linux-stable/drivers/spi/spi-stm32-qspi.c
Mark Brown d5efbfc521
spi: stm32-qspi: flags management fixes
Merge series from patrice.chotard@foss.st.com <patrice.chotard@foss.st.com>
Patrice Chotard <patrice.chotard@foss.st.com>:

From: Patrice Chotard <patrice.chotard@foss.st.com>

This series update flags management in the following cases:
  - In APM mode, don't take care of TCF and TEF flags
  - Always check TCF flag in stm32_qspi_wait_cmd()
  - Don't check BUSY flag when sending new command
2022-05-11 19:48:07 +01:00

878 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018 - All Rights Reserved
* Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/sizes.h>
#include <linux/spi/spi-mem.h>
#define QSPI_CR 0x00
#define CR_EN BIT(0)
#define CR_ABORT BIT(1)
#define CR_DMAEN BIT(2)
#define CR_TCEN BIT(3)
#define CR_SSHIFT BIT(4)
#define CR_DFM BIT(6)
#define CR_FSEL BIT(7)
#define CR_FTHRES_SHIFT 8
#define CR_TEIE BIT(16)
#define CR_TCIE BIT(17)
#define CR_FTIE BIT(18)
#define CR_SMIE BIT(19)
#define CR_TOIE BIT(20)
#define CR_APMS BIT(22)
#define CR_PRESC_MASK GENMASK(31, 24)
#define QSPI_DCR 0x04
#define DCR_FSIZE_MASK GENMASK(20, 16)
#define QSPI_SR 0x08
#define SR_TEF BIT(0)
#define SR_TCF BIT(1)
#define SR_FTF BIT(2)
#define SR_SMF BIT(3)
#define SR_TOF BIT(4)
#define SR_BUSY BIT(5)
#define SR_FLEVEL_MASK GENMASK(13, 8)
#define QSPI_FCR 0x0c
#define FCR_CTEF BIT(0)
#define FCR_CTCF BIT(1)
#define FCR_CSMF BIT(3)
#define QSPI_DLR 0x10
#define QSPI_CCR 0x14
#define CCR_INST_MASK GENMASK(7, 0)
#define CCR_IMODE_MASK GENMASK(9, 8)
#define CCR_ADMODE_MASK GENMASK(11, 10)
#define CCR_ADSIZE_MASK GENMASK(13, 12)
#define CCR_DCYC_MASK GENMASK(22, 18)
#define CCR_DMODE_MASK GENMASK(25, 24)
#define CCR_FMODE_MASK GENMASK(27, 26)
#define CCR_FMODE_INDW (0U << 26)
#define CCR_FMODE_INDR (1U << 26)
#define CCR_FMODE_APM (2U << 26)
#define CCR_FMODE_MM (3U << 26)
#define CCR_BUSWIDTH_0 0x0
#define CCR_BUSWIDTH_1 0x1
#define CCR_BUSWIDTH_2 0x2
#define CCR_BUSWIDTH_4 0x3
#define QSPI_AR 0x18
#define QSPI_ABR 0x1c
#define QSPI_DR 0x20
#define QSPI_PSMKR 0x24
#define QSPI_PSMAR 0x28
#define QSPI_PIR 0x2c
#define QSPI_LPTR 0x30
#define STM32_QSPI_MAX_MMAP_SZ SZ_256M
#define STM32_QSPI_MAX_NORCHIP 2
#define STM32_FIFO_TIMEOUT_US 30000
#define STM32_BUSY_TIMEOUT_US 100000
#define STM32_ABT_TIMEOUT_US 100000
#define STM32_COMP_TIMEOUT_MS 1000
#define STM32_AUTOSUSPEND_DELAY -1
struct stm32_qspi_flash {
u32 cs;
u32 presc;
};
struct stm32_qspi {
struct device *dev;
struct spi_controller *ctrl;
phys_addr_t phys_base;
void __iomem *io_base;
void __iomem *mm_base;
resource_size_t mm_size;
struct clk *clk;
u32 clk_rate;
struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP];
struct completion data_completion;
struct completion match_completion;
u32 fmode;
struct dma_chan *dma_chtx;
struct dma_chan *dma_chrx;
struct completion dma_completion;
u32 cr_reg;
u32 dcr_reg;
unsigned long status_timeout;
/*
* to protect device configuration, could be different between
* 2 flash access (bk1, bk2)
*/
struct mutex lock;
};
static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
{
struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
u32 cr, sr;
cr = readl_relaxed(qspi->io_base + QSPI_CR);
sr = readl_relaxed(qspi->io_base + QSPI_SR);
if (cr & CR_SMIE && sr & SR_SMF) {
/* disable irq */
cr &= ~CR_SMIE;
writel_relaxed(cr, qspi->io_base + QSPI_CR);
complete(&qspi->match_completion);
return IRQ_HANDLED;
}
if (sr & (SR_TEF | SR_TCF)) {
/* disable irq */
cr &= ~CR_TCIE & ~CR_TEIE;
writel_relaxed(cr, qspi->io_base + QSPI_CR);
complete(&qspi->data_completion);
}
return IRQ_HANDLED;
}
static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
{
*val = readb_relaxed(addr);
}
static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
