mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 15:10:38 +00:00
291f36325f
There is currently a large divide between kernel development and the development of EFI boot loaders. The idea behind this patch is to give the kernel developers full control over the EFI boot process. As H. Peter Anvin put it, "The 'kernel carries its own stub' approach been very successful in dealing with BIOS, and would make a lot of sense to me for EFI as well." This patch introduces an EFI boot stub that allows an x86 bzImage to be loaded and executed by EFI firmware. The bzImage appears to the firmware as an EFI application. Luckily there are enough free bits within the bzImage header so that it can masquerade as an EFI application, thereby coercing the EFI firmware into loading it and jumping to its entry point. The beauty of this masquerading approach is that both BIOS and EFI boot loaders can still load and run the same bzImage, thereby allowing a single kernel image to work in any boot environment. The EFI boot stub supports multiple initrds, but they must exist on the same partition as the bzImage. Command-line arguments for the kernel can be appended after the bzImage name when run from the EFI shell, e.g. Shell> bzImage console=ttyS0 root=/dev/sdb initrd=initrd.img v7: - Fix checkpatch warnings. v6: - Try to allocate initrd memory just below hdr->inird_addr_max. v5: - load_options_size is UTF-16, which needs dividing by 2 to convert to the corresponding ASCII size. v4: - Don't read more than image->load_options_size v3: - Fix following warnings when compiling CONFIG_EFI_STUB=n arch/x86/boot/tools/build.c: In function ‘main’: arch/x86/boot/tools/build.c:138:24: warning: unused variable ‘pe_header’ arch/x86/boot/tools/build.c:138:15: warning: unused variable ‘file_sz’ - As reported by Matthew Garrett, some Apple machines have GOPs that don't have hardware attached. We need to weed these out by searching for ones that handle the PCIIO protocol. - Don't allocate memory if no initrds are on cmdline - Don't trust image->load_options_size Maarten Lankhorst noted: - Don't strip first argument when booted from efibootmgr - Don't allocate too much memory for cmdline - Don't update cmdline_size, the kernel considers it read-only - Don't accept '\n' for initrd names v2: - File alignment was too large, was 8192 should be 512. Reported by Maarten Lankhorst on LKML. - Added UGA support for graphics - Use VIDEO_TYPE_EFI instead of hard-coded number. - Move linelength assignment until after we've assigned depth - Dynamically fill out AddressOfEntryPoint in tools/build.c - Don't use magic number for GDT/TSS stuff. Requested by Andi Kleen - The bzImage may need to be relocated as it may have been loaded at a high address address by the firmware. This was required to get my macbook booting because the firmware loaded it at 0x7cxxxxxx, which triggers this error in decompress_kernel(), if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff)) error("Destination address too large"); Cc: Mike Waychison <mikew@google.com> Cc: Matthew Garrett <mjg@redhat.com> Tested-by: Henrik Rydberg <rydberg@euromail.se> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Link: http://lkml.kernel.org/r/1321383097.2657.9.camel@mfleming-mobl1.ger.corp.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
362 lines
7.8 KiB
ArmAsm
362 lines
7.8 KiB
ArmAsm
/*
|
|
* linux/boot/head.S
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* head.S contains the 32-bit startup code.
|
|
*
|
|
* NOTE!!! Startup happens at absolute address 0x00001000, which is also where
|
|
* the page directory will exist. The startup code will be overwritten by
|
|
* the page directory. [According to comments etc elsewhere on a compressed
|
|
* kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
|
|
*
|
|
* Page 0 is deliberately kept safe, since System Management Mode code in
|
|
* laptops may need to access the BIOS data stored there. This is also
|
|
* useful for future device drivers that either access the BIOS via VM86
|
|
* mode.
