linux-stable/Documentation/vm/numa_memory_policy.txt
Lee Schermerhorn 42b88e6ad4 Document Linux Memory Policy
I couldn't find any memory policy documentation in the Documentation
directory, so here is my attempt to document it.

There's lots more that could be written about the internal design--including
data structures, functions, etc.  However, if you agree that this is better
that the nothing that exists now, perhaps it could be merged.  This will
provide a baseline for updates to document the many policy patches that are
currently being worked.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Acked-by: Rob Landley <rob@landley.net>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-22 19:52:44 -07:00

333 lines
16 KiB
Plaintext

What is Linux Memory Policy?
In the Linux kernel, "memory policy" determines from which node the kernel will
allocate memory in a NUMA system or in an emulated NUMA system. Linux has
supported platforms with Non-Uniform Memory Access architectures since 2.4.?.
The current memory policy support was added to Linux 2.6 around May 2004. This
document attempts to describe the concepts and APIs of the 2.6 memory policy
support.
Memory policies should not be confused with cpusets (Documentation/cpusets.txt)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
both cpusets and policies are applied to a task, the restrictions of the cpuset
takes priority. See "MEMORY POLICIES AND CPUSETS" below for more details.
MEMORY POLICY CONCEPTS
Scope of Memory Policies
The Linux kernel supports _scopes_ of memory policy, described here from
most general to most specific:
System Default Policy: this policy is "hard coded" into the kernel. It
is the policy that governs all page allocations that aren't controlled
by one of the more specific policy scopes discussed below. When the
system is "up and running", the system default policy will use "local
allocation" described below. However, during boot up, the system
default policy will be set to interleave allocations across all nodes
with "sufficient" memory, so as not to overload the initial boot node
with boot-time allocations.
Task/Process Policy: this is an optional, per-task policy. When defined
for a specific task, this policy controls all page allocations made by or
on behalf of the task that aren't controlled by a more specific scope.
If a task does not define a task policy, then all page allocations that
would have been controlled by the task policy "fall back" to the System
Default Policy.
The task policy applies to the entire address space of a task. Thus,
it is inheritable, and indeed is inherited, across both fork()
[clone() w/o the CLONE_VM flag] and exec*(). This allows a parent task
to establish the task policy for a child task exec()'d from an
executable image that has no awareness of memory policy. See the
MEMORY POLICY APIS section, below, for an overview of the system call
that a task may use to set/change it's task/process policy.
In a multi-threaded task, task policies apply only to the thread
[Linux kernel task] that installs the policy and any threads
subsequently created by that thread. Any sibling threads existing
at the time a new task policy is installed retain their current
policy.
A task policy applies only to pages allocated after the policy is
installed. Any pages already faulted in by the task when the task
changes its task policy remain where they were allocated based on
the policy at the time they were allocated.
VMA Policy: A "VMA" or "Virtual Memory Area" refers to a range of a task's
virtual adddress space. A task may define a specific policy for a range
of its virtual address space. See the MEMORY POLICIES APIS section,
below, for an overview of the mbind() system call used to set a VMA
policy.
A VMA policy will govern the allocation of pages that back this region of
the address space. Any regions of the task's address space that don't
have an explicit VMA policy will fall back to the task policy, which may
itself fall back to the System Default Policy.
VMA policies have a few complicating details:
VMA policy applies ONLY to anonymous pages. These include pages
allocated for anonymous segments, such as the task stack and heap, and
any regions of the address space mmap()ed with the MAP_ANONYMOUS flag.
If a VMA policy is applied to a file mapping, it will be ignored if
the mapping used the MAP_SHARED flag. If the file mapping used the
MAP_PRIVATE flag, the VMA policy will only be applied when an
anonymous page is allocated on an attempt to write to the mapping--
i.e., at Copy-On-Write.
VMA policies are shared between all tasks that share a virtual address
space--a.k.a. threads--independent of when the policy is installed; and
they are inherited across fork(). However, because VMA policies refer
to a specific region of a task's address space, and because the address
space is discarded and recreated on exec*(), VMA policies are NOT
inheritable across exec(). Thus, only NUMA-aware applications may
use VMA policies.
A task may install a new VMA policy on a sub-range of a previously
mmap()ed region. When this happens, Linux splits the existing virtual
memory area into 2 or 3 VMAs, each with it's own policy.
By default, VMA policy applies only to pages allocated after the policy
is installed. Any pages already faulted into the VMA range remain
where they were allocated based on the policy at the time they were
allocated. However, since 2.6.16, Linux supports page migration via
the mbind() system call, so that page contents can be moved to match
a newly installed policy.
