linux-stable/drivers/pwm/pwm-renesas-tpu.c
Sean Young 752193da3f pwm: renesas: Remove unused include
No mutex is used in this driver.

Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2023-12-20 16:07:05 +01:00

504 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* R-Mobile TPU PWM driver
*
* Copyright (C) 2012 Renesas Solutions Corp.
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#define TPU_CHANNEL_MAX 4
#define TPU_TSTR 0x00 /* Timer start register (shared) */
#define TPU_TCRn 0x00 /* Timer control register */
#define TPU_TCR_CCLR_NONE (0 << 5)
#define TPU_TCR_CCLR_TGRA (1 << 5)
#define TPU_TCR_CCLR_TGRB (2 << 5)
#define TPU_TCR_CCLR_TGRC (5 << 5)
#define TPU_TCR_CCLR_TGRD (6 << 5)
#define TPU_TCR_CKEG_RISING (0 << 3)
#define TPU_TCR_CKEG_FALLING (1 << 3)
#define TPU_TCR_CKEG_BOTH (2 << 3)
#define TPU_TMDRn 0x04 /* Timer mode register */
#define TPU_TMDR_BFWT (1 << 6)
#define TPU_TMDR_BFB (1 << 5)
#define TPU_TMDR_BFA (1 << 4)
#define TPU_TMDR_MD_NORMAL (0 << 0)
#define TPU_TMDR_MD_PWM (2 << 0)
#define TPU_TIORn 0x08 /* Timer I/O control register */
#define TPU_TIOR_IOA_0 (0 << 0)
#define TPU_TIOR_IOA_0_CLR (1 << 0)
#define TPU_TIOR_IOA_0_SET (2 << 0)
#define TPU_TIOR_IOA_0_TOGGLE (3 << 0)
#define TPU_TIOR_IOA_1 (4 << 0)
#define TPU_TIOR_IOA_1_CLR (5 << 0)
#define TPU_TIOR_IOA_1_SET (6 << 0)
#define TPU_TIOR_IOA_1_TOGGLE (7 << 0)
#define TPU_TIERn 0x0c /* Timer interrupt enable register */
#define TPU_TSRn 0x10 /* Timer status register */
#define TPU_TCNTn 0x14 /* Timer counter */
#define TPU_TGRAn 0x18 /* Timer general register A */
#define TPU_TGRBn 0x1c /* Timer general register B */
#define TPU_TGRCn 0x20 /* Timer general register C */
#define TPU_TGRDn 0x24 /* Timer general register D */
#define TPU_CHANNEL_OFFSET 0x10
#define TPU_CHANNEL_SIZE 0x40
enum tpu_pin_state {
TPU_PIN_INACTIVE, /* Pin is driven inactive */
TPU_PIN_PWM, /* Pin is driven by PWM */
TPU_PIN_ACTIVE, /* Pin is driven active */
};
struct tpu_device;
struct tpu_pwm_device {
bool timer_on; /* Whether the timer is running */
struct tpu_device *tpu;
unsigned int channel; /* Channel number in the TPU */
enum pwm_polarity polarity;
unsigned int prescaler;
u16 period;
u16 duty;
};
struct tpu_device {
struct platform_device *pdev;
struct pwm_chip chip;
spinlock_t lock;
void __iomem *base;
struct clk *clk;
struct tpu_pwm_device tpd[TPU_CHANNEL_MAX];
};
#define to_tpu_device(c) container_of(c, struct tpu_device, chip)
static void tpu_pwm_write(struct tpu_pwm_device *tpd, int reg_nr, u16 value)
{
void __iomem *base = tpd->tpu->base + TPU_CHANNEL_OFFSET
+ tpd->channel * TPU_CHANNEL_SIZE;
iowrite16(value, base + reg_nr);
}
static void tpu_pwm_set_pin(struct tpu_pwm_device *tpd,
enum tpu_pin_state state)
{
static const char * const states[] = { "inactive", "PWM", "active" };
dev_dbg(&tpd->tpu->pdev->dev, "%u: configuring pin as %s\n",
tpd->channel, states[state]);
switch (state) {
case TPU_PIN_INACTIVE:
tpu_pwm_write(tpd, TPU_TIORn,
tpd->polarity == PWM_POLARITY_INVERSED ?
