linux-stable/drivers/iio/dac/ad5791.c
Axel Haslam 7f36074c0f iio: dac: ad5791: Use devm_iio_device_register
Use devm_iio_device_register to automatically free the iio device.
since this is the last remaining resource that was not automatically
freed, we can drop the ".remove" callback.

Suggested-by: David Lechner <dlechner@baylibre.com>
Reviewed-by: David Lechner <dlechner@baylibre.com>
Signed-off-by: Axel Haslam <ahaslam@baylibre.com>
Link: https://patch.msgid.link/20241031071746.848694-7-ahaslam@baylibre.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2024-11-03 20:33:42 +00:00

455 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AD5760, AD5780, AD5781, AD5790, AD5791 Voltage Output Digital to Analog
* Converter
*
* Copyright 2011 Analog Devices Inc.
*/
#include <linux/interrupt.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/dac/ad5791.h>
#define AD5791_DAC_MASK GENMASK(19, 0)
#define AD5791_CMD_READ BIT(23)
#define AD5791_CMD_WRITE 0
#define AD5791_ADDR(addr) ((addr) << 20)
/* Registers */
#define AD5791_ADDR_NOOP 0
#define AD5791_ADDR_DAC0 1
#define AD5791_ADDR_CTRL 2
#define AD5791_ADDR_CLRCODE 3
#define AD5791_ADDR_SW_CTRL 4
/* Control Register */
#define AD5791_CTRL_RBUF BIT(1)
#define AD5791_CTRL_OPGND BIT(2)
#define AD5791_CTRL_DACTRI BIT(3)
#define AD5791_CTRL_BIN2SC BIT(4)
#define AD5791_CTRL_SDODIS BIT(5)
#define AD5761_CTRL_LINCOMP(x) ((x) << 6)
#define AD5791_LINCOMP_0_10 0
#define AD5791_LINCOMP_10_12 1
#define AD5791_LINCOMP_12_16 2
#define AD5791_LINCOMP_16_19 3
#define AD5791_LINCOMP_19_20 12
#define AD5780_LINCOMP_0_10 0
#define AD5780_LINCOMP_10_20 12
/* Software Control Register */
#define AD5791_SWCTRL_LDAC BIT(0)
#define AD5791_SWCTRL_CLR BIT(1)
#define AD5791_SWCTRL_RESET BIT(2)
#define AD5791_DAC_PWRDN_6K 0
#define AD5791_DAC_PWRDN_3STATE 1
/**
* struct ad5791_chip_info - chip specific information
* @name: name of the dac chip
* @channel: channel specification
* @get_lin_comp: function pointer to the device specific function
*/
struct ad5791_chip_info {
const char *name;
const struct iio_chan_spec channel;
int (*get_lin_comp)(unsigned int span);
};
/**
* struct ad5791_state - driver instance specific data
* @spi: spi_device
* @reg_vdd: positive supply regulator
* @reg_vss: negative supply regulator
* @gpio_reset: reset gpio
* @gpio_clear: clear gpio
* @gpio_ldac: load dac gpio
* @chip_info: chip model specific constants
* @vref_mv: actual reference voltage used
* @vref_neg_mv: voltage of the negative supply
* @ctrl: control register cache
* @pwr_down_mode: current power down mode
* @pwr_down: true if device is powered down
* @data: spi transfer buffers
*/
struct ad5791_state {
struct spi_device *spi;
struct regulator *reg_vdd;
struct regulator *reg_vss;
struct gpio_desc *gpio_reset;
struct gpio_desc *gpio_clear;
struct gpio_desc *gpio_ldac;
const struct ad5791_chip_info *chip_info;
unsigned short vref_mv;
unsigned int vref_neg_mv;
unsigned ctrl;
unsigned pwr_down_mode;
bool pwr_down;
union {
__be32 d32;
u8 d8[4];
} data[3] __aligned(IIO_DMA_MINALIGN);
};
static int ad5791_spi_write(struct ad5791_state *st, u8 addr, u32 val)
{
st->data[0].d32 = cpu_to_be32(AD5791_CMD_WRITE |
AD5791_ADDR(addr) |
(val & AD5791_DAC_MASK));
return spi_write(st->spi, &st->data[0].d8[1], 3);
}
static int ad5791_spi_read(struct ad5791_state *st, u8 addr, u32 *val)
{
int ret;
struct spi_transfer xfers[] = {
{
.tx_buf = &st->data[0].d8[1],
.bits_per_word = 8,
.len = 3,
.cs_change = 1,
}, {
.tx_buf = &st->data[1].d8[1],
.rx_buf = &st->data[2].d8[1],
.bits_per_word = 8,
.len = 3,
},
};
st->data[0].d32 = cpu_to_be32(AD5791_CMD_READ |
AD5791_ADDR(addr));
st->data[1].d32 = cpu_to_be32(AD5791_ADDR(AD5791_ADDR_NOOP));
ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
*val = be32_to_cpu(st->data[2].d32);
return ret;
}
