mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-04 04:06:26 +00:00
1a251f52cf
This just standardizes the use of MIN() and MAX() macros, with the very traditional semantics. The goal is to use these for C constant expressions and for top-level / static initializers, and so be able to simplify the min()/max() macros. These macro names were used by various kernel code - they are very traditional, after all - and all such users have been fixed up, with a few different approaches: - trivial duplicated macro definitions have been removed Note that 'trivial' here means that it's obviously kernel code that already included all the major kernel headers, and thus gets the new generic MIN/MAX macros automatically. - non-trivial duplicated macro definitions are guarded with #ifndef This is the "yes, they define their own versions, but no, the include situation is not entirely obvious, and maybe they don't get the generic version automatically" case. - strange use case #1 A couple of drivers decided that the way they want to describe their versioning is with #define MAJ 1 #define MIN 2 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) which adds zero value and I just did my Alexander the Great impersonation, and rewrote that pointless Gordian knot as #define DRV_VERSION "1.2" instead. - strange use case #2 A couple of drivers thought that it's a good idea to have a random 'MIN' or 'MAX' define for a value or index into a table, rather than the traditional macro that takes arguments. These values were re-written as C enum's instead. The new function-line macros only expand when followed by an open parenthesis, and thus don't clash with enum use. Happily, there weren't really all that many of these cases, and a lot of users already had the pattern of using '#ifndef' guarding (or in one case just using '#undef MIN') before defining their own private version that does the same thing. I left such cases alone. Cc: David Laight <David.Laight@aculab.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
796 lines
19 KiB
C
796 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* lib/btree.c - Simple In-memory B+Tree
|
|
*
|
|
* Copyright (c) 2007-2008 Joern Engel <joern@purestorage.com>
|
|
* Bits and pieces stolen from Peter Zijlstra's code, which is
|
|
* Copyright 2007, Red Hat Inc. Peter Zijlstra
|
|
*
|
|
* see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
|
|
*
|
|
* A relatively simple B+Tree implementation. I have written it as a learning
|
|
* exercise to understand how B+Trees work. Turned out to be useful as well.
|
|
*
|
|
* B+Trees can be used similar to Linux radix trees (which don't have anything
|
|
* in common with textbook radix trees, beware). Prerequisite for them working
|
|
* well is that access to a random tree node is much faster than a large number
|
|
* of operations within each node.
|
|
*
|
|
* Disks have fulfilled the prerequisite for a long time. More recently DRAM
|
|
* has gained similar properties, as memory access times, when measured in cpu
|
|
* cycles, have increased. Cacheline sizes have increased as well, which also
|
|
* helps B+Trees.
|
|
*
|
|
* Compared to radix trees, B+Trees are more efficient when dealing with a
|
|
* sparsely populated address space. Between 25% and 50% of the memory is
|
|
* occupied with valid pointers. When densely populated, radix trees contain
|
|
* ~98% pointers - hard to beat. Very sparse radix trees contain only ~2%
|
|
* pointers.
|
|
*
|
|
* This particular implementation stores pointers identified by a long value.
|
|
* Storing NULL pointers is illegal, lookup will return NULL when no entry
|
|
* was found.
|
|
*
|
|
* A tricks was used that is not commonly found in textbooks. The lowest
|
|
* values are to the right, not to the left. All used slots within a node
|
|
* are on the left, all unused slots contain NUL values. Most operations
|
|
* simply loop once over all slots and terminate on the first NUL.
