mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-17 18:56:24 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
1485 lines
36 KiB
C
1485 lines
36 KiB
C
/*
|
|
* Intel IXP4xx NPE-C crypto driver
|
|
*
|
|
* Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of version 2 of the GNU General Public License
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <crypto/ctr.h>
|
|
#include <crypto/des.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/sha.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/aead.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/scatterwalk.h>
|
|
|
|
#include <mach/npe.h>
|
|
#include <mach/qmgr.h>
|
|
|
|
#define MAX_KEYLEN 32
|
|
|
|
/* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
|
|
#define NPE_CTX_LEN 80
|
|
#define AES_BLOCK128 16
|
|
|
|
#define NPE_OP_HASH_VERIFY 0x01
|
|
#define NPE_OP_CCM_ENABLE 0x04
|
|
#define NPE_OP_CRYPT_ENABLE 0x08
|
|
#define NPE_OP_HASH_ENABLE 0x10
|
|
#define NPE_OP_NOT_IN_PLACE 0x20
|
|
#define NPE_OP_HMAC_DISABLE 0x40
|
|
#define NPE_OP_CRYPT_ENCRYPT 0x80
|
|
|
|
#define NPE_OP_CCM_GEN_MIC 0xcc
|
|
#define NPE_OP_HASH_GEN_ICV 0x50
|
|
#define NPE_OP_ENC_GEN_KEY 0xc9
|
|
|
|
#define MOD_ECB 0x0000
|
|
#define MOD_CTR 0x1000
|
|
#define MOD_CBC_ENC 0x2000
|
|
#define MOD_CBC_DEC 0x3000
|
|
#define MOD_CCM_ENC 0x4000
|
|
#define MOD_CCM_DEC 0x5000
|
|
|
|
#define KEYLEN_128 4
|
|
#define KEYLEN_192 6
|
|
#define KEYLEN_256 8
|
|
|
|
#define CIPH_DECR 0x0000
|
|
#define CIPH_ENCR 0x0400
|
|
|
|
#define MOD_DES 0x0000
|
|
#define MOD_TDEA2 0x0100
|
|
#define MOD_3DES 0x0200
|
|
#define MOD_AES 0x0800
|
|
#define MOD_AES128 (0x0800 | KEYLEN_128)
|
|
#define MOD_AES192 (0x0900 | KEYLEN_192)
|
|
#define MOD_AES256 (0x0a00 | KEYLEN_256)
|
|
|
|
#define MAX_IVLEN 16
|
|
#define NPE_ID 2 /* NPE C */
|
|
#define NPE_QLEN 16
|
|
/* Space for registering when the first
|
|
* NPE_QLEN crypt_ctl are busy */
|
|
#define NPE_QLEN_TOTAL 64
|
|
|
|
#define SEND_QID 29
|
|
#define RECV_QID 30
|
|
|
|
#define CTL_FLAG_UNUSED 0x0000
|
|
#define CTL_FLAG_USED 0x1000
|
|
#define CTL_FLAG_PERFORM_ABLK 0x0001
|
|
#define CTL_FLAG_GEN_ICV 0x0002
|
|
#define CTL_FLAG_GEN_REVAES 0x0004
|
|
#define CTL_FLAG_PERFORM_AEAD 0x0008
|
|
#define CTL_FLAG_MASK 0x000f
|
|
|
|
#define HMAC_IPAD_VALUE 0x36
|
|
#define HMAC_OPAD_VALUE 0x5C
|
|
#define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
|
|
|
|
#define MD5_DIGEST_SIZE 16
|
|
|
|
struct buffer_desc {
|
|
u32 phys_next;
|
|
u16 buf_len;
|
|
u16 pkt_len;
|
|
u32 phys_addr;
|
|
u32 __reserved[4];
|
|
struct buffer_desc *next;
|
|
enum dma_data_direction dir;
|
|
};
|
|
|
|
struct crypt_ctl {
|
|
u8 mode; /* NPE_OP_* operation mode */
|
|
u8 init_len;
|
|
u16 reserved;
|
|
u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
|
|
u32 icv_rev_aes; /* icv or rev aes */
|
|
u32 src_buf;
|
|
u32 dst_buf;
|
|
u16 auth_offs; /* Authentication start offset */
|
|
u16 auth_len; /* Authentication data length */
|
|
u16 crypt_offs; /* Cryption start offset */
|
|
u16 crypt_len; /* Cryption data length */
|
|
u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
|
|
u32 crypto_ctx; /* NPE Crypto Param structure address */
|
|
|
|
/* Used by Host: 4*4 bytes*/
|
|
unsigned ctl_flags;
|
|
union {
|
|
struct ablkcipher_request *ablk_req;
|
|
struct aead_request *aead_req;
|
|
struct crypto_tfm *tfm;
|
|
} data;
|
|
struct buffer_desc *regist_buf;
|
|
u8 *regist_ptr;
|
|
};
|
|
|
|
struct ablk_ctx {
|
|
struct buffer_desc *src;
|
|
struct buffer_desc *dst;
|
|
};
|
|
|
|
struct aead_ctx {
|
|
struct buffer_desc *buffer;
|
|
struct scatterlist ivlist;
|
|
/* used when the hmac is not on one sg entry */
|
|
u8 *hmac_virt;
|
|
int encrypt;
|
|
};
|
|
|
|
struct ix_hash_algo {
|
|
u32 cfgword;
|
|
unsigned char *icv;
|
|
};
|
|
|
|
struct ix_sa_dir {
|
|
unsigned char *npe_ctx;
|
|
dma_addr_t npe_ctx_phys;
|
|
int npe_ctx_idx;
|
|
u8 npe_mode;
|
|
};
|
|
|
|
struct ixp_ctx {
|
|
struct ix_sa_dir encrypt;
|
|
struct ix_sa_dir decrypt;
|
|
int authkey_len;
|
|
u8 authkey[MAX_KEYLEN];
|
|
int enckey_len;
|
|
u8 enckey[MAX_KEYLEN];
|
|
u8 salt[MAX_IVLEN];
|
|
u8 nonce[CTR_RFC3686_NONCE_SIZE];
|
|
unsigned salted;
|
|
atomic_t configuring;
|
|
struct completion completion;
|
|
};
|
|
|
|
struct ixp_alg {
|
|
struct crypto_alg crypto;
|
|
const struct ix_hash_algo *hash;
|
|
u32 cfg_enc;
|
|
u32 cfg_dec;
|
|
|
|
int registered;
|
|
};
|
|
|
|
static const struct ix_hash_algo hash_alg_md5 = {
|
|
.cfgword = 0xAA010004,
|
|
.icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
|
|
"\xFE\xDC\xBA\x98\x76\x54\x32\x10",
|
|
};
|
|
static const struct ix_hash_algo hash_alg_sha1 = {
|
|
.cfgword = 0x00000005,
|
|
.icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
|
|
"\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