TPU_TIOR_IOA_1 : TPU_TIOR_IOA_0);
break;
case TPU_PIN_PWM:
tpu_pwm_write(tpd, TPU_TIORn,
tpd->polarity == PWM_POLARITY_INVERSED ?
TPU_TIOR_IOA_0_SET : TPU_TIOR_IOA_1_CLR);
break;
case TPU_PIN_ACTIVE:
tpu_pwm_write(tpd, TPU_TIORn,
tpd->polarity == PWM_POLARITY_INVERSED ?
TPU_TIOR_IOA_0 : TPU_TIOR_IOA_1);
break;
}
}
static void tpu_pwm_start_stop(struct tpu_pwm_device *tpd, int start)
{
unsigned long flags;
u16 value;
spin_lock_irqsave(&tpd->tpu->lock, flags);
value = ioread16(tpd->tpu->base + TPU_TSTR);
if (start)
value |= 1 << tpd->channel;
else
value &= ~(1 << tpd->channel);
iowrite16(value, tpd->tpu->base + TPU_TSTR);
spin_unlock_irqrestore(&tpd->tpu->lock, flags);
}
static int tpu_pwm_timer_start(struct tpu_pwm_device *tpd)
{
int ret;
if (!tpd->timer_on) {
/* Wake up device and enable clock. */
pm_runtime_get_sync(&tpd->tpu->pdev->dev);
ret = clk_prepare_enable(tpd->tpu->clk);
if (ret) {
dev_err(&tpd->tpu->pdev->dev, "cannot enable clock\n");
return ret;
}
tpd->timer_on = true;
}
/*
* Make sure the channel is stopped, as we need to reconfigure it
* completely. First drive the pin to the inactive state to avoid
* glitches.
*/
tpu_pwm_set_pin(tpd, TPU_PIN_INACTIVE);
tpu_pwm_start_stop(tpd, false);
/*
* - Clear TCNT on TGRB match
* - Count on rising edge
* - Set prescaler
* - Output 0 until TGRA, output 1 until TGRB (active low polarity)
* - Output 1 until TGRA, output 0 until TGRB (active high polarity
* - PWM mode
*/
tpu_pwm_write(tpd, TPU_TCRn, TPU_TCR_CCLR_TGRB | TPU_TCR_CKEG_RISING |
tpd->prescaler);
tpu_pwm_write(tpd, TPU_TMDRn, TPU_TMDR_MD_PWM);
tpu_pwm_set_pin(tpd, TPU_PIN_PWM);
tpu_pwm_write(tpd, TPU_TGRAn, tpd->duty);
tpu_pwm_write(tpd, TPU_TGRBn, tpd->period);
dev_dbg(&tpd->tpu->pdev->dev, "%u: TGRA 0x%04x TGRB 0x%04x\n",
tpd->channel, tpd->duty, tpd->period);
/* Start the channel. */
tpu_pwm_start_stop(tpd, true);
return 0;
}
static void tpu_pwm_timer_stop(struct tpu_pwm_device *tpd)
{
if (!tpd->timer_on)
return;
/* Disable channel. */
tpu_pwm_start_stop(tpd, false);
/* Stop clock and mark device as idle. */
clk_disable_unprepare(tpd->tpu->clk);
pm_runtime_put(&tpd->tpu->pdev->dev);
tpd->timer_on = false;
}
/* -----------------------------------------------------------------------------
* PWM API
*/
static int tpu_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct tpu_device *tpu = to_tpu_device(chip);
struct tpu_pwm_device *tpd;
if (pwm->hwpwm >= TPU_CHANNEL_MAX)
return -EINVAL;
tpd = &tpu->tpd[pwm->hwpwm];
tpd->tpu = tpu;
tpd->channel = pwm->hwpwm;
tpd->polarity = PWM_POLARITY_NORMAL;
tpd->prescaler = 0;