|
|
*/
|
|
|
|
/*
|
|
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
|
|
*/
|
|
.code32
|
|
.text
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/linkage.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/pgtable_types.h>
|
|
#include <asm/page_types.h>
|
|
#include <asm/boot.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/asm-offsets.h>
|
|
|
|
__HEAD
|
|
.code32
|
|
ENTRY(startup_32)
|
|
cld
|
|
/*
|
|
* Test KEEP_SEGMENTS flag to see if the bootloader is asking
|
|
* us to not reload segments
|
|
*/
|
|
testb $(1<<6), BP_loadflags(%esi)
|
|
jnz 1f
|
|
|
|
cli
|
|
movl $(__KERNEL_DS), %eax
|
|
movl %eax, %ds
|
|
movl %eax, %es
|
|
movl %eax, %ss
|
|
1:
|
|
|
|
/*
|
|
* Calculate the delta between where we were compiled to run
|
|
* at and where we were actually loaded at. This can only be done
|
|
* with a short local call on x86. Nothing else will tell us what
|
|
* address we are running at. The reserved chunk of the real-mode
|
|
* data at 0x1e4 (defined as a scratch field) are used as the stack
|
|
* for this calculation. Only 4 bytes are needed.
|
|
*/
|
|
leal (BP_scratch+4)(%esi), %esp
|
|
call 1f
|
|
1: popl %ebp
|
|
subl $1b, %ebp
|
|
|
|
/* setup a stack and make sure cpu supports long mode. */
|
|
movl $boot_stack_end, %eax
|
|
addl %ebp, %eax
|
|
movl %eax, %esp
|
|
|
|
call verify_cpu
|
|
testl %eax, %eax
|
|
jnz no_longmode
|
|
|
|
/*
|
|
* Compute the delta between where we were compiled to run at
|
|
* and where the code will actually run at.
|
|
*
|
|
* %ebp contains the address we are loaded at by the boot loader and %ebx
|
|
* contains the address where we should move the kernel image temporarily
|
|
* for safe in-place decompression.
|
|
*/
|
|
|
|
#ifdef CONFIG_RELOCATABLE
|
|
movl %ebp, %ebx
|
|
movl BP_kernel_alignment(%esi), %eax
|
|
decl %eax
|
|
addl %eax, %ebx
|
|
notl %eax
|
|
andl %eax, %ebx
|
|
#else
|
|
movl $LOAD_PHYSICAL_ADDR, %ebx
|
|
#endif
|
|
|
|
/* Target address to relocate to for decompression */
|
|
addl $z_extract_offset, %ebx
|
|
|
|
/*
|
|
* Prepare for entering 64 bit mode
|
|
*/
|
|
|
|
/* Load new GDT with the 64bit segments using 32bit descriptor */
|
|
leal gdt(%ebp), %eax
|
|
movl %eax, gdt+2(%ebp)
|
|
lgdt gdt(%ebp)
|
|
|
|
/* Enable PAE mode */
|
|
movl $(X86_CR4_PAE), %eax
|
|
movl %eax, %cr4
|
|
|
|
/*
|
|
* Build early 4G boot pagetable
|
|
*/
|
|
/* Initialize Page tables to 0 */
|
|
leal pgtable(%ebx), %edi
|
|
xorl %eax, %eax
|
|
movl $((4096*6)/4), %ecx
|
|
rep stosl
|
|
|
|
/* Build Level 4 */
|
|
leal pgtable + 0(%ebx), %edi
|
|
leal 0x1007 (%edi), %eax
|
|
movl %eax, 0(%edi)
|
|
|
|
/* Build Level 3 */
|
|
leal pgtable + 0x1000(%ebx), %edi
|
|
leal 0x1007(%edi), %eax
|
|
movl $4, %ecx
|
|
1: movl %eax, 0x00(%edi)
|
|
addl $0x00001000, %eax
|
|
addl $8, %edi
|
|
decl %ecx
|
|
jnz 1b
|
|
|
|
/* Build Level 2 */
|
|
leal pgtable + 0x2000(%ebx), %edi
|
|
movl $0x00000183, %eax
|
|
movl $2048, %ecx
|
|
1: movl %eax, 0(%edi)
|
|
addl $0x00200000, %eax
|
|
addl $8, %edi
|
|
decl %ecx
|
|
jnz 1b
|
|
|
|
/* Enable the boot page tables */
|
|
leal pgtable(%ebx), %eax
|
|
movl %eax, %cr3
|
|
|
|
/* Enable Long mode in EFER (Extended Feature Enable Register) */
|
|
movl $MSR_EFER, %ecx
|
|
rdmsr
|
|
btsl $_EFER_LME, %eax
|
|
wrmsr
|
|
|
|
/*
|
|
* Setup for the jump to 64bit mode
|
|
*
|
|
* When the jump is performend we will be in long mode but
|
|
* in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
|
|
* (and in turn EFER.LMA = 1). To jump into 64bit mode we use
|
|
* the new gdt/idt that has __KERNEL_CS with CS.L = 1.