|
|
*/
|
|
|
|
#include <linux/btree.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
|
|
#define NODESIZE MAX(L1_CACHE_BYTES, 128)
|
|
|
|
struct btree_geo {
|
|
int keylen;
|
|
int no_pairs;
|
|
int no_longs;
|
|
};
|
|
|
|
struct btree_geo btree_geo32 = {
|
|
.keylen = 1,
|
|
.no_pairs = NODESIZE / sizeof(long) / 2,
|
|
.no_longs = NODESIZE / sizeof(long) / 2,
|
|
};
|
|
EXPORT_SYMBOL_GPL(btree_geo32);
|
|
|
|
#define LONG_PER_U64 (64 / BITS_PER_LONG)
|
|
struct btree_geo btree_geo64 = {
|
|
.keylen = LONG_PER_U64,
|
|
.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
|
|
.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
|
|
};
|
|
EXPORT_SYMBOL_GPL(btree_geo64);
|
|
|
|
struct btree_geo btree_geo128 = {
|
|
.keylen = 2 * LONG_PER_U64,
|
|
.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
|
|
.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
|
|
};
|
|
EXPORT_SYMBOL_GPL(btree_geo128);
|
|
|
|
#define MAX_KEYLEN (2 * LONG_PER_U64)
|
|
|
|
static struct kmem_cache *btree_cachep;
|
|
|
|
void *btree_alloc(gfp_t gfp_mask, void *pool_data)
|
|
{
|
|
return kmem_cache_alloc(btree_cachep, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_alloc);
|
|
|
|
void btree_free(void *element, void *pool_data)
|
|
{
|
|
kmem_cache_free(btree_cachep, element);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_free);
|
|
|
|
static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
|
|
{
|
|
unsigned long *node;
|
|
|
|
node = mempool_alloc(head->mempool, gfp);
|
|
if (likely(node))
|
|
memset(node, 0, NODESIZE);
|
|
return node;
|
|
}
|
|
|
|
static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (l1[i] < l2[i])
|
|
return -1;
|
|
if (l1[i] > l2[i])
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
|
|
size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
dest[i] = src[i];
|
|
return dest;
|
|
}
|
|
|
|
static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
s[i] = c;
|
|
return s;
|
|
}
|
|
|
|
static void dec_key(struct btree_geo *geo, unsigned long *key)
|
|
{
|
|
unsigned long val;
|
|
int i;
|
|
|
|
for (i = geo->keylen - 1; i >= 0; i--) {
|
|
val = key[i];
|
|
key[i] = val - 1;
|
|
if (val)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
|
|
{
|
|
return &node[n * geo->keylen];
|
|
}
|
|
|
|
static void *bval(struct btree_geo *geo, unsigned long *node, int n)
|
|
{
|
|
return (void *)node[geo->no_longs + n];
|
|
}
|
|
|
|
static void setkey(struct btree_geo *geo, unsigned long *node, int n,
|
|
unsigned long *key)
|
|
{
|
|
longcpy(bkey(geo, node, n), key, geo->keylen);
|
|
}
|
|
|
|
static void setval(struct btree_geo *geo, unsigned long *node, int n,
|
|
void *val)
|
|
{
|
|
node[geo->no_longs + n] = (unsigned long) val;
|
|
}
|
|
|
|
static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
|
|
{
|
|
longset(bkey(geo, node, n), 0, geo->keylen);
|
|
node[geo->no_longs + n] = 0;
|
|
}
|
|
|
|
static inline void __btree_init(struct btree_head *head)
|
|
{
|
|
head->node = NULL;
|
|
head->height = 0;
|
|
}
|
|
|
|
void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
|
|
{
|
|
__btree_init(head);
|
|
head->mempool = mempool;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_init_mempool);
|
|
|
|
int btree_init(struct btree_head *head)
|
|
{
|
|
__btree_init(head);
|
|
head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
|
|
if (!head->mempool)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_init);
|
|
|
|
void btree_destroy(struct btree_head *head)
|
|
{
|
|
mempool_free(head->node, head->mempool);
|
|
mempool_destroy(head->mempool);
|
|
head->mempool = NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_destroy);
|
|
|
|
void *btree_last(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key)
|
|
{
|
|
int height = head->height;
|
|
unsigned long *node = head->node;
|
|
|
|
if (height == 0)
|
|
return NULL;
|
|
|
|
for ( ; height > 1; height--)
|
|
node = bval(geo, node, 0);
|
|
|
|
longcpy(key, bkey(geo, node, 0), geo->keylen);
|
|
return bval(geo, node, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_last);
|
|
|
|
static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
|
|