tpd->period = 0;
tpd->duty = 0;
tpd->timer_on = false;
return 0;
}
static void tpu_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct tpu_device *tpu = to_tpu_device(chip);
struct tpu_pwm_device *tpd = &tpu->tpd[pwm->hwpwm];
tpu_pwm_timer_stop(tpd);
}
static int tpu_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
u64 duty_ns, u64 period_ns, bool enabled)
{
struct tpu_device *tpu = to_tpu_device(chip);
struct tpu_pwm_device *tpd = &tpu->tpd[pwm->hwpwm];
unsigned int prescaler;
bool duty_only = false;
u32 clk_rate;
u64 period;
u32 duty;
int ret;
clk_rate = clk_get_rate(tpu->clk);
if (unlikely(clk_rate > NSEC_PER_SEC)) {
/*
* This won't happen in the nearer future, so this is only a
* safeguard to prevent the following calculation from
* overflowing. With this clk_rate * period_ns / NSEC_PER_SEC is
* not greater than period_ns and so fits into an u64.
*/
return -EINVAL;
}
period = mul_u64_u64_div_u64(clk_rate, period_ns, NSEC_PER_SEC);
/*
* Find the minimal prescaler in [0..3] such that
*
* period >> (2 * prescaler) < 0x10000
*
* This could be calculated using something like:
*
* prescaler = max(ilog2(period) / 2, 7) - 7;
*
* but given there are only four allowed results and that ilog2 isn't
* cheap on all platforms using a switch statement is more effective.
*/
switch (period) {
case 1 ... 0xffff:
prescaler = 0;
break;
case 0x10000 ... 0x3ffff:
prescaler = 1;
break;
case 0x40000 ... 0xfffff:
prescaler = 2;
break;
case 0x100000 ... 0x3fffff:
prescaler = 3;
break;
default:
return -EINVAL;
}
period >>= 2 * prescaler;
if (duty_ns)
duty = mul_u64_u64_div_u64(clk_rate, duty_ns,
(u64)NSEC_PER_SEC << (2 * prescaler));
else
duty = 0;
dev_dbg(&tpu->pdev->dev,
"rate %u, prescaler %u, period %u, duty %u\n",
clk_rate, 1 << (2 * prescaler), (u32)period, duty);
if (tpd->prescaler == prescaler && tpd->period == period)
duty_only = true;
tpd->prescaler = prescaler;
tpd->period = period;
tpd->duty = duty;
/* If the channel is disabled we're done. */
if (!enabled)
return 0;
if (duty_only && tpd->timer_on) {
/*
* If only the duty cycle changed and the timer is already
* running, there's no need to reconfigure it completely, Just
* modify the duty cycle.
*/
tpu_pwm_write(tpd, TPU_TGRAn, tpd->duty);
dev_dbg(&tpu->pdev->dev, "%u: TGRA 0x%04x\n", tpd->channel,
tpd->duty);
} else {
/* Otherwise perform a full reconfiguration. */
ret = tpu_pwm_timer_start(tpd);
if (ret < 0)
return ret;
}
if (duty == 0 || duty == period) {
/*
* To avoid running the timer when not strictly required, handle
* 0% and 100% duty cycles as fixed levels and stop the timer.