{
writeb_relaxed(*val, addr);
}
static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
const struct spi_mem_op *op)
{
void (*tx_fifo)(u8 *val, void __iomem *addr);
u32 len = op->data.nbytes, sr;
u8 *buf;
int ret;
if (op->data.dir == SPI_MEM_DATA_IN) {
tx_fifo = stm32_qspi_read_fifo;
buf = op->data.buf.in;
} else {
tx_fifo = stm32_qspi_write_fifo;
buf = (u8 *)op->data.buf.out;
}
while (len--) {
ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR,
sr, (sr & SR_FTF), 1,
STM32_FIFO_TIMEOUT_US);
if (ret) {
dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n",
len, sr);
return ret;
}
tx_fifo(buf++, qspi->io_base + QSPI_DR);
}
return 0;
}
static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
const struct spi_mem_op *op)
{
memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val,
op->data.nbytes);
return 0;
}
static void stm32_qspi_dma_callback(void *arg)
{
struct completion *dma_completion = arg;
complete(dma_completion);
}
static int stm32_qspi_tx_dma(struct stm32_qspi *qspi,
const struct spi_mem_op *op)
{
struct dma_async_tx_descriptor *desc;
enum dma_transfer_direction dma_dir;
struct dma_chan *dma_ch;
struct sg_table sgt;
dma_cookie_t cookie;
u32 cr, t_out;
int err;
if (op->data.dir == SPI_MEM_DATA_IN) {
dma_dir = DMA_DEV_TO_MEM;
dma_ch = qspi->dma_chrx;
} else {
dma_dir = DMA_MEM_TO_DEV;
dma_ch = qspi->dma_chtx;
}
/*
* spi_map_buf return -EINVAL if the buffer is not DMA-able
* (DMA-able: in vmalloc | kmap | virt_addr_valid)
*/
err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt);
if (err)
return err;
desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents,
dma_dir, DMA_PREP_INTERRUPT);
if (!desc) {
err = -ENOMEM;
goto out_unmap;
}
cr = readl_relaxed(qspi->io_base + QSPI_CR);
reinit_completion(&qspi->dma_completion);
desc->callback = stm32_qspi_dma_callback;
desc->callback_param = &qspi->dma_completion;
cookie = dmaengine_submit(desc);
err = dma_submit_error(cookie);
if (err)
goto out;
dma_async_issue_pending(dma_ch);
writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR);
t_out = sgt.nents * STM32_COMP_TIMEOUT_MS;
if (!wait_for_completion_timeout(&qspi->dma_completion,
msecs_to_jiffies(t_out)))
err = -ETIMEDOUT;
if (err)
dmaengine_terminate_all(dma_ch);
out:
writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR);
out_unmap:
spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt);
return err;
}
static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op)
{
if (!op->data.nbytes)
return 0;
if (qspi->fmode == CCR_FMODE_MM)
return stm32_qspi_tx_mm(qspi, op);
else if (((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) ||
(op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) &&
op->data.nbytes > 4)
if (!stm32_qspi_tx_dma(qspi, op))
return 0;
return stm32_qspi_tx_poll(qspi, op);
}
static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
{
u32 sr;
return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr,
!(sr & SR_BUSY), 1,
STM32_BUSY_TIMEOUT_US);
}
static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi,
const struct spi_mem_op *op)
{
u32 cr, sr;
int err = 0;
if ((readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) ||
qspi->fmode == CCR_FMODE_APM)
goto out;
reinit_completion(&qspi->data_completion);
cr = readl_relaxed(qspi->io_base + QSPI_CR);
writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR);
if (!wait_for_completion_timeout(&qspi->data_completion,
msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) {
err = -ETIMEDOUT;
} else {
sr = readl_relaxed(qspi->io_base + QSPI_SR);
if (sr & SR_TEF)
err = -EIO;
}
out:
/* clear flags */
writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR);
if (!err)
err = stm32_qspi_wait_nobusy(qspi);
return err;
}
static int stm32_qspi_wait_poll_status(struct stm32_qspi *qspi,