|
|
};
|
|
|
|
static struct npe *npe_c;
|
|
static struct dma_pool *buffer_pool = NULL;
|
|
static struct dma_pool *ctx_pool = NULL;
|
|
|
|
static struct crypt_ctl *crypt_virt = NULL;
|
|
static dma_addr_t crypt_phys;
|
|
|
|
static int support_aes = 1;
|
|
|
|
static void dev_release(struct device *dev)
|
|
{
|
|
return;
|
|
}
|
|
|
|
#define DRIVER_NAME "ixp4xx_crypto"
|
|
static struct platform_device pseudo_dev = {
|
|
.name = DRIVER_NAME,
|
|
.id = 0,
|
|
.num_resources = 0,
|
|
.dev = {
|
|
.coherent_dma_mask = DMA_BIT_MASK(32),
|
|
.release = dev_release,
|
|
}
|
|
};
|
|
|
|
static struct device *dev = &pseudo_dev.dev;
|
|
|
|
static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
|
|
{
|
|
return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
|
|
}
|
|
|
|
static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
|
|
{
|
|
return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
|
|
}
|
|
|
|
static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
|
|
{
|
|
return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
|
|
}
|
|
|
|
static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
|
|
{
|
|
return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
|
|
}
|
|
|
|
static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
|
|
{
|
|
return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
|
|
}
|
|
|
|
static int setup_crypt_desc(void)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
|
|
crypt_virt = dma_alloc_coherent(dev,
|
|
NPE_QLEN * sizeof(struct crypt_ctl),
|
|
&crypt_phys, GFP_KERNEL);
|
|
if (!crypt_virt)
|
|
return -ENOMEM;
|
|
memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
|
|
return 0;
|
|
}
|
|
|
|
static spinlock_t desc_lock;
|
|
static struct crypt_ctl *get_crypt_desc(void)
|
|
{
|
|
int i;
|
|
static int idx = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&desc_lock, flags);
|
|
|
|
if (unlikely(!crypt_virt))
|
|
setup_crypt_desc();
|
|
if (unlikely(!crypt_virt)) {
|
|
spin_unlock_irqrestore(&desc_lock, flags);
|
|
return NULL;
|
|
}
|
|
i = idx;
|
|
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
|
|
if (++idx >= NPE_QLEN)
|
|
idx = 0;
|
|
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
|
|
spin_unlock_irqrestore(&desc_lock, flags);
|
|
return crypt_virt +i;
|
|
} else {
|
|
spin_unlock_irqrestore(&desc_lock, flags);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static spinlock_t emerg_lock;
|
|
static struct crypt_ctl *get_crypt_desc_emerg(void)
|
|
{
|
|
int i;
|
|
static int idx = NPE_QLEN;
|
|
struct crypt_ctl *desc;
|
|
unsigned long flags;
|
|
|
|
desc = get_crypt_desc();
|
|
if (desc)
|
|
return desc;
|
|
if (unlikely(!crypt_virt))
|
|
return NULL;
|
|
|
|
spin_lock_irqsave(&emerg_lock, flags);
|
|
i = idx;
|
|
if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
|
|
if (++idx >= NPE_QLEN_TOTAL)
|
|
idx = NPE_QLEN;
|
|
crypt_virt[i].ctl_flags = CTL_FLAG_USED;
|
|
spin_unlock_irqrestore(&emerg_lock, flags);
|
|
return crypt_virt +i;
|
|
} else {
|
|
spin_unlock_irqrestore(&emerg_lock, flags);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
|
|
{
|
|
while (buf) {
|
|
struct buffer_desc *buf1;
|
|
u32 phys1;
|
|
|
|
buf1 = buf->next;
|
|
phys1 = buf->phys_next;
|
|
dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
|
|
dma_pool_free(buffer_pool, buf, phys);
|
|
buf = buf1;
|
|
phys = phys1;
|
|
}
|
|
}
|
|
|
|
static struct tasklet_struct crypto_done_tasklet;
|
|
|
|
static void finish_scattered_hmac(struct crypt_ctl *crypt)
|
|
{
|
|
struct aead_request *req = crypt->data.aead_req;
|
|
struct aead_ctx *req_ctx = aead_request_ctx(req);
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
int authsize = crypto_aead_authsize(tfm);
|
|
int decryptlen = req->cryptlen - authsize;
|
|
|
|
if (req_ctx->encrypt) {
|
|
scatterwalk_map_and_copy(req_ctx->hmac_virt,
|
|
req->src, decryptlen, authsize, 1);
|
|
}
|
|
dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
|
|
}
|
|
|
|
static void one_packet(dma_addr_t phys)
|
|
{
|
|
struct crypt_ctl *crypt;
|
|
struct ixp_ctx *ctx;
|
|
int failed;
|
|
|
|
failed = phys & 0x1 ? -EBADMSG : 0;
|
|
phys &= ~0x3;
|
|
crypt = crypt_phys2virt(phys);
|
|
|
|
switch (crypt->ctl_flags & CTL_FLAG_MASK) {
|
|
case CTL_FLAG_PERFORM_AEAD: {
|
|
struct aead_request *req = crypt->data.aead_req;
|
|
struct aead_ctx *req_ctx = aead_request_ctx(req);
|
|
|
|
free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
|
|
if (req_ctx->hmac_virt) {
|
|
finish_scattered_hmac(crypt);
|
|
}
|
|
req->base.complete(&req->base, failed);
|
|
break;
|
|
}
|
|
case CTL_FLAG_PERFORM_ABLK: {
|
|
struct ablkcipher_request *req = crypt->data.ablk_req;
|
|
struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
|
|
if (req_ctx->dst) {
|
|
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