|
|
* We place all of the values on our mini stack so lret can
|
|
* used to perform that far jump.
|
|
*/
|
|
pushl $__KERNEL_CS
|
|
leal startup_64(%ebp), %eax
|
|
pushl %eax
|
|
|
|
/* Enter paged protected Mode, activating Long Mode */
|
|
movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
|
|
movl %eax, %cr0
|
|
|
|
/* Jump from 32bit compatibility mode into 64bit mode. */
|
|
lret
|
|
ENDPROC(startup_32)
|
|
|
|
no_longmode:
|
|
/* This isn't an x86-64 CPU so hang */
|
|
1:
|
|
hlt
|
|
jmp 1b
|
|
|
|
#include "../../kernel/verify_cpu.S"
|
|
|
|
/*
|
|
* Be careful here startup_64 needs to be at a predictable
|
|
* address so I can export it in an ELF header. Bootloaders
|
|
* should look at the ELF header to find this address, as
|
|
* it may change in the future.
|
|
*/
|
|
.code64
|
|
.org 0x200
|
|
ENTRY(startup_64)
|
|
/*
|
|
* We come here either from startup_32 or directly from a
|
|
* 64bit bootloader. If we come here from a bootloader we depend on
|
|
* an identity mapped page table being provied that maps our
|
|
* entire text+data+bss and hopefully all of memory.
|
|
*/
|
|
#ifdef CONFIG_EFI_STUB
|
|
pushq %rsi
|
|
mov %rcx, %rdi
|
|
mov %rdx, %rsi
|
|
call efi_main
|
|
popq %rsi
|
|
cmpq $0,%rax
|
|
je preferred_addr
|
|
movq %rax,%rsi
|
|
call 1f
|
|
1:
|
|
popq %rax
|
|
subq $1b, %rax
|
|
subq BP_pref_address(%rsi), %rax
|
|
add BP_code32_start(%esi), %eax
|
|
leaq preferred_addr(%rax), %rax
|
|
jmp *%rax
|
|
|
|
preferred_addr:
|
|
#endif
|
|
|
|
/* Setup data segments. */
|
|
xorl %eax, %eax
|
|
movl %eax, %ds
|
|
movl %eax, %es
|
|
movl %eax, %ss
|
|
movl %eax, %fs
|
|
movl %eax, %gs
|
|
lldt %ax
|
|
movl $0x20, %eax
|
|
ltr %ax
|
|
|
|
/*
|
|
* Compute the decompressed kernel start address. It is where
|
|
* we were loaded at aligned to a 2M boundary. %rbp contains the
|
|
* decompressed kernel start address.
|
|
*
|
|
* If it is a relocatable kernel then decompress and run the kernel
|
|
* from load address aligned to 2MB addr, otherwise decompress and
|
|
* run the kernel from LOAD_PHYSICAL_ADDR
|
|
*
|
|
* We cannot rely on the calculation done in 32-bit mode, since we
|
|
* may have been invoked via the 64-bit entry point.