Shared Policy: Conceptually, shared policies apply to "memory objects"
mapped shared into one or more tasks' distinct address spaces. An
application installs a shared policies the same way as VMA policies--using
the mbind() system call specifying a range of virtual addresses that map
the shared object. However, unlike VMA policies, which can be considered
to be an attribute of a range of a task's address space, shared policies
apply directly to the shared object. Thus, all tasks that attach to the
object share the policy, and all pages allocated for the shared object,
by any task, will obey the shared policy.
As of 2.6.22, only shared memory segments, created by shmget() or
mmap(MAP_ANONYMOUS|MAP_SHARED), support shared policy. When shared
policy support was added to Linux, the associated data structures were
added to hugetlbfs shmem segments. At the time, hugetlbfs did not
support allocation at fault time--a.k.a lazy allocation--so hugetlbfs
shmem segments were never "hooked up" to the shared policy support.
Although hugetlbfs segments now support lazy allocation, their support
for shared policy has not been completed.
As mentioned above [re: VMA policies], allocations of page cache
pages for regular files mmap()ed with MAP_SHARED ignore any VMA
policy installed on the virtual address range backed by the shared
file mapping. Rather, shared page cache pages, including pages backing
private mappings that have not yet been written by the task, follow
task policy, if any, else System Default Policy.
The shared policy infrastructure supports different policies on subset
ranges of the shared object. However, Linux still splits the VMA of
the task that installs the policy for each range of distinct policy.
Thus, different tasks that attach to a shared memory segment can have
different VMA configurations mapping that one shared object. This
can be seen by examining the /proc/<pid>/numa_maps of tasks sharing
a shared memory region, when one task has installed shared policy on
one or more ranges of the region.
Components of Memory Policies
A Linux memory policy is a tuple consisting of a "mode" and an optional set
of nodes. The mode determine the behavior of the policy, while the
optional set of nodes can be viewed as the arguments to the behavior.
Internally, memory policies are implemented by a reference counted
structure, struct mempolicy. Details of this structure will be discussed
in context, below, as required to explain the behavior.
Note: in some functions AND in the struct mempolicy itself, the mode
is called "policy". However, to avoid confusion with the policy tuple,
this document will continue to use the term "mode".
Linux memory policy supports the following 4 behavioral modes:
Default Mode--MPOL_DEFAULT: The behavior specified by this mode is
context or scope dependent.
As mentioned in the Policy Scope section above, during normal
system operation, the System Default Policy is hard coded to
contain the Default mode.
In this context, default mode means "local" allocation--that is
attempt to allocate the page from the node associated with the cpu
where the fault occurs. If the "local" node has no memory, or the
node's memory can be exhausted [no free pages available], local
allocation will "fallback to"--attempt to allocate pages from--
"nearby" nodes, in order of increasing "distance".
Implementation detail -- subject to change: "Fallback" uses
a per node list of sibling nodes--called zonelists--built at
boot time, or when nodes or memory are added or removed from
the system [memory hotplug]. These per node zonelist are
constructed with nodes in order of increasing distance based
on information provided by the platform firmware.
When a task/process policy or a shared policy contains the Default
mode, this also means "local allocation", as described above.
In the context of a VMA, Default mode means "fall back to task
policy"--which may or may not specify Default mode. Thus, Default
mode can not be counted on to mean local allocation when used
on a non-shared region of the address space. However, see
MPOL_PREFERRED below.
The Default mode does not use the optional set of nodes.
MPOL_BIND: This mode specifies that memory must come from the
set of nodes specified by the policy.
The memory policy APIs do not specify an order in which the nodes
will be searched. However, unlike "local allocation", the Bind
policy does not consider the distance between the nodes. Rather,
allocations will fallback to the nodes specified by the policy in
order of numeric node id. Like everything in Linux, this is subject
to change.
MPOL_PREFERRED: This mode specifies that the allocation should be
attempted from the single node specified in the policy. If that
allocation fails, the kernel will search other nodes, exactly as
it would for a local allocation that started at the preferred node
in increasing distance from the preferred node. "Local" allocation
policy can be viewed as a Preferred policy that starts at the node
containing the cpu where the allocation takes place.
Internally, the Preferred policy uses a single node--the
preferred_node member of struct mempolicy. A "distinguished
value of this preferred_node, currently '-1', is interpreted
as "the node containing the cpu where the allocation takes
place"--local allocation. This is the way to specify
local allocation for a specific range of addresses--i.e. for
VMA policies.
