags)
{
struct rio_dma_ext rio_ext;
if (!dchan->device->device_prep_slave_sg) {
pr_err("%s: prep_rio_sg == NULL\n", __func__);
return NULL;
}
rio_ext.destid = destid;
rio_ext.rio_addr_u = data->rio_addr_u;
rio_ext.rio_addr = data->rio_addr;
rio_ext.wr_type = data->wr_type;
return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
direction, flags, &rio_ext);
}
EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
/**
* rio_dma_prep_slave_sg - RapidIO specific wrapper
* for device_prep_slave_sg callback defined by DMAENGINE.
* @rdev: RIO device control structure
* @dchan: DMA channel to configure
* @data: RIO specific data descriptor
* @direction: DMA data transfer direction (TO or FROM the device)
* @flags: dmaengine defined flags
*
* Initializes RapidIO capable DMA channel for the specified data transfer.
* Uses DMA channel private extension to pass information related to remote
* target RIO device.
*
* Returns: pointer to DMA transaction descriptor if successful,
* error-valued pointer or NULL if failed.
*/
struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
struct dma_chan *dchan, struct rio_dma_data *data,
enum dma_transfer_direction direction, unsigned long flags)
{
return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
}
EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
/**
* rio_find_mport - find RIO mport by its ID
* @mport_id: number (ID) of mport device
*
* Given a RIO mport number, the desired mport is located
* in the global list of mports. If the mport is found, a pointer to its
* data structure is returned. If no mport is found, %NULL is returned.
*/
struct rio_mport *rio_find_mport(int mport_id)
{
struct rio_mport *port;
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
if (port->id == mport_id)
goto found;
}
port = NULL;
found:
mutex_unlock(&rio_mport_list_lock);
return port;
}
/**
* rio_register_scan - enumeration/discovery method registration interface
* @mport_id: mport device ID for which fabric scan routine has to be set
* (RIO_MPORT_ANY = set for all available mports)
* @scan_ops: enumeration/discovery operations structure
*
* Registers enumeration/discovery operations with RapidIO subsystem and
* attaches it to the specified mport device (or all available mports
* if RIO_MPORT_ANY is specified).
*
* Returns error if the mport already has an enumerator attached to it.
* In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
*/
int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
{
struct rio_mport *port;
struct rio_scan_node *scan;
int rc = 0;
pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
!scan_ops)
return -EINVAL;
mutex_lock(&rio_mport_list_lock);
/*
* Check if there is another enumerator already registered for
* the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
* for the same mport ID are not supported.
*/
list_for_each_entry(scan, &rio_scans, node) {
if (scan->mport_id == mport_id) {
rc = -EBUSY;
goto err_out;
}
}
/*
* Allocate and initialize new scan registration node.
*/
scan = kzalloc(sizeof(*scan), GFP_KERNEL);
if (!scan) {
rc = -ENOMEM;
goto err_out;
}
scan->mport_id = mport_id;
scan->ops = scan_ops;
/*
* Traverse the list of registered mports to attach this new scan.
*
* The new scan with matching mport ID overrides any previously attached
* scan assuming that old scan (if any) is the default one (based on the
* enumerator registration check above).
* If the new scan is the global one, it will be attached only to mports
* that do not have their own individual operations already attached.
*/
list_for_each_entry(port, &rio_mports, node) {
if (port->id == mport_id) {
port->nscan = scan_ops;
break;
} else if (mport_id == RIO_MPORT_ANY && !port->nscan)
port->nscan = scan_ops;
}
list_add_tail(&scan->node, &rio_scans);
err_out:
mutex_unlock(&rio_mport_list_lock);
return rc;
}
EXPORT_SYMBOL_GPL(rio_register_scan);
/**
* rio_unregister_scan - removes enumeration/discovery method from mport
* @mport_id: mport device ID for which fabric scan routine has to be
* unregistered (RIO_MPORT_ANY = apply to all mports that use
* the specified scan_ops)
* @scan_ops: enumeration/discovery operations structure
*
* Removes enumeration or discovery method assigned to the specified mport
* device. If RIO_MPORT_ANY is specified, removes the specified operations from
* all mports that have them attached.
*/
int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
{
struct rio_mport *port;
struct rio_scan_node *scan;
pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
return -EINVAL;
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node)
if (port->id == mport_id ||
(mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
port->nscan = NULL;
list_for_each_entry(scan, &rio_scans, node) {
if (scan->mport_id == mport_id) {
list_del(&scan->node);
kfree(scan);
break;
}
}
mutex_unlock(&rio_mport_list_lock);
return 0;
}
EXPORT_SYMBOL_GPL(rio_unregister_scan);
/**
* rio_mport_scan - execute enumeration/discovery on the specified mport
* @mport_id: number (ID) of mport device
*/
int rio_mport_scan(int mport_id)
{
struct rio_mport *port = NULL;
int rc;
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
if (port->id == mport_id)
goto found;
}
mutex_unlock(&rio_mport_list_lock);
return -ENODEV;
found:
if (!port->nscan) {
mutex_unlock(&rio_mport_list_lock);
return -EINVAL;
}
if (!try_module_get(port->nscan->owner)) {
mutex_unlock(&rio_mport_list_lock);
return -ENODEV;
}
mutex_unlock(&rio_mport_list_lock);
if (port->host_deviceid >= 0)
rc = port->nscan->enumerate(port, 0);
else
rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
module_put(port->nscan->owner);
return rc;
}
static struct workqueue_struct *rio_wq;
struct rio_disc_work {
struct work_struct work;
struct rio_mport *mport;
};
static void disc_work_handler(struct work_struct *_work)
{
struct rio_disc_work *work;
work = container_of(_work, struct rio_disc_work, work);
pr_debug("RIO: discovery work for mport %d %s\n",
work->mport->id, work->mport->name);
if (try_module_get(work->mport->nscan->owner)) {
work->mport->nscan->discover(work->mport, 0);
module_put(work->mport->nscan->owner);
}
}
int rio_init_mports(void)
{
struct rio_mport *port;
struct rio_disc_work *work;
int n = 0;
if (!next_portid)
return -ENODEV;
/*
* First, run enumerations and check if we need to perform discovery
* on any of the registered mports.