static const char * const ad5791_powerdown_modes[] = {
"6kohm_to_gnd",
"three_state",
};
static int ad5791_get_powerdown_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad5791_state *st = iio_priv(indio_dev);
return st->pwr_down_mode;
}
static int ad5791_set_powerdown_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, unsigned int mode)
{
struct ad5791_state *st = iio_priv(indio_dev);
st->pwr_down_mode = mode;
return 0;
}
static const struct iio_enum ad5791_powerdown_mode_enum = {
.items = ad5791_powerdown_modes,
.num_items = ARRAY_SIZE(ad5791_powerdown_modes),
.get = ad5791_get_powerdown_mode,
.set = ad5791_set_powerdown_mode,
};
static ssize_t ad5791_read_dac_powerdown(struct iio_dev *indio_dev,
uintptr_t private, const struct iio_chan_spec *chan, char *buf)
{
struct ad5791_state *st = iio_priv(indio_dev);
return sysfs_emit(buf, "%d\n", st->pwr_down);
}
static ssize_t ad5791_write_dac_powerdown(struct iio_dev *indio_dev,
uintptr_t private, const struct iio_chan_spec *chan, const char *buf,
size_t len)
{
bool pwr_down;
int ret;
struct ad5791_state *st = iio_priv(indio_dev);
ret = kstrtobool(buf, &pwr_down);
if (ret)
return ret;
if (!pwr_down) {
st->ctrl &= ~(AD5791_CTRL_OPGND | AD5791_CTRL_DACTRI);
} else {
if (st->pwr_down_mode == AD5791_DAC_PWRDN_6K)
st->ctrl |= AD5791_CTRL_OPGND;
else if (st->pwr_down_mode == AD5791_DAC_PWRDN_3STATE)
st->ctrl |= AD5791_CTRL_DACTRI;
}
st->pwr_down = pwr_down;
ret = ad5791_spi_write(st, AD5791_ADDR_CTRL, st->ctrl);
return ret ? ret : len;
}
static int ad5791_get_lin_comp(unsigned int span)
{
if (span <= 10000)
return AD5791_LINCOMP_0_10;
else if (span <= 12000)
return AD5791_LINCOMP_10_12;
else if (span <= 16000)
return AD5791_LINCOMP_12_16;
else if (span <= 19000)
return AD5791_LINCOMP_16_19;
else
return AD5791_LINCOMP_19_20;
}
static int ad5780_get_lin_comp(unsigned int span)
{
if (span <= 10000)
return AD5780_LINCOMP_0_10;
else
return AD5780_LINCOMP_10_20;
}
static int ad5791_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad5791_state *st = iio_priv(indio_dev);
u64 val64;
int ret;
switch (m) {
case IIO_CHAN_INFO_RAW:
ret = ad5791_spi_read(st, chan->address, val);
if (ret)
return ret;
*val &= AD5791_DAC_MASK;
*val >>= chan->scan_type.shift;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = st->vref_mv;
*val2 = (1 << chan->scan_type.realbits) - 1;
return IIO_VAL_FRACTIONAL;
case IIO_CHAN_INFO_OFFSET:
val64 = (((u64)st->vref_neg_mv) << chan->scan_type.realbits);
do_div(val64, st->vref_mv);
*val = -val64;
return IIO_VAL_INT;
default:
return -EINVAL;
}
};
static const struct iio_chan_spec_ext_info ad5791_ext_info[] = {
{
.name = "powerdown",
.shared = IIO_SHARED_BY_TYPE,
.read = ad5791_read_dac_powerdown,
.write = ad5791_write_dac_powerdown,
},
IIO_ENUM("powerdown_mode", IIO_SHARED_BY_TYPE,
&ad5791_powerdown_mode_enum),
IIO_ENUM_AVAILABLE("powerdown_mode", IIO_SHARED_BY_TYPE, &ad5791_powerdown_mode_enum),
{ },
};
#define AD5791_DEFINE_CHIP_INFO(_name, bits, _shift, _lin_comp) \
static const struct ad5791_chip_info _name##_chip_info = { \
.name = #_name, \
.get_lin_comp = &(_lin_comp), \
.channel = { \
.type = IIO_VOLTAGE, \
.output = 1, \
.indexed = 1, \
.address = AD5791_ADDR_DAC0, \
.channel = 0, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET), \
.scan_type = { \
.sign = 'u', \
.realbits = (bits), \
.storagebits = 24, \
.shift = (_shift), \
}, \
.ext_info = ad5791_ext_info, \
}, \
}
AD5791_DEFINE_CHIP_INFO(ad5760, 16, 4, ad5780_get_lin_comp);
AD5791_DEFINE_CHIP_INFO(ad5780, 18, 2, ad5780_get_lin_comp);
AD5791_DEFINE_CHIP_INFO(ad5781, 18, 2, ad5791_get_lin_comp);
AD5791_DEFINE_CHIP_INFO(ad5790, 20, 0, ad5791_get_lin_comp);
AD5791_DEFINE_CHIP_INFO(ad5791, 20, 0, ad5791_get_lin_comp);
static int ad5791_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad5791_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
