mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-08 14:13:53 +00:00
6e32036333
For now, we can use larch_insn_gen_break() to define KPROBE_BP_INSN and KPROBE_SSTEPBP_INSN. Because larch_insn_gen_break() returns instruction word, define kprobe_opcode_t as u32, then do some small changes related with type conversion, no functional change intended. Tested-by: Jeff Xie <xiehuan09@gmail.com> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
339 lines
8.3 KiB
C
339 lines
8.3 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/preempt.h>
|
|
#include <asm/break.h>
|
|
|
|
#define KPROBE_BP_INSN larch_insn_gen_break(BRK_KPROBE_BP)
|
|
#define KPROBE_SSTEPBP_INSN larch_insn_gen_break(BRK_KPROBE_SSTEPBP)
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static void arch_prepare_ss_slot(struct kprobe *p)
|
|
{
|
|
p->ainsn.insn[0] = *p->addr;
|
|
p->ainsn.insn[1] = KPROBE_SSTEPBP_INSN;
|
|
p->ainsn.restore = (unsigned long)p->addr + LOONGARCH_INSN_SIZE;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_ss_slot);
|
|
|
|
static void arch_prepare_simulate(struct kprobe *p)
|
|
{
|
|
p->ainsn.restore = 0;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_simulate);
|
|
|
|
int arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
union loongarch_instruction insn;
|
|
|
|
if ((unsigned long)p->addr & 0x3)
|
|
return -EILSEQ;
|
|
|
|
/* copy instruction */
|
|
p->opcode = *p->addr;
|
|
insn.word = p->opcode;
|
|
|
|
/* decode instruction */
|
|
if (insns_not_supported(insn))
|
|
return -EINVAL;
|
|
|
|
if (insns_need_simulation(insn)) {
|
|
p->ainsn.insn = NULL;
|
|
} else {
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* prepare the instruction */
|
|
if (p->ainsn.insn)
|
|
arch_prepare_ss_slot(p);
|
|
else
|
|
arch_prepare_simulate(p);
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_kprobe);
|
|
|
|
/* Install breakpoint in text */
|
|
void arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = KPROBE_BP_INSN;
|
|
flush_insn_slot(p);
|
|
}
|
|
NOKPROBE_SYMBOL(arch_arm_kprobe);
|
|
|
|
/* Remove breakpoint from text */
|
|
void arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = p->opcode;
|
|
flush_insn_slot(p);
|
|
}
|
|
NOKPROBE_SYMBOL(arch_disarm_kprobe);
|
|
|
|
void arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(arch_remove_kprobe);
|
|
|
|
static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
NOKPROBE_SYMBOL(save_previous_kprobe);
|
|
|
|
static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
NOKPROBE_SYMBOL(restore_previous_kprobe);
|
|
|
|
static void set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
NOKPROBE_SYMBOL(set_current_kprobe);
|
|
|
|
/*
|
|
* Interrupts need to be disabled before single-step mode is set,
|
|
* and not reenabled until after single-step mode ends.
|
|
* Without disabling interrupt on local CPU, there is a chance of
|
|
* interrupt occurrence in the period of exception return and start
|
|
* of out-of-line single-step, that result in wrongly single stepping
|
|
* into the interrupt handler.
|
|
*/
|
|
static void save_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
kcb->saved_status = regs->csr_prmd;
|
|
regs->csr_prmd &= ~CSR_PRMD_PIE;
|
|
}
|
|
NOKPROBE_SYMBOL(save_local_irqflag);
|
|
|
|
static void restore_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
regs->csr_prmd = kcb->saved_status;
|
|
}
|
|
NOKPROBE_SYMBOL(restore_local_irqflag);
|
|
|
|
static void post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
/* return addr restore if non-branching insn */
|
|
if (cur->ainsn.restore != 0)
|
|
instruction_pointer_set(regs, cur->ainsn.restore);
|
|
|
|
/* restore back original saved kprobe variables and continue */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
preempt_enable_no_resched();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* update the kcb status even if the cur->post_handler is
|
|
* not set because reset_curent_kprobe() doesn't update kcb.