const struct spi_mem_op *op)
{
u32 cr;
reinit_completion(&qspi->match_completion);
cr = readl_relaxed(qspi->io_base + QSPI_CR);
writel_relaxed(cr | CR_SMIE, qspi->io_base + QSPI_CR);
if (!wait_for_completion_timeout(&qspi->match_completion,
msecs_to_jiffies(qspi->status_timeout)))
return -ETIMEDOUT;
writel_relaxed(FCR_CSMF, qspi->io_base + QSPI_FCR);
return 0;
}
static int stm32_qspi_get_mode(struct stm32_qspi *qspi, u8 buswidth)
{
if (buswidth == 4)
return CCR_BUSWIDTH_4;
return buswidth;
}
static int stm32_qspi_send(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
struct stm32_qspi_flash *flash = &qspi->flash[mem->spi->chip_select];
u32 ccr, cr;
int timeout, err = 0, err_poll_status = 0;
dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
op->dummy.buswidth, op->data.buswidth,
op->addr.val, op->data.nbytes);
cr = readl_relaxed(qspi->io_base + QSPI_CR);
cr &= ~CR_PRESC_MASK & ~CR_FSEL;
cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc);
cr |= FIELD_PREP(CR_FSEL, flash->cs);
writel_relaxed(cr, qspi->io_base + QSPI_CR);
if (op->data.nbytes)
writel_relaxed(op->data.nbytes - 1,
qspi->io_base + QSPI_DLR);
ccr = qspi->fmode;
ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode);
ccr |= FIELD_PREP(CCR_IMODE_MASK,
stm32_qspi_get_mode(qspi, op->cmd.buswidth));
if (op->addr.nbytes) {
ccr |= FIELD_PREP(CCR_ADMODE_MASK,
stm32_qspi_get_mode(qspi, op->addr.buswidth));
ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1);
}
if (op->dummy.nbytes)
ccr |= FIELD_PREP(CCR_DCYC_MASK,
op->dummy.nbytes * 8 / op->dummy.buswidth);
if (op->data.nbytes) {
ccr |= FIELD_PREP(CCR_DMODE_MASK,
stm32_qspi_get_mode(qspi, op->data.buswidth));
}
writel_relaxed(ccr, qspi->io_base + QSPI_CCR);
if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM)
writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR);
if (qspi->fmode == CCR_FMODE_APM)
err_poll_status = stm32_qspi_wait_poll_status(qspi, op);
err = stm32_qspi_tx(qspi, op);
/*
* Abort in:
* -error case
* -read memory map: prefetching must be stopped if we read the last
* byte of device (device size - fifo size). like device size is not
* knows, the prefetching is always stop.
*/
if (err || err_poll_status || qspi->fmode == CCR_FMODE_MM)
goto abort;
/* wait end of tx in indirect mode */
err = stm32_qspi_wait_cmd(qspi, op);
if (err)
goto abort;
return 0;
abort:
cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT;
writel_relaxed(cr, qspi->io_base + QSPI_CR);
/* wait clear of abort bit by hw */
timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR,
cr, !(cr & CR_ABORT), 1,
STM32_ABT_TIMEOUT_US);
writel_relaxed(FCR_CTCF | FCR_CSMF, qspi->io_base + QSPI_FCR);
if (err || err_poll_status || timeout)
dev_err(qspi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n",
__func__, err, err_poll_status, timeout);
return err;
}
static int stm32_qspi_poll_status(struct spi_mem *mem, const struct spi_mem_op *op,
u16 mask, u16 match,
unsigned long initial_delay_us,
unsigned long polling_rate_us,
unsigned long timeout_ms)
{
struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
int ret;
if (!spi_mem_supports_op(mem, op))
return -EOPNOTSUPP;
ret = pm_runtime_resume_and_get(qspi->dev);
if (ret < 0)
return ret;
mutex_lock(&qspi->lock);
writel_relaxed(mask, qspi->io_base + QSPI_PSMKR);
writel_relaxed(match, qspi->io_base + QSPI_PSMAR);
qspi->fmode = CCR_FMODE_APM;
qspi->status_timeout = timeout_ms;
ret = stm32_qspi_send(mem, op);
mutex_unlock(&qspi->lock);
pm_runtime_mark_last_busy(qspi->dev);
pm_runtime_put_autosuspend(qspi->dev);
return ret;
}
static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
int ret;
ret = pm_runtime_resume_and_get(qspi->dev);
if (ret < 0)
return ret;
mutex_lock(&qspi->lock);
if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes)
qspi->fmode = CCR_FMODE_INDR;