unsigned long *key)
|
|
{
|
|
return longcmp(bkey(geo, node, pos), key, geo->keylen);
|
|
}
|
|
|
|
static int keyzero(struct btree_geo *geo, unsigned long *key)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < geo->keylen; i++)
|
|
if (key[i])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void *btree_lookup_node(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key)
|
|
{
|
|
int i, height = head->height;
|
|
unsigned long *node = head->node;
|
|
|
|
if (height == 0)
|
|
return NULL;
|
|
|
|
for ( ; height > 1; height--) {
|
|
for (i = 0; i < geo->no_pairs; i++)
|
|
if (keycmp(geo, node, i, key) <= 0)
|
|
break;
|
|
if (i == geo->no_pairs)
|
|
return NULL;
|
|
node = bval(geo, node, i);
|
|
if (!node)
|
|
return NULL;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key)
|
|
{
|
|
int i;
|
|
unsigned long *node;
|
|
|
|
node = btree_lookup_node(head, geo, key);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
for (i = 0; i < geo->no_pairs; i++)
|
|
if (keycmp(geo, node, i, key) == 0)
|
|
return bval(geo, node, i);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_lookup);
|
|
|
|
int btree_update(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key, void *val)
|
|
{
|
|
int i;
|
|
unsigned long *node;
|
|
|
|
node = btree_lookup_node(head, geo, key);
|
|
if (!node)
|
|
return -ENOENT;
|
|
|
|
for (i = 0; i < geo->no_pairs; i++)
|
|
if (keycmp(geo, node, i, key) == 0) {
|
|
setval(geo, node, i, val);
|
|
return 0;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_update);
|
|
|
|
/*
|
|
* Usually this function is quite similar to normal lookup. But the key of
|
|
* a parent node may be smaller than the smallest key of all its siblings.
|
|
* In such a case we cannot just return NULL, as we have only proven that no
|
|
* key smaller than __key, but larger than this parent key exists.
|
|
* So we set __key to the parent key and retry. We have to use the smallest
|
|
* such parent key, which is the last parent key we encountered.
|
|
*/
|
|
void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *__key)
|
|
{
|
|
int i, height;
|
|
unsigned long *node, *oldnode;
|
|
unsigned long *retry_key = NULL, key[MAX_KEYLEN];
|
|
|
|
if (keyzero(geo, __key))
|
|
return NULL;
|
|
|
|
if (head->height == 0)
|
|
return NULL;
|
|
longcpy(key, __key, geo->keylen);
|
|
retry:
|
|
dec_key(geo, key);
|
|
|
|
node = head->node;
|
|
for (height = head->height ; height > 1; height--) {
|
|
for (i = 0; i < geo->no_pairs; i++)
|
|
if (keycmp(geo, node, i, key) <= 0)
|
|
break;
|
|
if (i == geo->no_pairs)
|
|
goto miss;
|
|
oldnode = node;
|
|
node = bval(geo, node, i);
|
|
if (!node)
|
|
goto miss;
|
|
retry_key = bkey(geo, oldnode, i);
|
|
}
|
|
|
|
if (!node)
|
|
goto miss;
|
|
|
|
for (i = 0; i < geo->no_pairs; i++) {
|
|
if (keycmp(geo, node, i, key) <= 0) {
|
|
if (bval(geo, node, i)) {
|
|
longcpy(__key, bkey(geo, node, i), geo->keylen);
|
|
return bval(geo, node, i);
|
|
} else
|
|
goto miss;
|
|
}
|
|
}
|
|
miss:
|
|
if (retry_key) {
|
|
longcpy(key, retry_key, geo->keylen);
|
|
retry_key = NULL;
|
|
goto retry;
|
|
}
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_get_prev);
|
|
|
|
static int getpos(struct btree_geo *geo, unsigned long *node,
|
|
unsigned long *key)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < geo->no_pairs; i++) {
|
|
if (keycmp(geo, node, i, key) <= 0)
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static int getfill(struct btree_geo *geo, unsigned long *node, int start)
|
|
{
|
|
int i;
|
|
|
|
for (i = start; i < geo->no_pairs; i++)
|
|
if (!bval(geo, node, i))
|
|
break;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* locate the correct leaf node in the btree
|
|
*/
|
|
static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key, int level)
|
|
{
|
|
unsigned long *node = head->node;
|
|
int i, height;
|
|
|
|
for (height = head->height; height > level; height--) {
|
|
for (i = 0; i < geo->no_pairs; i++)
|
|
if (keycmp(geo, node, i, key) <= 0)
|
|
break;
|
|
|
|
if ((i == geo->no_pairs) || !bval(geo, node, i)) {
|
|
/* right-most key is too large, update it */
|
|
/* FIXME: If the right-most key on higher levels is