|
|
*/
|
|
|
|
/* Start with the delta to where the kernel will run at. */
|
|
#ifdef CONFIG_RELOCATABLE
|
|
leaq startup_32(%rip) /* - $startup_32 */, %rbp
|
|
movl BP_kernel_alignment(%rsi), %eax
|
|
decl %eax
|
|
addq %rax, %rbp
|
|
notq %rax
|
|
andq %rax, %rbp
|
|
#else
|
|
movq $LOAD_PHYSICAL_ADDR, %rbp
|
|
#endif
|
|
|
|
/* Target address to relocate to for decompression */
|
|
leaq z_extract_offset(%rbp), %rbx
|
|
|
|
/* Set up the stack */
|
|
leaq boot_stack_end(%rbx), %rsp
|
|
|
|
/* Zero EFLAGS */
|
|
pushq $0
|
|
popfq
|
|
|
|
/*
|
|
* Copy the compressed kernel to the end of our buffer
|
|
* where decompression in place becomes safe.
|
|
*/
|
|
pushq %rsi
|
|
leaq (_bss-8)(%rip), %rsi
|
|
leaq (_bss-8)(%rbx), %rdi
|
|
movq $_bss /* - $startup_32 */, %rcx
|
|
shrq $3, %rcx
|
|
std
|
|
rep movsq
|
|
cld
|
|
popq %rsi
|
|
|
|
/*
|
|
* Jump to the relocated address.
|
|
*/
|
|
leaq relocated(%rbx), %rax
|
|
jmp *%rax
|
|
|
|
.text
|
|
relocated:
|
|
|
|
/*
|
|
* Clear BSS (stack is currently empty)
|
|
*/
|
|
xorl %eax, %eax
|
|
leaq _bss(%rip), %rdi
|
|
leaq _ebss(%rip), %rcx
|
|
subq %rdi, %rcx
|
|
shrq $3, %rcx
|
|
rep stosq
|
|
|
|
/*
|
|
* Adjust our own GOT
|
|
*/
|
|
leaq _got(%rip), %rdx
|
|
leaq _egot(%rip), %rcx
|
|
1:
|
|
cmpq %rcx, %rdx
|
|
jae 2f
|
|
addq %rbx, (%rdx)
|
|
addq $8, %rdx
|
|
jmp 1b
|
|
2:
|
|
|
|
/*
|
|
* Do the decompression, and jump to the new kernel..
|
|
*/
|
|
pushq %rsi /* Save the real mode argument */
|
|
movq %rsi, %rdi /* real mode address */
|
|
leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
|
|
leaq input_data(%rip), %rdx /* input_data */
|
|
movl $z_input_len, %ecx /* input_len */
|
|
movq %rbp, %r8 /* output target address */
|
|
call decompress_kernel
|
|
popq %rsi
|
|
|
|
/*
|
|
* Jump to the decompressed kernel.
|
|
*/
|
|
jmp *%rbp
|
|
|
|
.data
|
|
gdt:
|
|
.word gdt_end - gdt
|
|
.long gdt
|
|
.word 0
|
|
.quad 0x0000000000000000 /* NULL descriptor */
|
|
.quad 0x00af9a000000ffff /* __KERNEL_CS */
|
|
.quad 0x00cf92000000ffff /* __KERNEL_DS */
|
|
.quad 0x0080890000000000 /* TS descriptor */
|
|
.quad 0x0000000000000000 /* TS continued */
|
|
gdt_end:
|
|
|
|
/*
|
|
* Stack and heap for uncompression
|
|
*/
|
|
.bss
|
|
.balign 4
|
|
boot_heap:
|
|
.fill BOOT_HEAP_SIZE, 1, 0
|
|
boot_stack:
|
|
.fill BOOT_STACK_SIZE, 1, 0
|
|
boot_stack_end:
|
|
|
|
/*
|
|
* Space for page tables (not in .bss so not zeroed)
|
|
*/
|
|
.section ".pgtable","a",@nobits
|
|
.balign 4096
|
|
pgtable:
|
|
.fill 6*4096, 1, 0
|