|
|
}
|
|
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
|
|
req->base.complete(&req->base, failed);
|
|
break;
|
|
}
|
|
case CTL_FLAG_GEN_ICV:
|
|
ctx = crypto_tfm_ctx(crypt->data.tfm);
|
|
dma_pool_free(ctx_pool, crypt->regist_ptr,
|
|
crypt->regist_buf->phys_addr);
|
|
dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
|
|
if (atomic_dec_and_test(&ctx->configuring))
|
|
complete(&ctx->completion);
|
|
break;
|
|
case CTL_FLAG_GEN_REVAES:
|
|
ctx = crypto_tfm_ctx(crypt->data.tfm);
|
|
*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
|
|
if (atomic_dec_and_test(&ctx->configuring))
|
|
complete(&ctx->completion);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
crypt->ctl_flags = CTL_FLAG_UNUSED;
|
|
}
|
|
|
|
static void irqhandler(void *_unused)
|
|
{
|
|
tasklet_schedule(&crypto_done_tasklet);
|
|
}
|
|
|
|
static void crypto_done_action(unsigned long arg)
|
|
{
|
|
int i;
|
|
|
|
for(i=0; i<4; i++) {
|
|
dma_addr_t phys = qmgr_get_entry(RECV_QID);
|
|
if (!phys)
|
|
return;
|
|
one_packet(phys);
|
|
}
|
|
tasklet_schedule(&crypto_done_tasklet);
|
|
}
|
|
|
|
static int init_ixp_crypto(void)
|
|
{
|
|
int ret = -ENODEV;
|
|
u32 msg[2] = { 0, 0 };
|
|
|
|
if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
|
|
IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
|
|
printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
|
|
return ret;
|
|
}
|
|
npe_c = npe_request(NPE_ID);
|
|
if (!npe_c)
|
|
return ret;
|
|
|
|
if (!npe_running(npe_c)) {
|
|
ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
|
|
goto npe_error;
|
|
} else {
|
|
if (npe_send_message(npe_c, msg, "STATUS_MSG"))
|
|
goto npe_error;
|
|
|
|
if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
|
|
goto npe_error;
|
|
}
|
|
|
|
switch ((msg[1]>>16) & 0xff) {
|
|
case 3:
|
|
printk(KERN_WARNING "Firmware of %s lacks AES support\n",
|
|
npe_name(npe_c));
|
|
support_aes = 0;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
support_aes = 1;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "Firmware of %s lacks crypto support\n",
|
|
npe_name(npe_c));
|
|
return -ENODEV;
|
|
}
|
|
/* buffer_pool will also be used to sometimes store the hmac,
|
|
* so assure it is large enough
|
|
*/
|
|
BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
|
|
buffer_pool = dma_pool_create("buffer", dev,
|
|
sizeof(struct buffer_desc), 32, 0);
|
|
ret = -ENOMEM;
|
|
if (!buffer_pool) {
|
|
goto err;
|
|
}
|
|
ctx_pool = dma_pool_create("context", dev,
|
|
NPE_CTX_LEN, 16, 0);
|
|
if (!ctx_pool) {
|
|
goto err;
|
|
}
|
|
ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
|
|
"ixp_crypto:out", NULL);
|
|
if (ret)
|
|
goto err;
|
|
ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
|
|
"ixp_crypto:in", NULL);
|
|
if (ret) {
|
|
qmgr_release_queue(SEND_QID);
|
|
goto err;
|
|
}
|
|
qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
|
|
tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
|
|
|
|
qmgr_enable_irq(RECV_QID);
|
|
return 0;
|
|
|
|
npe_error:
|
|
printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
|
|
ret = -EIO;
|
|
err:
|
|
if (ctx_pool)
|
|
dma_pool_destroy(ctx_pool);
|
|
if (buffer_pool)
|
|
dma_pool_destroy(buffer_pool);
|
|
npe_release(npe_c);
|
|
return ret;
|
|
}
|
|
|
|
static void release_ixp_crypto(void)
|
|
{
|
|
qmgr_disable_irq(RECV_QID);
|
|
tasklet_kill(&crypto_done_tasklet);
|
|
|
|
qmgr_release_queue(SEND_QID);
|
|
qmgr_release_queue(RECV_QID);
|
|
|
|
dma_pool_destroy(ctx_pool);
|
|
dma_pool_destroy(buffer_pool);
|
|
|
|
npe_release(npe_c);
|
|
|
|
if (crypt_virt) {
|
|
dma_free_coherent(dev,
|
|
NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
|
|
crypt_virt, crypt_phys);
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void reset_sa_dir(struct ix_sa_dir *dir)
|
|
{
|
|
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
|
|
dir->npe_ctx_idx = 0;
|
|
dir->npe_mode = 0;
|
|
}
|
|
|
|
static int init_sa_dir(struct ix_sa_dir *dir)
|
|
{
|
|
dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
|
|
if (!dir->npe_ctx) {
|
|
return -ENOMEM;
|
|
}
|
|
reset_sa_dir(dir);
|
|
return 0;
|
|
}
|
|
|
|
static void free_sa_dir(struct ix_sa_dir *dir)
|
|
{
|
|
memset(dir->npe_ctx, 0, NPE_CTX_LEN);
|
|
dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
|
|
}
|
|
|
|
static int init_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
int ret;
|
|
|
|
atomic_set(&ctx->configuring, 0);
|
|
ret = init_sa_dir(&ctx->encrypt);
|
|
if (ret)
|
|
return ret;
|
|
ret = init_sa_dir(&ctx->decrypt);
|
|
if (ret) {
|
|
free_sa_dir(&ctx->encrypt);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int init_tfm_ablk(struct crypto_tfm *tfm)
|
|
{
|
|
tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
|
|
return init_tfm(tfm);
|
|
}
|
|
|
|
static int init_tfm_aead(struct crypto_tfm *tfm)