|
|
* always zero, this wouldn't be necessary. */
|
|
i--;
|
|
setkey(geo, node, i, key);
|
|
}
|
|
BUG_ON(i < 0);
|
|
node = bval(geo, node, i);
|
|
}
|
|
BUG_ON(!node);
|
|
return node;
|
|
}
|
|
|
|
static int btree_grow(struct btree_head *head, struct btree_geo *geo,
|
|
gfp_t gfp)
|
|
{
|
|
unsigned long *node;
|
|
int fill;
|
|
|
|
node = btree_node_alloc(head, gfp);
|
|
if (!node)
|
|
return -ENOMEM;
|
|
if (head->node) {
|
|
fill = getfill(geo, head->node, 0);
|
|
setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
|
|
setval(geo, node, 0, head->node);
|
|
}
|
|
head->node = node;
|
|
head->height++;
|
|
return 0;
|
|
}
|
|
|
|
static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
|
|
{
|
|
unsigned long *node;
|
|
int fill;
|
|
|
|
if (head->height <= 1)
|
|
return;
|
|
|
|
node = head->node;
|
|
fill = getfill(geo, node, 0);
|
|
BUG_ON(fill > 1);
|
|
head->node = bval(geo, node, 0);
|
|
head->height--;
|
|
mempool_free(node, head->mempool);
|
|
}
|
|
|
|
static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key, void *val, int level,
|
|
gfp_t gfp)
|
|
{
|
|
unsigned long *node;
|
|
int i, pos, fill, err;
|
|
|
|
BUG_ON(!val);
|
|
if (head->height < level) {
|
|
err = btree_grow(head, geo, gfp);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
retry:
|
|
node = find_level(head, geo, key, level);
|
|
pos = getpos(geo, node, key);
|
|
fill = getfill(geo, node, pos);
|
|
/* two identical keys are not allowed */
|
|
BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
|
|
|
|
if (fill == geo->no_pairs) {
|
|
/* need to split node */
|
|
unsigned long *new;
|
|
|
|
new = btree_node_alloc(head, gfp);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
err = btree_insert_level(head, geo,
|
|
bkey(geo, node, fill / 2 - 1),
|
|
new, level + 1, gfp);
|
|
if (err) {
|
|
mempool_free(new, head->mempool);
|
|
return err;
|
|
}
|
|
for (i = 0; i < fill / 2; i++) {
|
|
setkey(geo, new, i, bkey(geo, node, i));
|
|
setval(geo, new, i, bval(geo, node, i));
|
|
setkey(geo, node, i, bkey(geo, node, i + fill / 2));
|
|
setval(geo, node, i, bval(geo, node, i + fill / 2));
|
|
clearpair(geo, node, i + fill / 2);
|
|
}
|
|
if (fill & 1) {
|
|
setkey(geo, node, i, bkey(geo, node, fill - 1));
|
|
setval(geo, node, i, bval(geo, node, fill - 1));
|
|
clearpair(geo, node, fill - 1);
|
|
}
|
|
goto retry;
|
|
}
|
|
BUG_ON(fill >= geo->no_pairs);
|
|
|
|
/* shift and insert */
|
|
for (i = fill; i > pos; i--) {
|
|
setkey(geo, node, i, bkey(geo, node, i - 1));
|
|
setval(geo, node, i, bval(geo, node, i - 1));
|
|
}
|
|
setkey(geo, node, pos, key);
|
|
setval(geo, node, pos, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btree_insert(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key, void *val, gfp_t gfp)
|
|
{
|
|
BUG_ON(!val);
|
|
return btree_insert_level(head, geo, key, val, 1, gfp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_insert);
|
|
|
|
static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key, int level);
|
|
static void merge(struct btree_head *head, struct btree_geo *geo, int level,
|
|
unsigned long *left, int lfill,
|
|
unsigned long *right, int rfill,
|
|
unsigned long *parent, int lpos)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < rfill; i++) {
|
|
/* Move all keys to the left */
|
|
setkey(geo, left, lfill + i, bkey(geo, right, i));
|
|
setval(geo, left, lfill + i, bval(geo, right, i));
|
|
}
|
|
/* Exchange left and right child in parent */
|
|
setval(geo, parent, lpos, right);
|
|
setval(geo, parent, lpos + 1, left);
|
|
/* Remove left (formerly right) child from parent */
|
|
btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
|
|
mempool_free(right, head->mempool);
|
|
}
|
|
|
|
static void rebalance(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key, int level, unsigned long *child, int fill)
|
|
{
|
|
unsigned long *parent, *left = NULL, *right = NULL;
|
|
int i, no_left, no_right;
|
|
|
|
if (fill == 0) {
|
|
/* Because we don't steal entries from a neighbour, this case
|
|
* can happen. Parent node contains a single child, this
|
|
* node, so merging with a sibling never happens.