else
qspi->fmode = CCR_FMODE_INDW;
ret = stm32_qspi_send(mem, op);
mutex_unlock(&qspi->lock);
pm_runtime_mark_last_busy(qspi->dev);
pm_runtime_put_autosuspend(qspi->dev);
return ret;
}
static int stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master);
if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT)
return -EOPNOTSUPP;
/* should never happen, as mm_base == null is an error probe exit condition */
if (!qspi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN)
return -EOPNOTSUPP;
if (!qspi->mm_size)
return -EOPNOTSUPP;
return 0;
}
static ssize_t stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->master);
struct spi_mem_op op;
u32 addr_max;
int ret;
ret = pm_runtime_resume_and_get(qspi->dev);
if (ret < 0)
return ret;
mutex_lock(&qspi->lock);
/* make a local copy of desc op_tmpl and complete dirmap rdesc
* spi_mem_op template with offs, len and *buf in order to get
* all needed transfer information into struct spi_mem_op
*/
memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op));
dev_dbg(qspi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf);
op.data.nbytes = len;
op.addr.val = desc->info.offset + offs;
op.data.buf.in = buf;
addr_max = op.addr.val + op.data.nbytes + 1;
if (addr_max < qspi->mm_size && op.addr.buswidth)
qspi->fmode = CCR_FMODE_MM;
else
qspi->fmode = CCR_FMODE_INDR;
ret = stm32_qspi_send(desc->mem, &op);
mutex_unlock(&qspi->lock);
pm_runtime_mark_last_busy(qspi->dev);
pm_runtime_put_autosuspend(qspi->dev);
return ret ?: len;
}
static int stm32_qspi_setup(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->master;
struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
struct stm32_qspi_flash *flash;
u32 presc;
int ret;
if (ctrl->busy)
return -EBUSY;
if (!spi->max_speed_hz)
return -EINVAL;
ret = pm_runtime_resume_and_get(qspi->dev);
if (ret < 0)
return ret;
presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1;
flash = &qspi->flash[spi->chip_select];
flash->cs = spi->chip_select;
flash->presc = presc;
mutex_lock(&qspi->lock);
qspi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN;
writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
/* set dcr fsize to max address */
qspi->dcr_reg = DCR_FSIZE_MASK;
writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
mutex_unlock(&qspi->lock);
pm_runtime_mark_last_busy(qspi->dev);
pm_runtime_put_autosuspend(qspi->dev);
return 0;
}
static int stm32_qspi_dma_setup(struct stm32_qspi *qspi)
{
struct dma_slave_config dma_cfg;
struct device *dev = qspi->dev;
int ret = 0;
memset(&dma_cfg, 0, sizeof(dma_cfg));
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
dma_cfg.src_addr = qspi->phys_base + QSPI_DR;
dma_cfg.dst_addr = qspi->phys_base + QSPI_DR;
dma_cfg.src_maxburst = 4;
dma_cfg.dst_maxburst = 4;
qspi->dma_chrx = dma_request_chan(dev, "rx");
if (IS_ERR(qspi->dma_chrx)) {
ret = PTR_ERR(qspi->dma_chrx);
qspi->dma_chrx = NULL;
if (ret == -EPROBE_DEFER)
goto out;
} else {
if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) {
dev_err(dev, "dma rx config failed\n");
dma_release_channel(qspi->dma_chrx);
qspi->dma_chrx = NULL;
}
}
qspi->dma_chtx = dma_request_chan(dev, "tx");
if (IS_ERR(qspi->dma_chtx)) {
ret = PTR_ERR(qspi->dma_chtx);
qspi->dma_chtx = NULL;
} else {
if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) {
dev_err(dev, "dma tx config failed\n");
dma_release_channel(qspi->dma_chtx);
qspi->dma_chtx = NULL;
}
}
out:
init_completion(&qspi->dma_completion);
if (ret != -EPROBE_DEFER)
ret = 0;
return ret;
}
static void stm32_qspi_dma_free(struct stm32_qspi *qspi)
{
if (qspi->dma_chtx)
dma_release_channel(qspi->dma_chtx);
if (qspi->dma_chrx)
dma_release_channel(qspi->dma_chrx);
}
/*
* no special host constraint, so use default spi_mem_default_supports_op
* to check supported mode.