|
|
*/
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
if (cur->post_handler)
|
|
cur->post_handler(cur, regs, 0);
|
|
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
}
|
|
NOKPROBE_SYMBOL(post_kprobe_handler);
|
|
|
|
static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb, int reenter)
|
|
{
|
|
union loongarch_instruction insn;
|
|
|
|
if (reenter) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else {
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
}
|
|
|
|
if (p->ainsn.insn) {
|
|
/* IRQs and single stepping do not mix well */
|
|
save_local_irqflag(kcb, regs);
|
|
/* set ip register to prepare for single stepping */
|
|
regs->csr_era = (unsigned long)p->ainsn.insn;
|
|
} else {
|
|
/* simulate single steping */
|
|
insn.word = p->opcode;
|
|
arch_simulate_insn(insn, regs);
|
|
/* now go for post processing */
|
|
post_kprobe_handler(p, kcb, regs);
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(setup_singlestep);
|
|
|
|
static bool reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs, kcb, 1);
|
|
break;
|
|
case KPROBE_REENTER:
|
|
pr_warn("Failed to recover from reentered kprobes.\n");
|
|
dump_kprobe(p);
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
NOKPROBE_SYMBOL(reenter_kprobe);
|
|
|
|
bool kprobe_breakpoint_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb;
|
|
struct kprobe *p, *cur_kprobe;
|
|
kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->csr_era;
|
|
|
|
/*
|
|
* We don't want to be preempted for the entire
|
|
* duration of kprobe processing.
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
cur_kprobe = kprobe_running();
|
|
|
|
p = get_kprobe(addr);
|
|
if (p) {
|
|
if (cur_kprobe) {
|
|
if (reenter_kprobe(p, regs, kcb))
|
|
return true;
|
|
} else {
|
|
/* Probe hit */
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, it will
|
|
* modify the execution path and no need to single
|
|
* stepping. Let's just reset current kprobe and exit.
|
|
*
|
|
* pre_handler can hit a breakpoint and can step thru
|
|
* before return.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
setup_singlestep(p, regs, kcb, 0);
|
|
} else {
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (*addr != KPROBE_BP_INSN) {
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
* Return back to original instruction, and continue.
|
|
*/
|
|
regs->csr_era = (unsigned long)addr;
|
|
preempt_enable_no_resched();
|
|
return true;
|
|
}
|
|
|
|
preempt_enable_no_resched();
|
|
return false;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_breakpoint_handler);
|
|
|
|
bool kprobe_singlestep_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
unsigned long addr = instruction_pointer(regs);
|
|
|
|
if (cur && (kcb->kprobe_status & (KPROBE_HIT_SS | KPROBE_REENTER)) &&
|
|
((unsigned long)&cur->ainsn.insn[1] == addr)) {
|
|
restore_local_irqflag(kcb, regs);
|
|
post_kprobe_handler(cur, kcb, regs);
|
|
return true;
|
|
}
|
|
|
|
preempt_enable_no_resched();
|
|
return false;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_singlestep_handler);
|
|
|
|
bool kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the ip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->csr_era = (unsigned long)cur->addr;
|
|
WARN_ON_ONCE(!instruction_pointer(regs));
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
} else {
|
|
restore_local_irqflag(kcb, regs);
|
|
reset_current_kprobe();
|
|
}
|
|
preempt_enable_no_resched();
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
|
|
|
/*
|
|
* Provide a blacklist of symbols identifying ranges which cannot be kprobed.
|
|
* This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
|
|
*/
|
|
int __init arch_populate_kprobe_blacklist(void)
|
|
{
|
|
return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
|
|
(unsigned long)__irqentry_text_end);
|
|
}
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_trampoline_kprobe);
|