*/
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
if (port->host_deviceid >= 0) {
if (port->nscan && try_module_get(port->nscan->owner)) {
port->nscan->enumerate(port, 0);
module_put(port->nscan->owner);
}
} else
n++;
}
mutex_unlock(&rio_mport_list_lock);
if (!n)
goto no_disc;
/*
* If we have mports that require discovery schedule a discovery work
* for each of them. If the code below fails to allocate needed
* resources, exit without error to keep results of enumeration
* process (if any).
* TODO: Implement restart of discovery process for all or
* individual discovering mports.
*/
rio_wq = alloc_workqueue("riodisc", 0, 0);
if (!rio_wq) {
pr_err("RIO: unable allocate rio_wq\n");
goto no_disc;
}
work = kcalloc(n, sizeof *work, GFP_KERNEL);
if (!work) {
destroy_workqueue(rio_wq);
goto no_disc;
}
n = 0;
mutex_lock(&rio_mport_list_lock);
list_for_each_entry(port, &rio_mports, node) {
if (port->host_deviceid < 0 && port->nscan) {
work[n].mport = port;
INIT_WORK(&work[n].work, disc_work_handler);
queue_work(rio_wq, &work[n].work);
n++;
}
}
flush_workqueue(rio_wq);
mutex_unlock(&rio_mport_list_lock);
pr_debug("RIO: destroy discovery workqueue\n");
destroy_workqueue(rio_wq);
kfree(work);
no_disc:
return 0;
}
EXPORT_SYMBOL_GPL(rio_init_mports);
static int rio_get_hdid(int index)
{
if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
return -1;
return hdid[index];
}
int rio_mport_initialize(struct rio_mport *mport)
{
if (next_portid >= RIO_MAX_MPORTS) {
pr_err("RIO: reached specified max number of mports\n");
return -ENODEV;
}
atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
mport->id = next_portid++;
mport->host_deviceid = rio_get_hdid(mport->id);
mport->nscan = NULL;
mutex_init(&mport->lock);
mport->pwe_refcnt = 0;
INIT_LIST_HEAD(&mport->pwrites);
return 0;
}
EXPORT_SYMBOL_GPL(rio_mport_initialize);
int rio_register_mport(struct rio_mport *port)
{
struct rio_scan_node *scan = NULL;
int res = 0;
mutex_lock(&rio_mport_list_lock);
/*
* Check if there are any registered enumeration/discovery operations
* that have to be attached to the added mport.
*/
list_for_each_entry(scan, &rio_scans, node) {
if (port->id == scan->mport_id ||
scan->mport_id == RIO_MPORT_ANY) {
port->nscan = scan->ops;
if (port->id == scan->mport_id)
break;
}
}
list_add_tail(&port->node, &rio_mports);
mutex_unlock(&rio_mport_list_lock);
dev_set_name(&port->dev, "rapidio%d", port->id);
port->dev.class = &rio_mport_class;
atomic_set(&port->state, RIO_DEVICE_RUNNING);
res = device_register(&port->dev);
if (res) {
dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
port->id, res);
mutex_lock(&rio_mport_list_lock);
list_del(&port->node);
mutex_unlock(&rio_mport_list_lock);
put_device(&port->dev);
} else {
dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
}
return res;
}
EXPORT_SYMBOL_GPL(rio_register_mport);
static int rio_mport_cleanup_callback(struct device *dev, void *data)
{
struct rio_dev *rdev = to_rio_dev(dev);
if (dev->bus == &rio_bus_type)
rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
return 0;
}
static int rio_net_remove_children(struct rio_net *net)
{
/*
* Unregister all RapidIO devices residing on this net (this will
* invoke notification of registered subsystem interfaces as well).
*/
device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
return 0;
}
int rio_unregister_mport(struct rio_mport *port)
{
pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
/* Transition mport to the SHUTDOWN state */
if (atomic_cmpxchg(&port->state,
RIO_DEVICE_RUNNING,
RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
pr_err("RIO: %s unexpected state transition for mport %s\n",
__func__, port->name);
}
if (port->net && port->net->hport == port) {
rio_net_remove_children(port->net);
rio_free_net(port->net);
}
/*
* Unregister all RapidIO devices attached to this mport (this will
* invoke notification of registered subsystem interfaces as well).
*/
mutex_lock(&rio_mport_list_lock);
list_del(&port->node);
mutex_unlock(&rio_mport_list_lock);
device_unregister(&port->dev);
return 0;
}
EXPORT_SYMBOL_GPL(rio_unregister_mport);