|
|
{
|
|
tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
|
|
return init_tfm(tfm);
|
|
}
|
|
|
|
static void exit_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
free_sa_dir(&ctx->encrypt);
|
|
free_sa_dir(&ctx->decrypt);
|
|
}
|
|
|
|
static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
|
|
int init_len, u32 ctx_addr, const u8 *key, int key_len)
|
|
{
|
|
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypt_ctl *crypt;
|
|
struct buffer_desc *buf;
|
|
int i;
|
|
u8 *pad;
|
|
u32 pad_phys, buf_phys;
|
|
|
|
BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
|
|
pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
|
|
if (!pad)
|
|
return -ENOMEM;
|
|
buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
|
|
if (!buf) {
|
|
dma_pool_free(ctx_pool, pad, pad_phys);
|
|
return -ENOMEM;
|
|
}
|
|
crypt = get_crypt_desc_emerg();
|
|
if (!crypt) {
|
|
dma_pool_free(ctx_pool, pad, pad_phys);
|
|
dma_pool_free(buffer_pool, buf, buf_phys);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
memcpy(pad, key, key_len);
|
|
memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
|
|
for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
|
|
pad[i] ^= xpad;
|
|
}
|
|
|
|
crypt->data.tfm = tfm;
|
|
crypt->regist_ptr = pad;
|
|
crypt->regist_buf = buf;
|
|
|
|
crypt->auth_offs = 0;
|
|
crypt->auth_len = HMAC_PAD_BLOCKLEN;
|
|
crypt->crypto_ctx = ctx_addr;
|
|
crypt->src_buf = buf_phys;
|
|
crypt->icv_rev_aes = target;
|
|
crypt->mode = NPE_OP_HASH_GEN_ICV;
|
|
crypt->init_len = init_len;
|
|
crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
|
|
|
|
buf->next = 0;
|
|
buf->buf_len = HMAC_PAD_BLOCKLEN;
|
|
buf->pkt_len = 0;
|
|
buf->phys_addr = pad_phys;
|
|
|
|
atomic_inc(&ctx->configuring);
|
|
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
|
|
BUG_ON(qmgr_stat_overflow(SEND_QID));
|
|
return 0;
|
|
}
|
|
|
|
static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
|
|
const u8 *key, int key_len, unsigned digest_len)
|
|
{
|
|
u32 itarget, otarget, npe_ctx_addr;
|
|
unsigned char *cinfo;
|
|
int init_len, ret = 0;
|
|
u32 cfgword;
|
|
struct ix_sa_dir *dir;
|
|
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
const struct ix_hash_algo *algo;
|
|
|
|
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
|
|
cinfo = dir->npe_ctx + dir->npe_ctx_idx;
|
|
algo = ix_hash(tfm);
|
|
|
|
/* write cfg word to cryptinfo */
|
|
cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
|
|
*(u32*)cinfo = cpu_to_be32(cfgword);
|
|
cinfo += sizeof(cfgword);
|
|
|
|
/* write ICV to cryptinfo */
|
|
memcpy(cinfo, algo->icv, digest_len);
|
|
cinfo += digest_len;
|
|
|
|
itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
|
|
+ sizeof(algo->cfgword);
|
|
otarget = itarget + digest_len;
|
|
init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
|
|
npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
|
|
|
|
dir->npe_ctx_idx += init_len;
|
|
dir->npe_mode |= NPE_OP_HASH_ENABLE;
|
|
|
|
if (!encrypt)
|
|
dir->npe_mode |= NPE_OP_HASH_VERIFY;
|
|
|
|
ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
|
|
init_len, npe_ctx_addr, key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
|
|
init_len, npe_ctx_addr, key, key_len);
|
|
}
|
|
|
|
static int gen_rev_aes_key(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypt_ctl *crypt;
|
|
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct ix_sa_dir *dir = &ctx->decrypt;
|
|
|
|
crypt = get_crypt_desc_emerg();
|
|
if (!crypt) {
|
|
return -EAGAIN;
|
|
}
|
|
*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
|
|
|
|
crypt->data.tfm = tfm;
|
|
crypt->crypt_offs = 0;
|
|
crypt->crypt_len = AES_BLOCK128;
|
|
crypt->src_buf = 0;
|
|
crypt->crypto_ctx = dir->npe_ctx_phys;
|
|
crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
|
|
crypt->mode = NPE_OP_ENC_GEN_KEY;
|
|
crypt->init_len = dir->npe_ctx_idx;
|
|
crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
|
|
|
|
atomic_inc(&ctx->configuring);
|
|
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
|
|
BUG_ON(qmgr_stat_overflow(SEND_QID));
|
|
return 0;
|
|
}
|
|
|
|
static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
|
|
const u8 *key, int key_len)
|
|
{
|
|
u8 *cinfo;
|
|
u32 cipher_cfg;
|
|
u32 keylen_cfg = 0;
|
|
struct ix_sa_dir *dir;
|
|
struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
u32 *flags = &tfm->crt_flags;
|
|
|
|
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
|
|
cinfo = dir->npe_ctx;
|
|
|
|
if (encrypt) {
|
|
cipher_cfg = cipher_cfg_enc(tfm);
|
|
dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
|
|
} else {
|
|
cipher_cfg = cipher_cfg_dec(tfm);
|
|
}
|
|
if (cipher_cfg & MOD_AES) {
|
|
switch (key_len) {
|
|
case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
|
|
case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