MPOL_INTERLEAVED: This mode specifies that page allocations be
interleaved, on a page granularity, across the nodes specified in
the policy. This mode also behaves slightly differently, based on
the context where it is used:
For allocation of anonymous pages and shared memory pages,
Interleave mode indexes the set of nodes specified by the policy
using the page offset of the faulting address into the segment
[VMA] containing the address modulo the number of nodes specified
by the policy. It then attempts to allocate a page, starting at
the selected node, as if the node had been specified by a Preferred
policy or had been selected by a local allocation. That is,
allocation will follow the per node zonelist.
For allocation of page cache pages, Interleave mode indexes the set
of nodes specified by the policy using a node counter maintained
per task. This counter wraps around to the lowest specified node
after it reaches the highest specified node. This will tend to
spread the pages out over the nodes specified by the policy based
on the order in which they are allocated, rather than based on any
page offset into an address range or file. During system boot up,
the temporary interleaved system default policy works in this
mode.
MEMORY POLICY APIs
Linux supports 3 system calls for controlling memory policy. These APIS
always affect only the calling task, the calling task's address space, or
some shared object mapped into the calling task's address space.
Note: the headers that define these APIs and the parameter data types
for user space applications reside in a package that is not part of
the Linux kernel. The kernel system call interfaces, with the 'sys_'
prefix, are defined in <linux/syscalls.h>; the mode and flag
definitions are defined in <linux/mempolicy.h>.
Set [Task] Memory Policy:
long set_mempolicy(int mode, const unsigned long *nmask,
unsigned long maxnode);
Set's the calling task's "task/process memory policy" to mode
specified by the 'mode' argument and the set of nodes defined
by 'nmask'. 'nmask' points to a bit mask of node ids containing
at least 'maxnode' ids.
See the set_mempolicy(2) man page for more details
Get [Task] Memory Policy or Related Information
long get_mempolicy(int *mode,
const unsigned long *nmask, unsigned long maxnode,
void *addr, int flags);
Queries the "task/process memory policy" of the calling task, or
the policy or location of a specified virtual address, depending
on the 'flags' argument.
See the get_mempolicy(2) man page for more details
Install VMA/Shared Policy for a Range of Task's Address Space
long mbind(void *start, unsigned long len, int mode,
const unsigned long *nmask, unsigned long maxnode,
unsigned flags);
mbind() installs the policy specified by (mode, nmask, maxnodes) as
a VMA policy for the range of the calling task's address space
specified by the 'start' and 'len' arguments. Additional actions
may be requested via the 'flags' argument.
See the mbind(2) man page for more details.
MEMORY POLICY COMMAND LINE INTERFACE
Although not strictly part of the Linux implementation of memory policy,
a command line tool, numactl(8), exists that allows one to:
+ set the task policy for a specified program via set_mempolicy(2), fork(2) and
exec(2)
+ set the shared policy for a shared memory segment via mbind(2)
The numactl(8) tool is packages with the run-time version of the library
containing the memory policy system call wrappers. Some distributions
package the headers and compile-time libraries in a separate development
package.
MEMORY POLICIES AND CPUSETS
Memory policies work within cpusets as described above. For memory policies
that require a node or set of nodes, the nodes are restricted to the set of
nodes whose memories are allowed by the cpuset constraints. If the
intersection of the set of nodes specified for the policy and the set of nodes
allowed by the cpuset is the empty set, the policy is considered invalid and
cannot be installed.
The interaction of memory policies and cpusets can be problematic for a
couple of reasons:
1) the memory policy APIs take physical node id's as arguments. However, the
memory policy APIs do not provide a way to determine what nodes are valid
in the context where the application is running. An application MAY consult
the cpuset file system [directly or via an out of tree, and not generally
available, libcpuset API] to obtain this information, but then the
application must be aware that it is running in a cpuset and use what are
intended primarily as administrative APIs.
However, as long as the policy specifies at least one node that is valid
in the controlling cpuset, the policy can be used.
2) when tasks in two cpusets share access to a memory region, such as shared
memory segments created by shmget() of mmap() with the MAP_ANONYMOUS and
MAP_SHARED flags, and any of the tasks install shared policy on the region,
only nodes whose memories are allowed in both cpusets may be used in the
policies. Again, obtaining this information requires "stepping outside"
the memory policy APIs, as well as knowing in what cpusets other task might
be attaching to the shared region, to use the cpuset information.
Furthermore, if the cpusets' allowed memory sets are disjoint, "local"
allocation is the only valid policy.