Kees Cook 6396bb2215 treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

        kzalloc(a * b, gfp)

with:
        kcalloc(a * b, gfp)

as well as handling cases of:

        kzalloc(a * b * c, gfp)

with:

        kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kzalloc(sizeof(THING) * C2, ...)
|
  kzalloc(sizeof(TYPE) * C2, ...)
|
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

221 lines
5.3 KiB
C

/*
* Copyright (C) 2012 CERN (www.cern.ch)
* Author: Alessandro Rubini <rubini@gnudd.com>
*
* Released according to the GNU GPL, version 2 or any later version.
*
* This work is part of the White Rabbit project, a research effort led
* by CERN, the European Institute for Nuclear Research.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fmc.h>
#include <linux/sdb.h>
#include <linux/err.h>
#include <linux/fmc-sdb.h>
#include <asm/byteorder.h>
static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
int convert)
{
uint32_t res = fmc_readl(fmc, address);
if (convert)
return __be32_to_cpu(res);
return res;
}
static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
unsigned long sdb_addr,
unsigned long reg_base, int level)
{
uint32_t onew;
int i, j, n, convert = 0;
struct sdb_array *arr, *sub;
onew = fmc_readl(fmc, sdb_addr);
if (onew == SDB_MAGIC) {
/* Uh! If we are little-endian, we must convert */
if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
convert = 1;
} else if (onew == __be32_to_cpu(SDB_MAGIC)) {
/* ok, don't convert */
} else {
return ERR_PTR(-ENOENT);
}
/* So, the magic was there: get the count from offset 4*/
onew = __sdb_rd(fmc, sdb_addr + 4, convert);
n = __be16_to_cpu(*(uint16_t *)&onew);
arr = kzalloc(sizeof(*arr), GFP_KERNEL);
if (!arr)
return ERR_PTR(-ENOMEM);
arr->record = kcalloc(n, sizeof(arr->record[0]), GFP_KERNEL);
arr->subtree = kcalloc(n, sizeof(arr->subtree[0]), GFP_KERNEL);
if (!arr->record || !arr->subtree) {
kfree(arr->record);
kfree(arr->subtree);
kfree(arr);
return ERR_PTR(-ENOMEM);
}
arr->len = n;
arr->level = level;
arr->fmc = fmc;
for (i = 0; i < n; i++) {
union sdb_record *r;
for (j = 0; j < sizeof(arr->record[0]); j += 4) {
*(uint32_t *)((void *)(arr->record + i) + j) =
__sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
}
r = &arr->record[i];
arr->subtree[i] = ERR_PTR(-ENODEV);
if (r->empty.record_type == sdb_type_bridge) {
struct sdb_component *c = &r->bridge.sdb_component;
uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
uint64_t newbase = __be64_to_cpu(c->addr_first);
subaddr += reg_base;
newbase += reg_base;
sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
level + 1);
arr->subtree[i] = sub; /* may be error */
if (IS_ERR(sub))
continue;
sub->parent = arr;
sub->baseaddr = newbase;
}
}
return arr;
}
int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
{
struct sdb_array *ret;
if (fmc->sdb)
return -EBUSY;
ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
if (IS_ERR(ret))
return PTR_ERR(ret);
fmc->sdb = ret;
return 0;
}
EXPORT_SYMBOL(fmc_scan_sdb_tree);
static void __fmc_sdb_free(struct sdb_array *arr)
{
int i, n;
if (!arr)
return;
n = arr->len;
for (i = 0; i < n; i++) {
if (IS_ERR(arr->subtree[i]))
continue;
__fmc_sdb_free(arr->subtree[i]);
}
kfree(arr->record);
kfree(arr->subtree);
kfree(arr);
}
int fmc_free_sdb_tree(struct fmc_device *fmc)
{
__fmc_sdb_free(fmc->sdb);
fmc->sdb = NULL;
return 0;
}
EXPORT_SYMBOL(fmc_free_sdb_tree);
/* This helper calls reprogram and inizialized sdb as well */
int fmc_reprogram_raw(struct fmc_device *fmc, struct fmc_driver *d,
void *gw, unsigned long len, int sdb_entry)
{
int ret;
ret = fmc->op->reprogram_raw(fmc, d, gw, len);
if (ret < 0)
return ret;
if (sdb_entry < 0)
return ret;
/* We are required to find SDB at a given offset */
ret = fmc_scan_sdb_tree(fmc, sdb_entry);
if (ret < 0) {
dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
sdb_entry);
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL(fmc_reprogram_raw);
/* This helper calls reprogram and inizialized sdb as well */
int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
int sdb_entry)
{
int ret;
ret = fmc->op->reprogram(fmc, d, gw);
if (ret < 0)
return ret;
if (sdb_entry < 0)
return ret;
/* We are required to find SDB at a given offset */
ret = fmc_scan_sdb_tree(fmc, sdb_entry);
if (ret < 0) {
dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
sdb_entry);
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL(fmc_reprogram);
void fmc_show_sdb_tree(const struct fmc_device *fmc)
{
pr_err("%s: not supported anymore, use debugfs to dump SDB\n",
__func__);
}
EXPORT_SYMBOL(fmc_show_sdb_tree);
signed long fmc_find_sdb_device(struct sdb_array *tree,
uint64_t vid, uint32_t did, unsigned long *sz)
{
signed long res = -ENODEV;
union sdb_record *r;
struct sdb_product *p;
struct sdb_component *c;
int i, n = tree->len;
uint64_t last, first;
/* FIXME: what if the first interconnect is not at zero? */
for (i = 0; i < n; i++) {
r = &tree->record[i];
c = &r->dev.sdb_component;
p = &c->product;
if (!IS_ERR(tree->subtree[i]))
res = fmc_find_sdb_device(tree->subtree[i],
vid, did, sz);
if (res >= 0)
return res + tree->baseaddr;
if (r->empty.record_type != sdb_type_device)
continue;
if (__be64_to_cpu(p->vendor_id) != vid)
continue;
if (__be32_to_cpu(p->device_id) != did)
continue;
/* found */
last = __be64_to_cpu(c->addr_last);
first = __be64_to_cpu(c->addr_first);
if (sz)
*sz = (typeof(*sz))(last + 1 - first);
return first + tree->baseaddr;
}
return res;
}
EXPORT_SYMBOL(fmc_find_sdb_device);