|
|
case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
|
|
default:
|
|
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
|
return -EINVAL;
|
|
}
|
|
cipher_cfg |= keylen_cfg;
|
|
} else if (cipher_cfg & MOD_3DES) {
|
|
const u32 *K = (const u32 *)key;
|
|
if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
|
|
!((K[2] ^ K[4]) | (K[3] ^ K[5]))))
|
|
{
|
|
*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
u32 tmp[DES_EXPKEY_WORDS];
|
|
if (des_ekey(tmp, key) == 0) {
|
|
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
|
|
}
|
|
}
|
|
/* write cfg word to cryptinfo */
|
|
*(u32*)cinfo = cpu_to_be32(cipher_cfg);
|
|
cinfo += sizeof(cipher_cfg);
|
|
|
|
/* write cipher key to cryptinfo */
|
|
memcpy(cinfo, key, key_len);
|
|
/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
|
|
if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
|
|
memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
|
|
key_len = DES3_EDE_KEY_SIZE;
|
|
}
|
|
dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
|
|
dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
|
|
if ((cipher_cfg & MOD_AES) && !encrypt) {
|
|
return gen_rev_aes_key(tfm);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct buffer_desc *chainup_buffers(struct device *dev,
|
|
struct scatterlist *sg, unsigned nbytes,
|
|
struct buffer_desc *buf, gfp_t flags,
|
|
enum dma_data_direction dir)
|
|
{
|
|
for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) {
|
|
unsigned len = min(nbytes, sg->length);
|
|
struct buffer_desc *next_buf;
|
|
u32 next_buf_phys;
|
|
void *ptr;
|
|
|
|
nbytes -= len;
|
|
ptr = page_address(sg_page(sg)) + sg->offset;
|
|
next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
|
|
if (!next_buf) {
|
|
buf = NULL;
|
|
break;
|
|
}
|
|
sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
|
|
buf->next = next_buf;
|
|
buf->phys_next = next_buf_phys;
|
|
buf = next_buf;
|
|
|
|
buf->phys_addr = sg_dma_address(sg);
|
|
buf->buf_len = len;
|
|
buf->dir = dir;
|
|
}
|
|
buf->next = NULL;
|
|
buf->phys_next = 0;
|
|
return buf;
|
|
}
|
|
|
|
static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
|
unsigned int key_len)
|
|
{
|
|
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
|
u32 *flags = &tfm->base.crt_flags;
|
|
int ret;
|
|
|
|
init_completion(&ctx->completion);
|
|
atomic_inc(&ctx->configuring);
|
|
|
|
reset_sa_dir(&ctx->encrypt);
|
|
reset_sa_dir(&ctx->decrypt);
|
|
|
|
ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
|
|
ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
|
|
|
|
ret = setup_cipher(&tfm->base, 0, key, key_len);
|
|
if (ret)
|
|
goto out;
|
|
ret = setup_cipher(&tfm->base, 1, key, key_len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
|
|
if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
|
|
ret = -EINVAL;
|
|
} else {
|
|
*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
|
|
}
|
|
}
|
|
out:
|
|
if (!atomic_dec_and_test(&ctx->configuring))
|
|
wait_for_completion(&ctx->completion);
|
|
return ret;
|
|
}
|
|
|
|
static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
|
|
unsigned int key_len)
|
|
{
|
|
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
|
|
|
/* the nonce is stored in bytes at end of key */
|
|
if (key_len < CTR_RFC3686_NONCE_SIZE)
|
|
return -EINVAL;
|
|
|
|
memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
|
|
CTR_RFC3686_NONCE_SIZE);
|
|
|
|
key_len -= CTR_RFC3686_NONCE_SIZE;
|
|
return ablk_setkey(tfm, key, key_len);
|
|
}
|
|
|
|
static int ablk_perform(struct ablkcipher_request *req, int encrypt)
|
|
{
|
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
|
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
|
unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
|
|
struct ix_sa_dir *dir;
|
|
struct crypt_ctl *crypt;
|
|
unsigned int nbytes = req->nbytes;
|
|
enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
|
|
struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
|
|
struct buffer_desc src_hook;
|
|
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
|
GFP_KERNEL : GFP_ATOMIC;
|
|
|
|
if (qmgr_stat_full(SEND_QID))
|
|
return -EAGAIN;
|
|
if (atomic_read(&ctx->configuring))
|
|
return -EAGAIN;
|
|
|
|
dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
|
|
|
|
crypt = get_crypt_desc();
|
|
if (!crypt)
|
|
return -ENOMEM;
|
|
|
|
crypt->data.ablk_req = req;
|
|
crypt->crypto_ctx = dir->npe_ctx_phys;
|
|
crypt->mode = dir->npe_mode;
|
|
crypt->init_len = dir->npe_ctx_idx;
|
|
|
|
crypt->crypt_offs = 0;
|
|
crypt->crypt_len = nbytes;
|
|
|
|
BUG_ON(ivsize && !req->info);
|
|
memcpy(crypt->iv, req->info, ivsize);
|
|
if (req->src != req->dst) {
|
|
struct buffer_desc dst_hook;
|
|
crypt->mode |= NPE_OP_NOT_IN_PLACE;
|
|
/* This was never tested by Intel
|
|