val &= GENMASK(chan->scan_type.realbits - 1, 0);
val <<= chan->scan_type.shift;
return ad5791_spi_write(st, chan->address, val);
default:
return -EINVAL;
}
}
static const struct iio_info ad5791_info = {
.read_raw = &ad5791_read_raw,
.write_raw = &ad5791_write_raw,
};
static int ad5791_probe(struct spi_device *spi)
{
const struct ad5791_platform_data *pdata = dev_get_platdata(&spi->dev);
struct iio_dev *indio_dev;
struct ad5791_state *st;
int ret, pos_voltage_uv = 0, neg_voltage_uv = 0;
bool use_rbuf_gain2;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->gpio_reset = devm_gpiod_get_optional(&spi->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(st->gpio_reset))
return PTR_ERR(st->gpio_reset);
st->gpio_clear = devm_gpiod_get_optional(&spi->dev, "clear",
GPIOD_OUT_LOW);
if (IS_ERR(st->gpio_clear))
return PTR_ERR(st->gpio_clear);
st->gpio_ldac = devm_gpiod_get_optional(&spi->dev, "ldac",
GPIOD_OUT_HIGH);
if (IS_ERR(st->gpio_ldac))
return PTR_ERR(st->gpio_ldac);
st->pwr_down = true;
st->spi = spi;
if (pdata)
use_rbuf_gain2 = pdata->use_rbuf_gain2;
else
use_rbuf_gain2 = device_property_read_bool(&spi->dev,
"adi,rbuf-gain2-en");
pos_voltage_uv = devm_regulator_get_enable_read_voltage(&spi->dev, "vdd");
if (pos_voltage_uv < 0 && pos_voltage_uv != -ENODEV)
return dev_err_probe(&spi->dev, pos_voltage_uv,
"failed to get vdd voltage\n");
neg_voltage_uv = devm_regulator_get_enable_read_voltage(&spi->dev, "vss");
if (neg_voltage_uv < 0 && neg_voltage_uv != -ENODEV)
return dev_err_probe(&spi->dev, neg_voltage_uv,
"failed to get vss voltage\n");
if (neg_voltage_uv >= 0 && pos_voltage_uv >= 0) {
st->vref_mv = (pos_voltage_uv + neg_voltage_uv) / 1000;
st->vref_neg_mv = neg_voltage_uv / 1000;
} else if (pdata) {
st->vref_mv = pdata->vref_pos_mv + pdata->vref_neg_mv;
st->vref_neg_mv = pdata->vref_neg_mv;
} else {
dev_warn(&spi->dev, "reference voltage unspecified\n");
}
if (st->gpio_reset) {
fsleep(20);
gpiod_set_value_cansleep(st->gpio_reset, 0);
} else {
ret = ad5791_spi_write(st, AD5791_ADDR_SW_CTRL, AD5791_SWCTRL_RESET);
if (ret)
return dev_err_probe(&spi->dev, ret, "fail to reset\n");
}
st->chip_info = spi_get_device_match_data(spi);
if (!st->chip_info)
return dev_err_probe(&spi->dev, -EINVAL, "no chip info\n");
st->ctrl = AD5761_CTRL_LINCOMP(st->chip_info->get_lin_comp(st->vref_mv))
| (use_rbuf_gain2 ? 0 : AD5791_CTRL_RBUF) |
AD5791_CTRL_BIN2SC;
ret = ad5791_spi_write(st, AD5791_ADDR_CTRL, st->ctrl |
AD5791_CTRL_OPGND | AD5791_CTRL_DACTRI);
if (ret)
return dev_err_probe(&spi->dev, ret, "fail to write ctrl register\n");
indio_dev->info = &ad5791_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = &st->chip_info->channel;
indio_dev->num_channels = 1;
indio_dev->name = st->chip_info->name;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct of_device_id ad5791_of_match[] = {
{ .compatible = "adi,ad5760", .data = &ad5760_chip_info },
{ .compatible = "adi,ad5780", .data = &ad5780_chip_info },
{ .compatible = "adi,ad5781", .data = &ad5781_chip_info },
{ .compatible = "adi,ad5790", .data = &ad5790_chip_info },
{ .compatible = "adi,ad5791", .data = &ad5791_chip_info },
{ }
};
MODULE_DEVICE_TABLE(of, ad5791_of_match);
static const struct spi_device_id ad5791_id[] = {
{ "ad5760", (kernel_ulong_t)&ad5760_chip_info },
{ "ad5780", (kernel_ulong_t)&ad5780_chip_info },
{ "ad5781", (kernel_ulong_t)&ad5781_chip_info },
{ "ad5790", (kernel_ulong_t)&ad5790_chip_info },
{ "ad5791", (kernel_ulong_t)&ad5791_chip_info },
{ }
};
MODULE_DEVICE_TABLE(spi, ad5791_id);
static struct spi_driver ad5791_driver = {
.driver = {
.name = "ad5791",
.of_match_table = ad5791_of_match,
},
.probe = ad5791_probe,
.id_table = ad5791_id,
};
module_spi_driver(ad5791_driver);
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5760/AD5780/AD5781/AD5790/AD5791 DAC");
MODULE_LICENSE("GPL v2");