*/
tpu_pwm_set_pin(tpd, duty ? TPU_PIN_ACTIVE : TPU_PIN_INACTIVE);
tpu_pwm_timer_stop(tpd);
}
return 0;
}
static int tpu_pwm_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm,
enum pwm_polarity polarity)
{
struct tpu_device *tpu = to_tpu_device(chip);
struct tpu_pwm_device *tpd = &tpu->tpd[pwm->hwpwm];
tpd->polarity = polarity;
return 0;
}
static int tpu_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct tpu_device *tpu = to_tpu_device(chip);
struct tpu_pwm_device *tpd = &tpu->tpd[pwm->hwpwm];
int ret;
ret = tpu_pwm_timer_start(tpd);
if (ret < 0)
return ret;
/*
* To avoid running the timer when not strictly required, handle 0% and
* 100% duty cycles as fixed levels and stop the timer.
*/
if (tpd->duty == 0 || tpd->duty == tpd->period) {
tpu_pwm_set_pin(tpd, tpd->duty ?
TPU_PIN_ACTIVE : TPU_PIN_INACTIVE);
tpu_pwm_timer_stop(tpd);
}
return 0;
}
static void tpu_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct tpu_device *tpu = to_tpu_device(chip);
struct tpu_pwm_device *tpd = &tpu->tpd[pwm->hwpwm];
/* The timer must be running to modify the pin output configuration. */
tpu_pwm_timer_start(tpd);
tpu_pwm_set_pin(tpd, TPU_PIN_INACTIVE);
tpu_pwm_timer_stop(tpd);
}
static int tpu_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
int err;
bool enabled = pwm->state.enabled;
if (state->polarity != pwm->state.polarity) {
if (enabled) {
tpu_pwm_disable(chip, pwm);
enabled = false;
}
err = tpu_pwm_set_polarity(chip, pwm, state->polarity);
if (err)
return err;
}
if (!state->enabled) {
if (enabled)
tpu_pwm_disable(chip, pwm);
return 0;
}
err = tpu_pwm_config(chip, pwm,
state->duty_cycle, state->period, enabled);
if (err)
return err;
if (!enabled)
err = tpu_pwm_enable(chip, pwm);
return err;
}
static const struct pwm_ops tpu_pwm_ops = {
.request = tpu_pwm_request,
.free = tpu_pwm_free,
.apply = tpu_pwm_apply,
};
/* -----------------------------------------------------------------------------
* Probe and remove
*/
static int tpu_probe(struct platform_device *pdev)
{
struct tpu_device *tpu;
int ret;
tpu = devm_kzalloc(&pdev->dev, sizeof(*tpu), GFP_KERNEL);
if (tpu == NULL)
return -ENOMEM;
spin_lock_init(&tpu->lock);
tpu->pdev = pdev;
/* Map memory, get clock and pin control. */
tpu->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(tpu->base))
return PTR_ERR(tpu->base);
tpu->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(tpu->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(tpu->clk), "Failed to get clock\n");
/* Initialize and register the device. */
platform_set_drvdata(pdev, tpu);
tpu->chip.dev = &pdev->dev;
tpu->chip.ops = &tpu_pwm_ops;
tpu->chip.npwm = TPU_CHANNEL_MAX;
ret = devm_pm_runtime_enable(&pdev->dev);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "Failed to enable runtime PM\n");
ret = devm_pwmchip_add(&pdev->dev, &tpu->chip);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "Failed to register PWM chip\n");
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id tpu_of_table[] = {
{ .compatible = "renesas,tpu-r8a73a4", },
{ .compatible = "renesas,tpu-r8a7740", },
{ .compatible = "renesas,tpu-r8a7790", },
{ .compatible = "renesas,tpu", },
{ },
};
MODULE_DEVICE_TABLE(of, tpu_of_table);
#endif
static struct platform_driver tpu_driver = {
.probe = tpu_probe,
.driver = {
.name = "renesas-tpu-pwm",
.of_match_table = of_match_ptr(tpu_of_table),
}
};
module_platform_driver(tpu_driver);
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
MODULE_DESCRIPTION("Renesas TPU PWM Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:renesas-tpu-pwm");