* for more than one dst buffer, I think. */
|
|
BUG_ON(req->dst->length < nbytes);
|
|
req_ctx->dst = NULL;
|
|
if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
|
|
flags, DMA_FROM_DEVICE))
|
|
goto free_buf_dest;
|
|
src_direction = DMA_TO_DEVICE;
|
|
req_ctx->dst = dst_hook.next;
|
|
crypt->dst_buf = dst_hook.phys_next;
|
|
} else {
|
|
req_ctx->dst = NULL;
|
|
}
|
|
req_ctx->src = NULL;
|
|
if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
|
|
flags, src_direction))
|
|
goto free_buf_src;
|
|
|
|
req_ctx->src = src_hook.next;
|
|
crypt->src_buf = src_hook.phys_next;
|
|
crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
|
|
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
|
|
BUG_ON(qmgr_stat_overflow(SEND_QID));
|
|
return -EINPROGRESS;
|
|
|
|
free_buf_src:
|
|
free_buf_chain(dev, req_ctx->src, crypt->src_buf);
|
|
free_buf_dest:
|
|
if (req->src != req->dst) {
|
|
free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
|
|
}
|
|
crypt->ctl_flags = CTL_FLAG_UNUSED;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int ablk_encrypt(struct ablkcipher_request *req)
|
|
{
|
|
return ablk_perform(req, 1);
|
|
}
|
|
|
|
static int ablk_decrypt(struct ablkcipher_request *req)
|
|
{
|
|
return ablk_perform(req, 0);
|
|
}
|
|
|
|
static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
|
|
{
|
|
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
|
|
struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
|
u8 iv[CTR_RFC3686_BLOCK_SIZE];
|
|
u8 *info = req->info;
|
|
int ret;
|
|
|
|
/* set up counter block */
|
|
memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
|
|
memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
|
|
|
|
/* initialize counter portion of counter block */
|
|
*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
|
|
cpu_to_be32(1);
|
|
|
|
req->info = iv;
|
|
ret = ablk_perform(req, 1);
|
|
req->info = info;
|
|
return ret;
|
|
}
|
|
|
|
static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
|
|
unsigned int nbytes)
|
|
{
|
|
int offset = 0;
|
|
|
|
if (!nbytes)
|
|
return 0;
|
|
|
|
for (;;) {
|
|
if (start < offset + sg->length)
|
|
break;
|
|
|
|
offset += sg->length;
|
|
sg = scatterwalk_sg_next(sg);
|
|
}
|
|
return (start + nbytes > offset + sg->length);
|
|
}
|
|
|
|
static int aead_perform(struct aead_request *req, int encrypt,
|
|
int cryptoffset, int eff_cryptlen, u8 *iv)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
|
|
unsigned ivsize = crypto_aead_ivsize(tfm);
|
|
unsigned authsize = crypto_aead_authsize(tfm);
|
|
struct ix_sa_dir *dir;
|
|
struct crypt_ctl *crypt;
|
|
unsigned int cryptlen;
|
|
struct buffer_desc *buf, src_hook;
|
|
struct aead_ctx *req_ctx = aead_request_ctx(req);
|
|
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
|
GFP_KERNEL : GFP_ATOMIC;
|
|
|
|
if (qmgr_stat_full(SEND_QID))
|
|
return -EAGAIN;
|
|
if (atomic_read(&ctx->configuring))
|
|
return -EAGAIN;
|
|
|
|
if (encrypt) {
|
|
dir = &ctx->encrypt;
|
|
cryptlen = req->cryptlen;
|
|
} else {
|
|
dir = &ctx->decrypt;
|
|
/* req->cryptlen includes the authsize when decrypting */
|
|
cryptlen = req->cryptlen -authsize;
|
|
eff_cryptlen -= authsize;
|
|
}
|
|
crypt = get_crypt_desc();
|
|
if (!crypt)
|
|
return -ENOMEM;
|
|
|
|
crypt->data.aead_req = req;
|
|
crypt->crypto_ctx = dir->npe_ctx_phys;
|
|
crypt->mode = dir->npe_mode;
|
|
crypt->init_len = dir->npe_ctx_idx;
|
|
|
|
crypt->crypt_offs = cryptoffset;
|
|
crypt->crypt_len = eff_cryptlen;
|
|
|
|
crypt->auth_offs = 0;
|
|
crypt->auth_len = req->assoclen + ivsize + cryptlen;
|
|
BUG_ON(ivsize && !req->iv);
|
|
memcpy(crypt->iv, req->iv, ivsize);
|
|
|
|
if (req->src != req->dst) {
|
|
BUG(); /* -ENOTSUP because of my lazyness */
|
|
}
|
|
|
|
/* ASSOC data */
|
|
buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook,
|
|
flags, DMA_TO_DEVICE);
|
|
req_ctx->buffer = src_hook.next;
|
|
crypt->src_buf = src_hook.phys_next;
|
|
if (!buf)
|
|
goto out;
|
|
/* IV */
|
|
sg_init_table(&req_ctx->ivlist, 1);
|
|
sg_set_buf(&req_ctx->ivlist, iv, ivsize);
|
|
buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags,
|
|
DMA_BIDIRECTIONAL);
|
|
if (!buf)
|
|
goto free_chain;
|
|
if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
|
|
/* The 12 hmac bytes are scattered,
|
|
* we need to copy them into a safe buffer */
|
|
req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
|
|
&crypt->icv_rev_aes);
|
|
if (unlikely(!req_ctx->hmac_virt))
|
|
goto free_chain;
|
|
if (!encrypt) {
|
|
scatterwalk_map_and_copy(req_ctx->hmac_virt,
|
|
req->src, cryptlen, authsize, 0);
|
|
}
|
|
req_ctx->encrypt = encrypt;
|
|
} else {
|
|
req_ctx->hmac_virt = NULL;
|
|
}
|
|
/* Crypt */
|
|
buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags,
|
|
DMA_BIDIRECTIONAL);
|
|
if (!buf)
|
|
goto free_hmac_virt;
|
|