|
|
*/
|
|
btree_remove_level(head, geo, key, level + 1);
|
|
mempool_free(child, head->mempool);
|
|
return;
|
|
}
|
|
|
|
parent = find_level(head, geo, key, level + 1);
|
|
i = getpos(geo, parent, key);
|
|
BUG_ON(bval(geo, parent, i) != child);
|
|
|
|
if (i > 0) {
|
|
left = bval(geo, parent, i - 1);
|
|
no_left = getfill(geo, left, 0);
|
|
if (fill + no_left <= geo->no_pairs) {
|
|
merge(head, geo, level,
|
|
left, no_left,
|
|
child, fill,
|
|
parent, i - 1);
|
|
return;
|
|
}
|
|
}
|
|
if (i + 1 < getfill(geo, parent, i)) {
|
|
right = bval(geo, parent, i + 1);
|
|
no_right = getfill(geo, right, 0);
|
|
if (fill + no_right <= geo->no_pairs) {
|
|
merge(head, geo, level,
|
|
child, fill,
|
|
right, no_right,
|
|
parent, i);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* We could also try to steal one entry from the left or right
|
|
* neighbor. By not doing so we changed the invariant from
|
|
* "all nodes are at least half full" to "no two neighboring
|
|
* nodes can be merged". Which means that the average fill of
|
|
* all nodes is still half or better.
|
|
*/
|
|
}
|
|
|
|
static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key, int level)
|
|
{
|
|
unsigned long *node;
|
|
int i, pos, fill;
|
|
void *ret;
|
|
|
|
if (level > head->height) {
|
|
/* we recursed all the way up */
|
|
head->height = 0;
|
|
head->node = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
node = find_level(head, geo, key, level);
|
|
pos = getpos(geo, node, key);
|
|
fill = getfill(geo, node, pos);
|
|
if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
|
|
return NULL;
|
|
ret = bval(geo, node, pos);
|
|
|
|
/* remove and shift */
|
|
for (i = pos; i < fill - 1; i++) {
|
|
setkey(geo, node, i, bkey(geo, node, i + 1));
|
|
setval(geo, node, i, bval(geo, node, i + 1));
|
|
}
|
|
clearpair(geo, node, fill - 1);
|
|
|
|
if (fill - 1 < geo->no_pairs / 2) {
|
|
if (level < head->height)
|
|
rebalance(head, geo, key, level, node, fill - 1);
|
|
else if (fill - 1 == 1)
|
|
btree_shrink(head, geo);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void *btree_remove(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *key)
|
|
{
|
|
if (head->height == 0)
|
|
return NULL;
|
|
|
|
return btree_remove_level(head, geo, key, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_remove);
|
|
|
|
int btree_merge(struct btree_head *target, struct btree_head *victim,
|
|
struct btree_geo *geo, gfp_t gfp)
|
|
{
|
|
unsigned long key[MAX_KEYLEN];
|
|
unsigned long dup[MAX_KEYLEN];
|
|
void *val;
|
|
int err;
|
|
|
|
BUG_ON(target == victim);
|
|
|
|
if (!(target->node)) {
|
|
/* target is empty, just copy fields over */
|
|
target->node = victim->node;
|
|
target->height = victim->height;
|
|
__btree_init(victim);
|
|
return 0;
|
|
}
|
|
|
|
/* TODO: This needs some optimizations. Currently we do three tree
|
|
* walks to remove a single object from the victim.