*/
static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
.exec_op = stm32_qspi_exec_op,
.dirmap_create = stm32_qspi_dirmap_create,
.dirmap_read = stm32_qspi_dirmap_read,
.poll_status = stm32_qspi_poll_status,
};
static int stm32_qspi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_controller *ctrl;
struct reset_control *rstc;
struct stm32_qspi *qspi;
struct resource *res;
int ret, irq;
ctrl = devm_spi_alloc_master(dev, sizeof(*qspi));
if (!ctrl)
return -ENOMEM;
qspi = spi_controller_get_devdata(ctrl);
qspi->ctrl = ctrl;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
qspi->io_base = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->io_base))
return PTR_ERR(qspi->io_base);
qspi->phys_base = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
qspi->mm_base = devm_ioremap_resource(dev, res);
if (IS_ERR(qspi->mm_base))
return PTR_ERR(qspi->mm_base);
qspi->mm_size = resource_size(res);
if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ)
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
dev_name(dev), qspi);
if (ret) {
dev_err(dev, "failed to request irq\n");
return ret;
}
init_completion(&qspi->data_completion);
init_completion(&qspi->match_completion);
qspi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(qspi->clk))
return PTR_ERR(qspi->clk);
qspi->clk_rate = clk_get_rate(qspi->clk);
if (!qspi->clk_rate)
return -EINVAL;
ret = clk_prepare_enable(qspi->clk);
if (ret) {
dev_err(dev, "can not enable the clock\n");
return ret;
}
rstc = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(rstc)) {
ret = PTR_ERR(rstc);
if (ret == -EPROBE_DEFER)
goto err_clk_disable;
} else {
reset_control_assert(rstc);
udelay(2);
reset_control_deassert(rstc);
}
qspi->dev = dev;
platform_set_drvdata(pdev, qspi);
ret = stm32_qspi_dma_setup(qspi);
if (ret)
goto err_dma_free;
mutex_init(&qspi->lock);
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD
| SPI_TX_DUAL | SPI_TX_QUAD;
ctrl->setup = stm32_qspi_setup;
ctrl->bus_num = -1;
ctrl->mem_ops = &stm32_qspi_mem_ops;
ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP;
ctrl->dev.of_node = dev->of_node;
pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_get_noresume(dev);
ret = spi_register_master(ctrl);
if (ret)
goto err_pm_runtime_free;
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_pm_runtime_free:
pm_runtime_get_sync(qspi->dev);
/* disable qspi */
writel_relaxed(0, qspi->io_base + QSPI_CR);
mutex_destroy(&qspi->lock);
pm_runtime_put_noidle(qspi->dev);
pm_runtime_disable(qspi->dev);
pm_runtime_set_suspended(qspi->dev);
pm_runtime_dont_use_autosuspend(qspi->dev);
err_dma_free:
stm32_qspi_dma_free(qspi);
err_clk_disable:
clk_disable_unprepare(qspi->clk);
return ret;
}
static int stm32_qspi_remove(struct platform_device *pdev)
{
struct stm32_qspi *qspi = platform_get_drvdata(pdev);
pm_runtime_get_sync(qspi->dev);
spi_unregister_master(qspi->ctrl);
/* disable qspi */
writel_relaxed(0, qspi->io_base + QSPI_CR);
stm32_qspi_dma_free(qspi);
mutex_destroy(&qspi->lock);
pm_runtime_put_noidle(qspi->dev);
pm_runtime_disable(qspi->dev);
pm_runtime_set_suspended(qspi->dev);
pm_runtime_dont_use_autosuspend(qspi->dev);
clk_disable_unprepare(qspi->clk);
return 0;
}
static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev)
{
struct stm32_qspi *qspi = dev_get_drvdata(dev);
clk_disable_unprepare(qspi->clk);
return 0;
}
static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev)
{
struct stm32_qspi *qspi = dev_get_drvdata(dev);
return clk_prepare_enable(qspi->clk);
}
static int __maybe_unused stm32_qspi_suspend(struct device *dev)
{
pinctrl_pm_select_sleep_state(dev);
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused stm32_qspi_resume(struct device *dev)
{
struct stm32_qspi *qspi = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret < 0)
return ret;
pinctrl_pm_select_default_state(dev);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static const struct dev_pm_ops stm32_qspi_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend,
stm32_qspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume)
};
static const struct of_device_id stm32_qspi_match[] = {
{.compatible = "st,stm32f469-qspi"},
{}
};
MODULE_DEVICE_TABLE(of, stm32_qspi_match);
static struct platform_driver stm32_qspi_driver = {
.probe = stm32_qspi_probe,
.remove = stm32_qspi_remove,
.driver = {
.name = "stm32-qspi",
.of_match_table = stm32_qspi_match,
.pm = &stm32_qspi_pm_ops,
},
};
module_platform_driver(stm32_qspi_driver);
MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
MODULE_LICENSE("GPL v2");