if (!req_ctx->hmac_virt) {
|
|
crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
|
|
}
|
|
|
|
crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
|
|
qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
|
|
BUG_ON(qmgr_stat_overflow(SEND_QID));
|
|
return -EINPROGRESS;
|
|
free_hmac_virt:
|
|
if (req_ctx->hmac_virt) {
|
|
dma_pool_free(buffer_pool, req_ctx->hmac_virt,
|
|
crypt->icv_rev_aes);
|
|
}
|
|
free_chain:
|
|
free_buf_chain(dev, req_ctx->buffer, crypt->src_buf);
|
|
out:
|
|
crypt->ctl_flags = CTL_FLAG_UNUSED;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
|
|
u32 *flags = &tfm->base.crt_flags;
|
|
unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
|
|
int ret;
|
|
|
|
if (!ctx->enckey_len && !ctx->authkey_len)
|
|
return 0;
|
|
init_completion(&ctx->completion);
|
|
atomic_inc(&ctx->configuring);
|
|
|
|
reset_sa_dir(&ctx->encrypt);
|
|
reset_sa_dir(&ctx->decrypt);
|
|
|
|
ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
|
|
if (ret)
|
|
goto out;
|
|
ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
|
|
if (ret)
|
|
goto out;
|
|
ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
|
|
ctx->authkey_len, digest_len);
|
|
if (ret)
|
|
goto out;
|
|
ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
|
|
ctx->authkey_len, digest_len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
|
|
if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
} else {
|
|
*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
|
|
}
|
|
}
|
|
out:
|
|
if (!atomic_dec_and_test(&ctx->configuring))
|
|
wait_for_completion(&ctx->completion);
|
|
return ret;
|
|
}
|
|
|
|
static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
|
|
|
|
if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
|
|
return -EINVAL;
|
|
return aead_setup(tfm, authsize);
|
|
}
|
|
|
|
static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct rtattr *rta = (struct rtattr *)key;
|
|
struct crypto_authenc_key_param *param;
|
|
|
|
if (!RTA_OK(rta, keylen))
|
|
goto badkey;
|
|
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
|
|
goto badkey;
|
|
if (RTA_PAYLOAD(rta) < sizeof(*param))
|
|
goto badkey;
|
|
|
|
param = RTA_DATA(rta);
|
|
ctx->enckey_len = be32_to_cpu(param->enckeylen);
|
|
|
|
key += RTA_ALIGN(rta->rta_len);
|
|
keylen -= RTA_ALIGN(rta->rta_len);
|
|
|
|
if (keylen < ctx->enckey_len)
|
|
goto badkey;
|
|
|
|
ctx->authkey_len = keylen - ctx->enckey_len;
|
|
memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
|
|
memcpy(ctx->authkey, key, ctx->authkey_len);
|
|
|
|
return aead_setup(tfm, crypto_aead_authsize(tfm));
|
|
badkey:
|
|
ctx->enckey_len = 0;
|
|
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int aead_encrypt(struct aead_request *req)
|
|
{
|
|
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
|
|
return aead_perform(req, 1, req->assoclen + ivsize,
|
|
req->cryptlen, req->iv);
|
|
}
|
|
|
|
static int aead_decrypt(struct aead_request *req)
|
|
{
|
|
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
|
|
return aead_perform(req, 0, req->assoclen + ivsize,
|
|
req->cryptlen, req->iv);
|
|
}
|
|
|
|
static int aead_givencrypt(struct aead_givcrypt_request *req)
|
|
{
|
|
struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
|
|
struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
|
|
unsigned len, ivsize = crypto_aead_ivsize(tfm);
|
|
__be64 seq;
|
|
|
|
/* copied from eseqiv.c */
|
|
if (!ctx->salted) {
|
|
get_random_bytes(ctx->salt, ivsize);
|
|
ctx->salted = 1;
|
|
}
|
|
memcpy(req->areq.iv, ctx->salt, ivsize);
|
|
len = ivsize;
|
|
if (ivsize > sizeof(u64)) {
|
|
memset(req->giv, 0, ivsize - sizeof(u64));
|
|
len = sizeof(u64);
|
|
}
|
|
seq = cpu_to_be64(req->seq);
|
|
memcpy(req->giv + ivsize - len, &seq, len);
|
|
return aead_perform(&req->areq, 1, req->areq.assoclen,
|
|
req->areq.cryptlen +ivsize, req->giv);
|
|
}
|
|
|
|
static struct ixp_alg ixp4xx_algos[] = {
|
|
{
|
|
.crypto = {
|
|
.cra_name = "cbc(des)",
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.geniv = "eseqiv",
|
|
}
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
|
|
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "ecb(des)",
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "cbc(des3_ede)",
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
.geniv = "eseqiv",
|
|
}
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "ecb(des3_ede)",
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.geniv = "eseqiv",
|
|
}
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
|
|
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "ecb(aes)",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
|
|
.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "ctr(aes)",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.geniv = "eseqiv",
|
|
}
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