|
|
*/
|
|
for (;;) {
|
|
if (!btree_last(victim, geo, key))
|
|
break;
|
|
val = btree_lookup(victim, geo, key);
|
|
err = btree_insert(target, geo, key, val, gfp);
|
|
if (err)
|
|
return err;
|
|
/* We must make a copy of the key, as the original will get
|
|
* mangled inside btree_remove. */
|
|
longcpy(dup, key, geo->keylen);
|
|
btree_remove(victim, geo, dup);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_merge);
|
|
|
|
static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long *node, unsigned long opaque,
|
|
void (*func)(void *elem, unsigned long opaque,
|
|
unsigned long *key, size_t index,
|
|
void *func2),
|
|
void *func2, int reap, int height, size_t count)
|
|
{
|
|
int i;
|
|
unsigned long *child;
|
|
|
|
for (i = 0; i < geo->no_pairs; i++) {
|
|
child = bval(geo, node, i);
|
|
if (!child)
|
|
break;
|
|
if (height > 1)
|
|
count = __btree_for_each(head, geo, child, opaque,
|
|
func, func2, reap, height - 1, count);
|
|
else
|
|
func(child, opaque, bkey(geo, node, i), count++,
|
|
func2);
|
|
}
|
|
if (reap)
|
|
mempool_free(node, head->mempool);
|
|
return count;
|
|
}
|
|
|
|
static void empty(void *elem, unsigned long opaque, unsigned long *key,
|
|
size_t index, void *func2)
|
|
{
|
|
}
|
|
|
|
void visitorl(void *elem, unsigned long opaque, unsigned long *key,
|
|
size_t index, void *__func)
|
|
{
|
|
visitorl_t func = __func;
|
|
|
|
func(elem, opaque, *key, index);
|
|
}
|
|
EXPORT_SYMBOL_GPL(visitorl);
|
|
|
|
void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
|
|
size_t index, void *__func)
|
|
{
|
|
visitor32_t func = __func;
|
|
u32 *key = (void *)__key;
|
|
|
|
func(elem, opaque, *key, index);
|
|
}
|
|
EXPORT_SYMBOL_GPL(visitor32);
|
|
|
|
void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
|
|
size_t index, void *__func)
|
|
{
|
|
visitor64_t func = __func;
|
|
u64 *key = (void *)__key;
|
|
|
|
func(elem, opaque, *key, index);
|
|
}
|
|
EXPORT_SYMBOL_GPL(visitor64);
|
|
|
|
void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
|
|
size_t index, void *__func)
|
|
{
|
|
visitor128_t func = __func;
|
|
u64 *key = (void *)__key;
|
|
|
|
func(elem, opaque, key[0], key[1], index);
|
|
}
|
|
EXPORT_SYMBOL_GPL(visitor128);
|
|
|
|
size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long opaque,
|
|
void (*func)(void *elem, unsigned long opaque,
|
|
unsigned long *key,
|
|
size_t index, void *func2),
|
|
void *func2)
|
|
{
|
|
size_t count = 0;
|
|
|
|
if (!func2)
|
|
func = empty;
|
|
if (head->node)
|
|
count = __btree_for_each(head, geo, head->node, opaque, func,
|
|
func2, 0, head->height, 0);
|
|
return count;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_visitor);
|
|
|
|
size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
|
|
unsigned long opaque,
|
|
void (*func)(void *elem, unsigned long opaque,
|
|
unsigned long *key,
|
|
size_t index, void *func2),
|
|
void *func2)
|
|
{
|
|
size_t count = 0;
|
|
|
|
if (!func2)
|
|
func = empty;
|
|
if (head->node)
|
|
count = __btree_for_each(head, geo, head->node, opaque, func,
|
|
func2, 1, head->height, 0);
|
|
__btree_init(head);
|
|
return count;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btree_grim_visitor);
|
|
|
|
static int __init btree_module_init(void)
|
|
{
|
|
btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
|
|
SLAB_HWCACHE_ALIGN, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit btree_module_exit(void)
|
|
{
|
|
kmem_cache_destroy(btree_cachep);
|
|
}
|
|
|
|
/* If core code starts using btree, initialization should happen even earlier */
|
|
module_init(btree_module_init);
|
|
module_exit(btree_module_exit);
|
|
|
|
MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
|
|
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
|