|
|
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "rfc3686(ctr(aes))",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_u = { .ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.geniv = "eseqiv",
|
|
.setkey = ablk_rfc3686_setkey,
|
|
.encrypt = ablk_rfc3686_crypt,
|
|
.decrypt = ablk_rfc3686_crypt }
|
|
}
|
|
},
|
|
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
|
|
.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "authenc(hmac(md5),cbc(des))",
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_u = { .aead = {
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.maxauthsize = MD5_DIGEST_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.hash = &hash_alg_md5,
|
|
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_u = { .aead = {
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
.maxauthsize = MD5_DIGEST_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.hash = &hash_alg_md5,
|
|
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "authenc(hmac(sha1),cbc(des))",
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_u = { .aead = {
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
.maxauthsize = SHA1_DIGEST_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.hash = &hash_alg_sha1,
|
|
.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_u = { .aead = {
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
.maxauthsize = SHA1_DIGEST_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.hash = &hash_alg_sha1,
|
|
.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
|
|
.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "authenc(hmac(md5),cbc(aes))",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_u = { .aead = {
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = MD5_DIGEST_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.hash = &hash_alg_md5,
|
|
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
|
|
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
|
|
}, {
|
|
.crypto = {
|
|
.cra_name = "authenc(hmac(sha1),cbc(aes))",
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_u = { .aead = {
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.maxauthsize = SHA1_DIGEST_SIZE,
|
|
}
|
|
}
|
|
},
|
|
.hash = &hash_alg_sha1,
|
|
.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
|
|
.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
|
|
} };
|
|
|
|
#define IXP_POSTFIX "-ixp4xx"
|
|
static int __init ixp_module_init(void)
|
|
{
|
|
int num = ARRAY_SIZE(ixp4xx_algos);
|
|
int i,err ;
|
|
|
|
if (platform_device_register(&pseudo_dev))
|
|
return -ENODEV;
|
|
|
|
spin_lock_init(&desc_lock);
|
|
spin_lock_init(&emerg_lock);
|
|
|
|
err = init_ixp_crypto();
|
|
if (err) {
|
|
platform_device_unregister(&pseudo_dev);
|
|
return err;
|
|
}
|
|
for (i=0; i< num; i++) {
|
|
struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
|
|
|
|
if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
|
|
"%s"IXP_POSTFIX, cra->cra_name) >=
|
|
CRYPTO_MAX_ALG_NAME)
|
|
{
|
|
continue;
|
|
}
|
|
if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
|
|
continue;
|
|
}
|
|
if (!ixp4xx_algos[i].hash) {
|
|
/* block ciphers */
|
|
cra->cra_type = &crypto_ablkcipher_type;
|
|
cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC;
|
|
if (!cra->cra_ablkcipher.setkey)
|
|
cra->cra_ablkcipher.setkey = ablk_setkey;
|
|
if (!cra->cra_ablkcipher.encrypt)
|
|
cra->cra_ablkcipher.encrypt = ablk_encrypt;
|
|
if (!cra->cra_ablkcipher.decrypt)
|
|
cra->cra_ablkcipher.decrypt = ablk_decrypt;
|
|
cra->cra_init = init_tfm_ablk;
|
|
} else {
|
|
/* authenc */
|
|
cra->cra_type = &crypto_aead_type;
|
|
cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
|
|
CRYPTO_ALG_ASYNC;
|
|
cra->cra_aead.setkey = aead_setkey;
|
|
cra->cra_aead.setauthsize = aead_setauthsize;
|
|
cra->cra_aead.encrypt = aead_encrypt;
|
|
cra->cra_aead.decrypt = aead_decrypt;
|
|
cra->cra_aead.givencrypt = aead_givencrypt;
|
|
cra->cra_init = init_tfm_aead;
|
|
}
|
|
cra->cra_ctxsize = sizeof(struct ixp_ctx);
|
|
cra->cra_module = THIS_MODULE;
|
|
cra->cra_alignmask = 3;
|
|
cra->cra_priority = 300;
|
|
cra->cra_exit = exit_tfm;
|
|
if (crypto_register_alg(cra))
|
|
printk(KERN_ERR "Failed to register '%s'\n",
|
|
cra->cra_name);
|
|
else
|
|
ixp4xx_algos[i].registered = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __exit ixp_module_exit(void)
|
|
{
|
|
int num = ARRAY_SIZE(ixp4xx_algos);
|
|
int i;
|
|
|
|
for (i=0; i< num; i++) {
|
|
if (ixp4xx_algos[i].registered)
|
|
crypto_unregister_alg(&ixp4xx_algos[i].crypto);
|
|
}
|
|
release_ixp_crypto();
|
|
platform_device_unregister(&pseudo_dev);
|
|
}
|
|
|
|
module_init(ixp_module_init);
|
|
module_exit(ixp_module_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
|
|
MODULE_DESCRIPTION("IXP4xx hardware crypto");
|
|
|